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Abstract

Pseudo-Boolean formulas consist of constraints of the form
Y wi-x; <k, where x; are propositional literals, w; € Z,
k € Z, and arise in planning, scheduling and optimization
problems. We describe an efficient and easily verifiable de-
cision procedure for pseudo-Boolean formulas, that is based
on encoding PB formulas into the propositional satisfiability
problem with the cutting-edge sequential weighted counter
encoding. State-of-the-art SAT solvers that emit unsatisfiabil-
ity proofs are used to solve the resulting instances. The com-
bination of a verified translation to SAT, and certified SAT
solvers leads to a verified decision procedure for PB formu-
las. The verification of the encoding is carried out in the Coq
proof assistant.

Introduction

The satisfiability problem is one of the most prominent prob-
lems in theoretical computer science and artificial intelli-
gence and was successfully applied in planning [16, 25],
as well as scheduling [12]. In these applications pseudo-
Boolean (PB) constraints often occur. PB constraints can be
represented as }.i'_; w; - x; <! k, where x; are propositional lit-
erals, w; € Z, k € Z, and hold if and only if the weighted
sum over the x; literals is <i-related with k. For example,
the packing problem can be formalized by means of PB for-
mulas: we pack the given items of sizes ay,...,a, into the
minimal number of containers y; such that the volume V of
the container is not exceeded. Then, we obtain:

n
Z axij <Vy; forallie {l...n}
j=1

Our research is based on the need for formalized and ver-
ified decision procedures that do not depend on unverified
components and pen and paper proofs. Our contribution is
an easy pipeline of an efficient encoding to solve PB con-
straints, where each step is certified, leading to efficient and
easily verifiable decision procedure for PB formulas. Fol-
lowing Eén and Sorensson [11], we translate PB constraints
into formulas in conjunctive normal form, and run after-
wards a SAT solver that finds a solution to the original PB
formula or reports unsatisfiability of the problem. This SAT-
based approach is highly successful since SAT solving has
significantly advanced over the last decades, and solvers are

yearly evaluated in international SAT competitions. Their
performance over e.g. hardware and software verification [7]
has improved, enabling them to become widespread tools in
the industry. Moreover, often formalizations of problems
are close to the clause normal form. Therefore, the use SAT
solvers is an attractive approach to tackle these problems.

Due to these reasons many translations from PB con-
straints into propositional formulas in conjunctive normal
form have been proposed: naive, nested, watchdog [22],
adder- and sorting networks [21, 11], binary merge [20], bi-
nary decision diagrams [11, 1], and the sequential weighted
counter encoding (SWC) [13]. Specialized encodings also
exist for cardinality constraints [2, 26] that are subsumed by
PB constraints.

Among all these, we chose the SWC encoding due to
the following reasons. First, it produces in the PB bench-
marks 2011 and 2010 less clauses in 99% of the cases than
the asymptotic best binary merge encoding [13]. Second,
SWC satisfies two important properties: unit propagation in
the encoding detects inconsistencies and maintain general-
ized arc consistency [13]. Third, experiments on all new
instances of the PB evaluation 2012 have shown that the
sequential weighted counter encoding performs better than
adder and sorting networks, watchdog and binary merge en-
codings, within a timeout of 30 minutes [23]. Finally, the
encoding is relatively simple to describe, which allows us to
verify it with little effort using interactive theorem provers
such as Coq.

The correctness of the PB decision procedure is then re-
duced to the correctness of the underlying SAT solver. Un-
fortunately, SAT solver can be buggy: three solvers, that par-
ticipated in the SAT competition in 2009, and five solvers
that participated in the SAT competition in 2007 gave in-
correct results [8]. The critical case is when a formula is
reported to be unsatisfiable, as unsatisfiability is hard to see.
Also subtle bugs in different components of satisfiability
solvers were reported in [15]. Therefore, state-of-the-art
SAT solver like Riss or Lingeling [6] , emit certificates in
the DRAT [29] format, which are afterwards checked by an
independent program, such as drat-trim [29]. Still, a proof
of correctness of the translation from PB constraints to CNF
is necessary. Figure 1 presents our approach to the problem
of justification of the whole procedure. It is a combination
of a mechanically verified translation from PB constraints



into CNF and a certified SAT solver. Such a combination
then forms a verified decision procedure for PB formulas.
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Figure 1: The certified SAT approach combined with a me-
chanically verified PB encoding: PB formulas can be re-
duced to satisfiability of the propositional satisfiability ques-
tion. Then, the SAT solver emits a proof for unsatisfiability,
which can be checked independently.

The rest of this paper is structured as follows: First, we
give a short introduction to the proof assistant Coq, propo-
sitional logic, the DRAT format for the certification of SAT
solvers, as well as PB-constraints and the SWC encoding.
Then we present the formalization of the SWC encoding.
After that we describe the specification and present the proof
ideas. Then we focus on integration of all parts of the proce-
dure, and evaluate our approach on selected instances from
the PB competition 2016. Finally, we discuss some future
improvements.

Background
The Coq Proof Assistant

We use the Coq proof assistant [5] to write our specifica-
tions and proofs. Coq is based on the calculus of induc-
tive constructions [9] and combines higher-order logic with
a typed functional programming language. In Coq we de-
fine functions in the lambda calculus. Moreover, we can
express mathematical theorems and can proof them interac-
tively. The syntax of Coq is similar to that of other typed
functional programming languages. Accepted proofs can be
independently checked by a small certification kernel. Fi-
nally, we can automatically extract Haskell programs from
Coq theories, which give us fully verified programs. There-
fore, Coq provides an essential link from the PB to the SAT
encoding, because it ensures the correctness of the transla-
tion. In this way we obtain a verified Haskell program that
transforms PB constraints into CNF.

Propositional Logic

In propositional logic we consider an infinite set of proposi-
tional variables ¥'. A literal L is either a propositional vari-
able A or its negation —A. The complement of a literal L is
denoted by L, i.e. A= —-A and -A = A. Clauses are lists
of literals and represent disjunction. Formulas are lists of
clauses, representing a conjunction.

The semantics of formulas is built on interpretations. An
interpretation I is a mapping from the set #” of all Boolean
variables to the set {T, L} of truth values, represented by
the set of variables, which are true in this interpretation. The
interpretation I satisfies the variable A, in symbols I = A,
if and only if A € I. Similarly, I satisfies the clause C, in
symbols [ |= C, if and only if there is a literal L € C, such
that 7 = L. For a formula F, the interpretation / satisfies the
formula F, in symbols I |= F, if and only if for every clause
C € F, we find that the interpretation / satisfies the clause C.
A model I of a formula F is an interpretation /, that satisfies
the formula F. If such a model I of F exists, the formula F
is satisfiable. Otherwise, the formula F is unsatisfiable.

Let C and D be two clauses and L be a literal such that
L€ C and L € D. Then, the resolvent of C and D upon L
is (C\{L})U(D\{L}). A tautological clause is a clause
containing A and —A for some variable A.

DRAT Refutations

As the second step to certify the output of our system we
use drat-trim, which is a checker for unsatisfiability proofs
in DRAT format: The Resolution Asymmetric Tautology
(RAT) property is based on the notion of asymmetric literal
addition [15], where ALAR(C) is defined as

CU{L|{Li,...,Ly,L} € F and {Ly,...,L,} CC}

We consider the recursive application of asymmetric literal
addition:

ALAF(C)10 = C
ALAF(C)tn+1 = ALAF(ALAR(C) 1T n)

A clause C is an asymmetric tautology (AT) w.r.t. the for-
mula F, if there is n € N such that the clause ALAF(C) T n
is a tautology.

Jarvisalo et al. introduced the following redundancy crite-
ria based on an asymmetric tautologies in [15]: The clause C
is a resolution asymmetric tautology (RAT) upon L w.rt. F,
if (1) the clause C is an asymmetric tautology w.r.t. the for-
mula F, or (2) there is a literal L € C such that the resolvent
of C and D upon L is an asymmetric tautology w.r.t. the
formula F for every D € F with L € D.

Several important techniques in SAT solvers can be char-
acterized in terms of RAT: bounded variable elimination and
addition [27, 10, 24, 19], blocked clause elimination [14],
blocked clause addition [17, 15], probing [18], and extended
resolution and reencoding [19, 28].

A DRAT refutation for a formula is a sequence of clauses
to the empty clause having the RAT property with respect to
the preceding clauses, together with deletion information. If
a DRAT refutation for a formula F exists, then F' is unsatis-
fiable.
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Figure 2: Illustration of the sequential weighted counter as
a circuit. Each box represents a unit that adds the weight of
the literal to the partial sum, if the variable x; is true.

Pseudo-Boolean Constraints and the
Sequential Weighted Counter

We consider pseudo-Boolean constraints Y wix; < k
in normal form [3] that meet the following conditions:
1. 1 <k<n, 2. weights are between 1 and k, and 3. no
literal occurs more than once. For example, the PB con-
straint 2x; +xp + 2x; < 1 is not in normal form, since x;
occurs more than once. Notice that it is not a restriction to
consider PB constraints in normal form, as all PB constraints
can be transformed into a semantically equivalent PB con-
straint in normal form. Moreover, normalized constraints do
occur in applications, such as in translations from maximum
satisfiability into PB optimization.

A normalized PB constraint can then be transformed to an
equivalent propositional formula. For instance, the expres-
sion 3x1 4+ 2x» +4x3 < 5 is a normalized constraint, that is
semantically equivalent to the following formula:

=(x1 Ax3) A—(xp Axs)

The sequential weighted counter (SWC) [13] is an en-
coding of normalized PB constraints into formulas in con-
junctive normal form. It generalizes the sequential counter
encoding [26] for at-most-k constraints (expressions of the
form Y x; < k, where only k variables can be mapped to T).
SWC can also be seen as a variant of a BDD-based encod-
ings for monotone predicates [1].

The SWC encoding works as follows: given a sequence
of variables x1,...,x, and associated weights wy, ..., wy, the
sequential weighted counter uses the auxiliary propositional
variables s; ;, where 1 <i <nand 1 < j <k. The variable
s; j expresses that the sum up to the ith variable is at least j.

Example 1. For instance, consider the PB-constraint
3x1+2x+4x3 <5 and an interpretation 1 where
I(x;) =T, I(xp) = L and I(x3) = T. Then, the following
variables are all mapped to T under I:

$1,1,51,2,513,  $2,1,52.2,523, §3,1,53.2,533,

$4,1,54,2,54.3,54.4,545

To get more insight into the encoding process, refer to
Fig. 2, which illustrates the structure as a circuit.

Formalization

We carried out the formalization of the syntax and semantics
of propositional logic, PB constraints, and the SWC encod-
ing in the Coq interactive theorem prover. As most of the
formalization is straightforward, we present only the details
of SWC encoding.

We express the sequential weighted counter encoding in
Coq as follows: let wf be a function wf : N — N, that assigns
weights to literals.

Definition 1 (Formalization of SWC in Coq). The se-
quential weighted counter for a normalized PB constraint
Y wixi <k, denoted by SWC(n,k,wf), is a formula in
conjunctive normal form consisting of the following parts:

1. The first formula states the monotonicity of the sum, as
only positive non-zero weights are allowed. If the sum up
to the variable x; is at least j, then the sum to the next
variable xi;1 is at least j. Formally,

(msi1,jVsij) forall2<i<nand1<j<k (F)

2. The second formula states that the sum up to the variable
x; must be at least w, if x; is satisfied by the considered
interpretation:

(mx;Vsij) foralll<i<n,and1 < j<wi+1 (F)

3. The third formula states that the sum up to the variable
X; increases by w;:

(—8im1,j VX VSi jgw;) forall 2 <i<n, 1 < j<k—w;+1

(F3)

4. The fourth formula expresses when an interpretation can-

not be a model of the PB-constraint, i.e. when the
weighted sum exceeds k. Formally:

(DSi—tjp1—w; Vxi)  foralll <2<n—1 (Fy)

Example 2 (SWC Encoding). Consider the PB-constraint
3x1 4 2x2 +4x3 < 5, where wf is a function giving the cor-
responding weights. Then SWC(3,5,wf) = Ff AF, AF3 A\ Fy,
where

F = (—\Sl 1\/Sz1)/\(—|S172\/S2,2)/\(—|51,3 \/S273)/\
(ﬁS14\/S2 4) N (—s15Vs25)

= (ﬁxl\/sl 1) (ﬁxl\/slyz)/\(ﬁx1VS173)/\
(‘\Xz\/Sz 1) (—OCQ\/Sz,z)

= (—\Sl 1V—xa Vs ’5)/\(_‘5‘1’2\/_\)(2 \/S274)/\
(—s13Vx2 Vs s)

Fy= (—\914\/—\XZ)/\(—\S2,2\/—UC3)

Specification

Given a normalized PB constraint, its SWC encoding is se-
mantically equivalent only with respect to the original vari-
ables, because we use auxiliary variables. Therefore, an in-
terpretation satisfying a PB-constraint must be extended to
a model over the SWC encoding while preserving the truth
value for the original PB variables. Formally, an interpreta-
tion J is an extension of the interpretation /, if it agrees with
the truth values for all literals of the form x; for every i € N
(in contrast to variables of the form s; ;).



The specification of encodings consists of two parts: com-
pleteness and soundness. Completeness means that when-
ever an interpretation satisfies the PB-constraint, it can
be extended to an interpretation that satisfies the formula.
Soundness means that whenever an interpretation does not
satisfy the PB-constraint, it falsifies the formula:

Definition 2 (Encoding Specification). The formula F en-
codes a PB constraint Y, w;x; < k iff for every interpretation
I, we find the following:

o [f I satisfies Y wix; < k, then there is an extension J of 1
such that J is a model of F.

o [fI does not satisfy Y wix; < k, then I is not a model of F.

Theorem 1 (Main Theorem). The formula SWC(n,k,wf)
encodes the Y wix; < k, if the weight function wf gives the
corresponding weights.

Proof of the Main Theorem

Our proof of the main theorem is based on the informal
proofs given in [13] and [26], and splits in two essential
components:

1. Soundness

The proof is done by contradiction. It uses the follow-
ing intuition: suppose J is the model of SWC encoding.
Therefore, its restriction I to the variables x; must also
be a model of the PB-constraint. Otherwise, it would vi-
olate one of the invariants, springing from the formulas
Fi ... Fy, which essentially construct the SWC encoding.

2. Completeness

To prove completeness we need to show that the model
I of PB formula can be extended a model J of the SWC
specification.

For that we need to take the PB model 7 and show that we
can construct an interpretation, that assigns the variables
s;,j to truth values, such that they satisfy the constraints
Fi,...,Fy. This can be done using following two prop-
erties: I. the weighted sum is monotone, as long as he
weights are positive, and 2. the extended model J does
not change the initial variables x;.

For further details see [13].

Integration

Our decision procedure works as follows: It accepts a vari-
ant of the input format used in the PB competitions and eval-
uations, where a PB formula has to be given in normal form.
We then compute the SWC encoding, which is done by a
program that was automatically extracted from the Coq the-
ory. This is done for each occurring PB constraint. The re-
sulting formulas are then syntactically transformed into the
DIMACS CNF format such that it can be given to the SAT
solver.

More precisely, at this step it is necessary to create unique
variables s; ; for each PB constraint and preserve the original
names of x; variables. Notice that this syntactical transfor-
mation was not verified using Coq. After running the certi-
fying SAT solver Lingeling, we check unsatisfiability results
with drat-trim.
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Figure 3: Comparison of the two PB solvers pbsolver and
sat4j with our verified checker on selected instances of the
PB evaluation 2016.

Experimental Evaluation

We compare the verified PB solver with the two existing PB
solvers sat4j and pbsolver. pbsolver is a MiniSAT-based
PB solver that combines several different encodings and
chooses the best among them [23]. sa4j is a Java library for
solving Boolean satisfaction and optimization problems and
can also handle PB formulas [4]. For the evaluation, we con-
sidered formulas from the PB competition 2016 that were
satisfaction problems containing only linear constraints and
small integers (in total 777 formulas). The experiment was
performed on a cluster of Intel Xeon E5-2670 CPUs with 8
cores and 20 MB level 3 cache that is shared by all cores.
Each program was run on a single core, with a memory limit
of 2.5GB and a time limit of 6 hours.

A dedicated normalization procedure was applied before
running the verified Haskell encoder. If we do not consider
instances that timed out, the time needed for the dedicated
normalization procedure and our verified transformation is
in average 140 seconds, whereas the average run time of
the SAT solver and the DRAT checker is 624 seconds. The
solver satdj solved 489 instances, and pbsolver as well as
the verified PB program solved 563 instances, and the re-
sulting run times are visualized in Fig. 3. The performance
gap of pbsolver over our verified approach can be explained
that we use a better SAT solver. From the data we conclude
that our verified PB solver is efficient enough to be useful in
practice.

Discussion & Conclusion

The contribution of this work is the introduction of a routine
for solving PB formulas with the SAT approach, i.e. we en-
code PB constraints using a mechanically verified program
and afterwards using a SAT solver that emits unsatisfiability
proofs that can be independently checked. For the trans-
formation of PB constraints to conjunctive normal form the
SWC encoding was used as it is highly-efficient in practice
and easy to verify. The translation was formalized in the



Coq proof assistant. We claim that we have developed a
trustworthy decision procedure for checking satisfiability of
PB formulas, assuming that the Coq proof assistant as well
as the proof checker are correct.

An alternative approach for developing a verified decision
procedure for the PB problem is to develop specialized rea-
soning procedures, and show them to be correct, or to use
a certifying-based approach: both methods seem to be more
difficult than the presented approach. However, a major dis-
advantage of our approach is that some PB problems need
specialized reasoning procedures, such as cardinality rea-
soning such as the Fourier Motzkin procedure, and there are
no available certifying SAT solvers that apply these meth-
ods.

Our formalization of the problem contain specifications
and proofs for the SWC and the sequential counter encod-
ing, which is optimized for cardinality constraints. For the
SWC encoding, we splitted the proof into 46 lemmas, for
the sequential counter encoding we used 94 lemmas. In to-
tal, the project consists 3800 lines of code. In the process
of formalization and proofs, we did not observe flaws in the
published proofs. The system is available at:
https://iccl.inf.tu-dresden.de/web/VPB
We believe that the presented approach can easily be adapted
for several other applications, such as weighted maximum
satisfiability, planning, and answer-set programming. These
are widely used to model a large scope of problems, there-
fore, the system that we developed might become useful to
produce verified proofs in multiple domains. We are also
working on the question how we can express cardinality rea-
soning in the DRAT format to improve the performance of
the presented approach.
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