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Abstract

In this article we study the allocation of a bud-
get to promote an opinion in a group of agents.
We assume that their opinion dynamics are
based on the well-known voter model. We are
interested in finding the most efficient use of
a budget over time in order to manipulate a
social network. We address the problem using
the theory of discounted Markov decision pro-
cesses. Our contributions can be summarized
as follows: (i) we introduce the discounted
Markov decision process in our cases, (ii) we
present the corresponding Bellman equations,
and, (iii) we solve the Bellman equations via
backward programming. This work is a step
towards providing a solid formulation of the
budget allocation in social networks.

1 Introduction

During the last decades a lot of research effort has
been devoted to model the underlying process of opin-
ion formation of agents that interact through a social
network. In this respect, DeGroot’s [5] or Friedkin-
Johnsen’s [8] models are classic references. Another
classic model is the voter model [4], [9] which considers
that each agent holds a binary opinion, 0 or 1, and at
each time step, each agent chooses one of its neighbors
at random and adopts that opinion as its own. Other
works, based on the voter model, incorporate stubborn
agents [12], and biased agents [10]. Moreover, the last
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few years there has been an increasing literature about
manipulation of opinion in social networks [6], [7,, [TT].

In this work, we are interested in finding the most
efficient use over time of a budget in order to manipu-
late a social network. The idea is to promote an opin-
ion by paying agents to supplant their true opinions.
We model opinions as two values, 0 or 1, with 1 (0)
representing supportive (non-supportive) opinion.

We frame the problem of designing sequential pay-
ment strategies as a discounted Markov decision pro-
cess (DMDP). DMDPs have been widely used to for-
mulate many decision making problems in science and
engineering (see, e.g., [1,[2, B]). One of the main appli-
cations of DMDP models is the computation of opti-
mal decisions (i.e., actions) over time to maximize the
expected reward (analogously, minimize the expected
cost).

First of all, we focus on a fully connected network
where agents change their opinion following a voter
model. We provide the correspondent Bellman equa-
tions to solve this problem and we show through an
example how to solve the stated problem in practice.
We provide a structural characterization of the associ-
ated value function and the optimal payment strategy.
Then, we compute the optimal payment using dynamic
backward programing.

2 Model definition

In order to find the optimal budget allocation on bi-
nary opinion dynamics, we make extensive use of the
theory of DMDPs. First, we adopt the voter model of
opinion formation over a social network. Then, we de-
fine the DMDP and the corresponding Bellman equa-
tions to obtain the optimal strategy of budget alloca-
tion.

Consider an undirected social network G = (Z,€),
where Z stands for the set of agents, indexed from 1
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ton, and £ € TxT is the set of edges. Fach agent i € Z
has a binary initial opinion. Opinions take values 0
or 1. If agent ¢ has opinion 0 (analogously, 1) we label
it as non-supporter (supporter). For example, if agents
are discussing about politics, 1 could be supporting a
particular party and 0 not supporting it.

Moreover, we distinguish two cases, depending on
whether the network is fully connected or not.

We start by studying the fully connected case. In
each decision epoch, agents update their opinions fol-
lowing a voter model sensitive to external payments.
Let 8 €[0,1) be the discount factor, which represents
the loss of reward in the future with respect to the
current reward. A discounted Markov decision pro-
cess (DMDP) is a 5-tuple (S, As, P, R, 3), where S is
a finite set of states, Ag is a finite set of actions, P is
the set of transition probabilities and R is the set of
rewards.

Therefore, the model is defined as follows:

1. Decision epochs: the set of decision epochs is
defined as t = 1,2,...,7. We consider a finite
discrete-time system. At each decision epoch ¢ we
observe the state s and choose an action a.

2. States: the state space S of the DMDP consists
on the possible number of supporters, s € N,
s=|{ie€Z|iis a supporter}|.

3. Actions: the action space A, is the set of ac-
tions available in state s (without loss of gener-
ality, actions are state independent). We consider
that the actions a € N are the possible number
of payments, a = |{i € Z | i receives a payment}|,
where the non-supporter agents have a cost cyg
for changing their opinion from non-supporter to
supporter, and the supporter agents, a cost cg to
hold their supporter opinion. We assume that the
cost of changing their opinion is higher than the
cost of holding it, i.e., cys > cs. We consider a
finite budget b. Notice that, because the actions
are constrained by the budget, they are station-
ary.

4. Transition probabilities: if the DMDP in deci-
sion epoch t is at state s1, the probability that it
transitions to state so taking action a is denoted
pt(s1, 82,a). Due to the natural independence of
agents transitions, we compute those probabili-
ties as the product of the transition probabili-
ties of the agents. The evolution of one agent
i € T will be described by the voter model. Start-
ing from any arbitrary initial labels, supporter
(S) or non-supporter (NS), we consider two label-
ing functions fs(i) and fys(i), where fs(i) =1
(fns(i) = 1) means that agent i is a supporter
(non-supporter). At each decision epoch ¢, each
node selects uniformly at random one of its neigh-
bors opinion. For each node j € Z, the set of its

neighbors is defined as N(j) ={keZ|{j, k} € E}.
Therefore, we define for one 7 € Z with zero-
payment in decision epoch ¢ the labeling func-
tions,

: {geN (9)1£5(1)=1}]
§+1(i _ {1 with prob. |N(is)| ,

- {geN (9)1£5(5)=0}|
0 with prob. W,
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Analogously, for one agent k € Z that receives a
payment in decision epoch ¢t we define:

1 with prob. 1,
0 with prob. 0,

15" (k) = {

No(k) =1- f5 (k)

As we said, we assume that the graph is fully
connected, therefore each agent can communicate
with every other agent. We denote the set of non-
supporter agents that receive a payment as £ =
{i € T | non-supporter & receives a payment}
and its cardinality as ¢ = |£|. Respectively, the
set of supporter agents that receive a payment
as IC = {i e Z| supporter & receives a payment}
and its cardinality as k = |K|. Notice that a = {+k.
Therefore the transition probabilities p;(s1, $2,a)
can be computed as:

o If a > sy then p;(s1,82,a) = 0.

. If a < s5 then

pt(51752»a) =

min{sy—k,sg—£} Sl—k 51 i n-s s1—k—i

i=max{0,so—(n-s1)-k}

n-sy -4 n-sy n—si1—sg+i+k s1 so—i—(l+k)
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5. Reward: the instant reward in time ¢ and state s
is defined as r¢(s) = X;cz g+ s, where g denotes the
reward provided by one agent.

Let vg be the value function of the above DMDP,
i.e., it is the supreme, over all possible budget allo-
cation strategies, of the expectation of the discounted
reward starting from an initial budget b. Under these
assumptions, the Bellman equations for all s € .S and
initial budget b are:

_ — ot
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where the budget evolves as
b(t+1)=b(t)+r(s)—L-cns—k-cs.

Next, we present the second case where in each de-
cision epoch agents update their opinions following a
voter model in a network (not necessarily fully con-
nected) that can be affected by external payments. As
before, we design this problem as a DMDP where the
set of actions are the possible external payments.

Therefore, let 3 € [0,1) be the discount factor, we
consider, by a slight abuse of notation, the 5-tuple
(S,As,P,R,[3) as before. Concretely, the elements
changed from the previous model:

1. Decision epochs: the set of decision epochs is de-
fined ast=1,2,...,T.

2. States: the state space S of the DMDP, consists
on all possible combinations of agents’ labels, non-
supporter (0) or supporter (1), i.e., s € {0,1}"™.

3. Actions: the action space Ay is the set of actions
available in state s (without loss of generality, ac-
tions are state independent). An action means
whether or not we give a payment to each of the
agents, a € {0,1}", where a 0 (respectively 1) in
position ¢ means we give no payment (payment) to
agent i € Z. We also define a vector of costs c € R}
whose element ¢; > 0 is the cost of changing by one
unit the opinion of agent 4, in case agent ¢ is non-
supporter, or the cost of holding the opinion of
agent 7, in case agent ¢ is a supporter.

4. Transition probabilities: as before, if the DMDP
in decision epoch t is at state si, the probability
that it transitions to state s taking action a is
expressed as pg(s1,2,a) and can be computed as:

o If |a| > |s2| then pi(s1,s2,a) = 0.
o If |a| < |s2| then p(s1,s2,a) is equal to

]I{ Si = 5;}[]1{82‘ = supp} |{-7 € N(’I,)/fé(j) = 1}|

=

initial budget b are:

vs(s,b) = max E Y Bry(s)
acAg, =0

cT.as<h

= max {ro(s) + Y Bpi(s, s’ a)vp(s’,b- a+t ro(s))},
acds, s’eS
cTazb
where the budget evolves as b(t+1) = b(t)—cT-a+R(s;)
and ¢’ denotes the transpose of vector c.

3 Simulation results

We suppose that after a time T we will not obtain re-
wards for the supporter agents, so we are interested
in the distribution of the DMDP in the time interval
[0,T]. We consider an undirected, fully connected so-
cial network G = (Z,€) with n = 7 agents that form
opinions with a voter model. In time ¢ = 0, we assign
at random an initial label to each agent. Solving the
Bellman (fixed point) equations, given the model and
the set of states and feasible actions, gives us the best
strategy for each state to follow in the time interval.
We take T =6, 8 =0.8, cys = 10, cg =5, B = 30 and
g=38.

Some conclusions can be drawn from the simula-
tions. The optimal payment strategy is to invest all
our budget paying to the higher number of agents
at time ¢t = 0. Obviously, if all the network is non-
supporter (respectively supporter), the budget will be
allocated to change opinions (to hold opinions). How-
ever, the distribution of the budget differs for the rest
of possible initial states as we show on Table

Initial state Budget Allocation
Payments to NS Payments to S
s=1 2 1
5=2 2 2
s=3 1 3
s=4 1 4
$=5H 0 5)
5=6 0 6

NG
+1{s; = non-supp} 1{j e N(’£|)]<ff(1;r)s|(]) = 1}|]
+1{si = 57} I{si = supp € N(ﬂ)\f/{ié)fj) = 0}

+ I{s; = non-supp} [{j e N(Z)/fzt\rs(J) = 0}|]
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5. Reward: the instant reward in time ¢ and state s
is defined as r;(s) = g7 -5, where g is the vector of
rewards whose element g; is the reward that agent
i € Z provides.

Let vg be the value function of the above DMDP,
i.e., it is the supreme, over all possible budget alloca-
tions strategies, of the expectation of the discounted
reward starting from an initial budget b. Under these
assumptions the Bellman equations for all s € S and

Table 1: Budget allocation over the states.

Given the budget allocation at time ¢t = 0, we show
in Figure [I] the expected reward obtained at time 7'
for each state s € S.

4 Conclusions

In this work, we have introduced the problem of
budget allocation over time to manipulate a social
network. We have developed a formulation of the
discounted Markov decision process as well as the
corresponding Bellman equations for the voter model
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Figure 1: Expected reward at time 7'

of opinion formation. Using backward programming,
we have obtained the optimal payment strategy for
a small example of agents interacting trough a fully
connected network. Many questions still remain to be
answered. Future work would be devoted to improve
the performance of our simulations in order to obtain
the optimal strategy for larger networks and different
topologies. Moreover, we intend to construct the
DMDP model and the Bellman equations for different
models of opinion dynamics. This will lead to the
mathematical characterization of the optimal policy
for different network structures and opinion formation
models. It will lead also to the characterization of
the most important agents (the agents with highest
benefit-cost ratio) which should be related with its
centrality as shown in previous results [11 [6].
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