
Hash Tree Indexing for Fast SPARQL Query in Large
Scale RDF Data Management Systems

Wenwen Li1,3, Bingyi Zhang1, Guozheng Rao1,3,∗, Renhai Chen1,3, and Zhiyong
Feng2,3

1 School of Computer Science and Technology,Tianjin University, Tianjin 300350, P. R. China,
2 School of Computer Software,Tianjin University, Tianjin 300350, P. R. China

3 Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin 300350, P.R. China
∗ Corresponding author.

{lww1204 ,byzhang, rgz ,renhai.chen, zyfeng}@tju.edu.cn

Abstract. In the past decade, the volume of RDF (Resource Description Frame-
work, which is a standard model for data interchange on the Web) data has grown
enormously, and many RDF datasets (e.g., Wikipedia) have reached up to billions
of triples. As a result, efficient management of this huge RDF data has become a
tremedous challenge. In this paper, we present HTStore, a hash tree based system
for fast storing and accessing large scale RDF data. The design of HTStore has
three salient features. First, the compact design can effectively reduce the size of
the indexes. Second, HTStore utilizes the hash function to significantly reduce
the query time. Third, the proposed hash tree structure can easily adapt to the
changes in data volume (e.g., data expansion). The experimental results demon-
strate that the proposed system can improve the query efficiency up to 21.3%
compared with the representative RDF data management systems.

1 Introduction
The RDF (Resource Description Framework) data model and its query language SPARQL
have been widely used for managing schema-free structured information. Large amounts
of semantic data are available in RDF format in many fields, such as Yago[1], DBLP[2],
and DBpedia[3]. The statistics from Yago show that more than 100 billion triples were
published by September 2015.

Several systems, such as Gstore[4] and RDF-3x[5], have been proposed to sup-
port RDF store and SPARQL query. According to the data management method, these
systems are generally classified into three categories: relational database based RDF
management, RDF triple management, and graph-based RDF data management. Sys-
tems based on relational database leverage the relational database to manage RDF data.
In such systems, RDF data are stored in the database tables and performed data query
using the traditional SQL language. Leveraging mature data management technique of
relational database, RDF storing and querying are easy to implement. However, sys-
tems based on relational database will destroy the original structure of RDF, and thus
introduce a large number of time consuming join operations and waste a lot of storage
space. Systems based on triple or RDF graph, such as RDF-3x and RDF Cube, opti-
mize the RDF data management by using B+ tree index or hash index to improve query
performance. Although this approach has shown to accelerate joins by orders of mag-
nitude, the lengthy comparison operations and high collision rate with data explosion
have become the Achilles’ heel of an RDF data management system.

In this paper, we propose HTStore to fast store and access large scale RDF data.
In HTStore, we organize RDF data in the form of an RDF graph and establish indexes
according to the RDF graph. The index structure includes two layers: the hash layer
containing a hash table and the tree layer containing hash trees. More specifically, we
construct a hash table for fast lookup. When a hash collision happens in a hash table,
new hash trees will be established in the second layer. With such a structure, only lim-
ited hash operations are required to perform a data query. As a result, the query time
is significantly reduced. We conduct experiments over LUBM datasets to confirm the
effectiveness and efficiency of our proposed approach. The experimental results prove
the proposed system can improve the query efficiency by 21.3% compared with the
representative RDF data management systems.

2 Design of HTStore

In HTStore, we organize RDF data in the form of an RDF graph and establish in-
dex according to the vertexes in the graph. Fig. 1 shows an overview of the proposed
structure used to manage RDF graph. The left part of the figure is an RDF graph, and
the right part is the index built according to the vertexes in the graph. Before build-
ing an index in a RDF dataset, each vertex in the RDF graph is assigned a unique
identifier. The index structure includes two parts: the hash layer containing a hash ta-
ble and the tree layer containing hash trees. In the first layer, a m-length hash table
is constructed. In the second layer, we build hash trees dynamically based on a prime
sequence P = {p1, p2, p3 · · · } during inserting RDF graph vertexes.

004

009 006

001 003 002

007

008

005

Jack Ma

1969-09-10

bornOnDate
ZheJiang

bornIn

Alibaba

Group

chairmanOf

Cathy ZhangYing

spouse

Qiantang River

namedFor

39,300 sq mi
Total area

1,400/sq mi

density

Online shopping

services

Alibabagroup.com

website

001

002

003

004

005

006

007

008
009 010

010

string hash value:002

select ?x where {?x bornIn ZheJiang}

hash layer

tree layer

Fig. 1: System view of HTStore

Suppose that we intend to insert a new vertex into an RDF datasets, Fig. 2 shows dif-
ferent solutions for different insertion situations. The simplest case is when no collision
happens in hash table. The vertex will be added to the blank bucket directly(as shown in
Fig. 2(a)). In Fig. 2(b), collision happens in the hash table and there exists no hash tree
of the collided vertex. Therefore, a new hash tree should be established in the second
layer. If hash tree of the collided vertex has been constructed(as shown in Fig. 2(c)) and
collision still occurs between the new node and the root node of hash tree, according to
hash tree’s construction regulation, we will leverage first prime number p1 to obtain a

hash value t of the new node. It means that we will consider the t-th child node of root
node – cnode. If collision still occurs in the cnode, the second prime number p2 will be
used to determine which child node of cnode will be considered. Similar operations by
different prime number will be conducted until there is no collision occurs.

004

009 006

001 003 002

008

005 010

new node

007

(a) no collision occurs

004

009 006

001 003 002

008

005 010

new node

007

(b) collision in hash table

004

009 006

001 003 002

008

005 010

new node

007

(c) collision in hash tree
Fig. 2: Different solutions for different insertion situations

The query processing is similar to the insertion processing in that we determine the
location of vertex by several hash operations. Fig. 3 shows the processing of searching
the keyword Online shopping. Before executing lookups in index, the keyword will be
transformed into a integer by string hash function. If we locate a blank vertex, we will
terminate the query processing and return null value. As shown in Fig. 4, the deletion is
quiet simple. If some vertexes need to be deleted, we will search these vertexes and then
just set the corresponding locations to empty without adjustment of index structure.

004

009 006

001 003 002

008

005 010

007

search Online shopping

search 010
string hash function

Fig. 3: Querying processing

001 003 002

delete Online shopping

delete 010
string hash function

004

009 006 008005 Null

007

Fig. 4: Deleting processing
According to the intrinsic feature of hash tree, we can create an index for billion

data by just a few layers of a hash tree. Owing to the low depth of hash tree, the query
processing only need several hash operations. The time complexity of querying is O(1).
Moreover, our index is built dynamically. There is no need for a long initialization
processing. The simple structure also allow data to be updated without adjustment of the
index structure. Therefore, such index is suitable for RDF data management systems.

3 Experiment
All the experiments were conducted on a Dell optiptex 7040 PC with a 3.20 GHz CPU,
16 GBytes of RAM. The operating system is a 64-bit Linux with 4.8.0 kernel. We
use LUBM as our datasets. LUBM (Lehigh University Benchmark) is developed to
facilitate the evaluation of Semantic Web repositories in a standard and systematic way.
It consists of a university domain ontology, customizable and repeatable synthetic data,
and several performance metrics. Different LUBM datasets have different sizes and
different triple numbers. We also compare our experiments with RDF-3x and Gstore.

Table 1 lists the SPARQL query used in our experiment. We execute these six
queries over different LUBM datasets. Table 2 compares the query performance of our
method, Gstore and RDF-3x. In our query samples, Gstore always perform better than

Table 1: SPARQL Query Samples
Q1 SELECT distinct ?y WHERE{ ?x uni:worksFor <http://www.Department20.University400.

edu >. ?x uni:teacherOf ?z. ?y uni:takesCourse ?z. }
Q2 SELECT ?x ?y ?z WHERE{ ?y uni:teacherOf ?z. ?y rdf:type uni:FullProfessor. ?z rdf:type

uni:Course. ?x uni:advisor ?y. ?x rdf:type uni:UndergraduateStudent. ?x uni:takesCourse
?z. }

Q3 SELECT ?x ?y ?z WHERE{ ?z uni:subOrganizationOf ?y. ?y rdf:type uni:University.
?z rdf:type uni:Department. ?x uni:memberOf ?z. ?x rdf:type uni:GraduateStudent. ?x
uni:undergraduateDegreeFrom ?y. }

Q4 SELECT ?x WHERE{ ?x rdf:type uni:Course. ?x uni:name ?y. }
RDF-3x. While the quantity of RDF data is small, the query performance of our method
is not obvious, almost as fast as Gstore. When the amount of data increases, the query
efficiency is improved significantly. HTStore can improve the query efficiency up to
21.3% compared with Gstore.

Table 2: Query Performance on LUBM

Query
Query Response Time (msec)

LUBM100 LUBM500 LUBM800
HTStore Gstore RDF-3x HTStore Gstore RDF-3x HTStore Gstore RDF-3x

Q1 53 49 55 158 170 193 261 285 294
Q2 287 392 410 1265 1779 2031 2019 2749 3397
Q3 568 834 8471 9471 15927 38680 19895 30091 58716
Q4 523 701 1692 1876 2096 3415 2864 3413 5562

4 Conclusion
In this paper, we propose HTStore to manage large scale RDF data. HTStore utilizes
the hash tree structure to significantly reduce the query time. In addition, the proposed
management scheme can also easily adapt to the changes in data volume. Experimen-
tal results demonstrate that HTStore can effectively improve performance of SPARQL
query.

Acknowledgement
This work is supported by the programs of the National Natural Science Foundation of
China (61373165 and 61702357).

References
1. Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowledge base from

multilingual wikipedias. In 7th Biennial Conference on Innovative Data Systems Research.
CIDR Conference, 2014.

2. Michael Ley. Dblp: some lessons learned. Proceedings of the VLDB Endowment, 2(2):1493–
1500, 2009.

3. Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas, Pablo Mendes,
Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef, Sören Auer, and Chris Bizer. DB-
pedia - A Large-scale, Multilingual knowledge Base Extracted from Wikipedia. Semantic Web
Journal, 2014.

4. Lei Zou, Jinghui Mo, Lei Chen, M Tamer Özsu, and Dongyan Zhao. gStore: answering
SPARQL queries via subgraph matching. Proceedings of the VLDB Endowment, 4(8):482–
493, 2011.

5. Thomas Neumann and Gerhard Weikum. RDF-3X: a RISC-style engine for RDF. Proceedings
of the VLDB Endowment, 1(1):647–659, 2008.

	Hash Tree Indexing for Fast SPARQL Query in Large Scale RDF Data Management Systems

