
Predicting the Cost of Online Reasoning on Knowledge
Graphs: Some Heuristics

Varsha R Mouli, Unmesh Joshi, Ceriel Jacobs, and Jacopo Urbani

Department of Computer Science
Vrije Universiteit Amsterdam, The Netherlands

v.ravichandramouli@student.vu.nl,u.n.joshi@vu.nl,
{ceriel,jacopo}@cs.vu.nl

1 Introduction

Knowledge Graphs (KGs) are large repositories of knowledge where pairs of entities
are connected to each other with named relations, e.g., typeOf(VU,University). Modern
KGs contain a wealth of implicit knowledge that is useful for a variety of usecases, e.g.,
query answering, inconsistency detection, or KG completion. This knowledge can be
extracted in the form of derived triples by computing rule-based reasoning, but this task
is challenging due to the large size of modern KGs. So far, the most common approach
for this task consists of materializing all possible derivations in an offline fashion, i.e.,
before the user can query the KG [4, 3]. However, reasoning can be performed in an
online fashion as well. Online reasoning is ideal when the queries require different rule-
sets, and/or when we must avoid a full materialization because of some erroneous input.
Moreover, materialization simply might not be possible due to the lack of resources.

In an online setting, we assume that there is a user interacting with the KG. There-
fore, it is crucial that either reasoning is computed quickly or that the user is alerted
immediately that the computation will take a long time. In this context, query-driven
reasoning algorithms are ideal because they limit the computation to only derivations
that are useful to answer the input query. However, to the best of our knowledge there
are no mechanisms for predicting the runtime of these algorithms before their execution.

In this paper, we investigate on the applicability of two popular query-driven rule
evaluation procedures developed for the Datalog language [1]: Query-Subquery (QSQ),
a top-down procedure, and Magic Set (MS) which proceeds bottom-up [1]. In theory,
both algorithms attempt at limiting the scope of the computation with the same princi-
ple. However, the adopted strategy is significantly different. For instance, MS performs
an initial rewriting while QSQ operates directly on the original ruleset. This rewriting
introduces some startup cost, which might pay off in some cases, but not in all. As a
result, there are some queries for which one algorithm is much faster than the other.

Unfortunately, both procedures trigger a complex recursive computation so it is
hard to determine beforehand which algorithm is likely to be faster. In this paper, we
offer a preliminary investigation on how effective some simple heuristics are in order to
quickly make such prediction.



2 Heuristics for Predicting the Cost of Online Reasoning

We focus on reasoning that can be encoded using a Datalog program [1]. Here, rea-
soning is invoked to answer a Datalog query γ, which consists of a single atom, on
a database D and with a ruleset P . Given a rule r = α ← β1, . . . , βn, we define
r(D) = {ασ|β1σ, . . . , βnσ ∈ D} where σ is a postfix operator with a mapping from
variables to constants, and let P (D) =

⋃
r∈P r(D) be the set of facts derived by the

rule r and all the rules in P respectively. Further, we set P 0(D) = D and recursively
define P i+1 = P (P i(D)∪D) for i ≥ 0. The materialization of D with P is the union
P∞(D) =

⋃
i≥0 P

i(D) and AnsγP (D) = {γσ | γσ ∈ P∞(D)} is the desired set of
answers that must be computed for answering γ.

QuerySubQuery (QSQ) and MagicSets (MS) [1] are two procedures to compute
Ans which work with the same principle: Starting with an input query, they rewrite it in
a number of subqueries (stored in some temporary relations, which we call input∗) and
incrementally compute relevant derivations (stored in other temporary relations, which
we call ans∗). The main difference between the two procedures is that QSQ uses some
external ad-hoc relations while MS creates a new ruleset Pγ with new predicates and
rules and delegates its execution to a Datalog engine (see [1] for more details).

In our experiments, we found that QSQ is faster than MS for queries that trigger
reasoning that can be computed quickly. This is because QSQ requires no rewriting
and thus has a much lower overhead than MS. If this is not the case, then MS is faster
because we can offload the computation of reasoning to highly efficient engines. This
brings us to our research question: Can we estimate the runtime of reasoning beforehand
so that we can pick the right algorithm and obtain significantly lower runtimes?

First, we must determine which are the factors that impact the cost (i.e., runtime) of
reasoning. These are the number of rule executions, the cost of each rule execution, and
the operations for storing the derivations and other intermediate data. An exact estima-
tion of these factors is not possible without actually computing reasoning. However, we
propose the following five indicators to give us some hints on their real values.
• EF1: Let Dq = {α | α ∈ D ∧ AnsγP (D \ {α}) ⊂ AnsγP (D)} be the set of facts
that are relevant for answering γ. In the best case, any query-driven algorithm would
need to store at least the subset Inpq ⊆ P∞(Dq) \ Dq which represents the minimal
set of derivations necessary to compute all answers. These derivations are stored in the
relations ans∗ and this indicator estimates their total size.
• EF2: Assume that, while computingAnsγP , we must execute the rule α← β1, . . . , βn
to a partially augmented database P i(D) ⊆ P∞(D), and let Ir =

⋃n
i=1{σ | βiσ ∈

P i(D)}. A large part of the runtime for executing this rule is determined by the size of
Ir. This is because we need to join the substitutions for the body atoms (β1, . . . , βn) to
calculate suitable substitutions for the head of the rule (α). This indicator estimates the
size of Ir.
• EF3 and EF4: EF3 estimates the number of rules executions. EF4 counts the distinct
number of rules that should be executed.
• EF5: Let Pγ be the rewritten program that the MS procedure returns for the query
γ. In this case, the set of subqueries is defined as Q = {p(t) | p(t) ∈ P∞γ (D) ∧
p starts with ’input’}. Subqueries are produced both by QSQ and MS and must be



Depth QSQ MS Est
2 47.13 21.08 0.32
4 48.25 21.32 0.35
8 47.32 21.82 0.38

(a) Avg. runtime: Reasoning vs. Estim.
(sec.)

Ind. QSQ MS Pred.
EF1 18.6 11.97 9.3
EF2 40.02 4.36 30.6
EF3 41.32 5.06 33.76
EF4 9.8 2.4 2.1
EF5 41.32 5.06 33.76

(b) Runtime using Indicators (min.)

Fig. 1. Runtime of the estimation procedure (a), and impact on reasoning runtime (b).

stored in the same way as inferred facts in order to ensure termination. This indica-
tor estimates the cardinality of Q.

How can we estimate these indicators and use them to answer the query? We sim-
ulate the execution of QSQ up to a certain depth (termination criterion specifying max-
imum iteration count). This mimics the execution of QSQ without actually performing
any derivation, but simply by counting the number of facts that would need to be joined
during the application of the rules (EF2), the number of potential derivations (EF1)
(calculated as cartesian product), and the number of subqueries (EF5) triggered by the
algorithm. Moreover, the procedure counts the number of (distinct) rule executions (EF3
and EF4). While this procedure performs only a very rough estimation and stops at a
certain depth, it has the advantage that it is fast.

Then, the actual prediction is made considering the output value of one of these
indicators. In particular, two threshold values are used: One value is used as a sort of
minimum eligible criterion: If the indicator returns a value below this number, then the
prediction is not made due to lack of confidence. Another threshold value is used to pick
either QSQ and MS: If the value is lower than this second threshold, then QSQ is cho-
sen. Otherwise, it chooses MS. For this preliminary study, values for these thresholds
are calculated manually after analyzing some example queries.

3 Preliminary Evaluation and Conclusions

We used the system VLog [4], which contains optimized implementations of QSQ and
MS, on a machine with a high-end CPU and 64GB RAM. As input, we considered
LUBM-1K, a popular benchmark dataset with 133M triples [2]. As ruleset, we used the
LUBM L ruleset used in [4, 3]. To test our predictions on a large number of queries, we
performed a full materialization, and wrote a procedure to extract 300 test queries which
return differed answers on the original KG and on the materialized one (thus, they must
trigger reasoning). These queries range from being very specific (i.e., the query is a fact
that needs to be proven) to being more generic (i.e. they return many answers).
Cost of estimating. If the estimation takes more time than the actual reasoning, then it
is no longer useful. We report in Tab. 1a, the average execution time taken for the test
queries using QSQ and MS against the average time taken for estimating the indicators
using different values for the depth. The results show that that computing the estimated
values is significantly lower than performing reasoning.



EF1 EF2 EF3 EF4 EF5

0

20

40

60

80
C

ov
er

ag
e

%

Depth2 Depth4 Depth8

EF1 EF2 EF3 EF4 EF5
60

70

80

90

100

A
cc

ur
ac

y
%

Depth2 Depth4 Depth8

Fig. 2. Coverage and Accuracy of the test queries using the LUBM-1K dataset.

Impact on reasoning. Tab. 1b reports the time which would take if we only execute
QSQ, MS, or if instead we decide the algorithm at runtime. Notice that these experi-
ments were performed only on the queries that were eligible for prediction (i.e., indica-
tor value greater than first threshold). Each line reports the runtime for each indicator.
From the table, we observe that only EF1 and EF4 lead to an increase in the perfor-
mance. For all other indicators, the strategy of always selecting MS would lead to better
runtimes. However, notice that using any indicator is better than using only QSQ.
Accuracy and Coverage. Fig. 2 reports the accuracy and the coverage of the various
indicators. We see that the accuracy is highest for EF1 (100% across all depths) fol-
lowed by EF4. However, notice that in this case the coverage is low, which means that
only few queries qualify. In contrast, the other indicators have a higher coverage. For
instance, EF5 with depth 8 has a coverage of 80% and accuracy of 70-80%. This means
that we can apply it on 80% of the queries and in general it guesses correctly with a
similar rate. Therefore, it is a much better candidate to estimate the cost of reasoning.
Outlook. Our preliminary results show that heuristics like the indicators presented
above are helpful to estimate the cost of reasoning, and hence can be used to improve
the runtime of query answering. Even though our results vary considerably, both in
terms of accuracy and coverage, we believe that they illustrate the potential of this
method. Future work is necessary to better understand the strengths of these heuristics,
and to investigate whether more sophisticated combinations lead to better predictions.

References

1. Serge Abiteboul, Richard Hull, and Victor Vianu. Foundations of databases, volume 8.
Addison-Wesley Reading, 1995.

2. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. LUBM: A benchmark for OWL knowledge
base systems. Web Semantics: Science, Services and Agents on the World Wide Web, 3:158–
182, 2005.

3. Yavor Nenov, Robert Piro, Boris Motik, Ian Horrocks, Zhe Wu, and Jay Banerjee. RDFox: A
Highly-scalable RDF Store. In Proceedings of ISWC, pages 3–20, 2015.

4. Jacopo Urbani, Ceriel Jacobs, and Markus Krötzsch. Column-Oriented Datalog Materializa-
tion for Large Knowledge Graphs. In Proceedings of AAAI, pages 258–264, 2016.


