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Abstract. Configuration is a common way in many markets to cope with reduc-

ing costs and improving customer satisfaction. There are various approaches to 

represent product configurations, the most common of which is feature model-

ing. However, feature models suffer from principal limitations, including ambi-

guity and lack of abstraction, increasing maintainability effort and limiting 

lifecycle support. In this paper, we suggest using a multi-level modeling ap-

proach to improve flexibility, reuse, and integrity and demonstrate the ad-

vantages of the approach over feature modeling.   

Keywords: multi-level modelling, domain specific modelling languages, con-

figuration, variability, software product line engineering, feature modeling 

1 Introduction 

The variety and complexity of systems have dramatically increased in the last two 

decades. These introduce challenges to the development of software that the well-

known modeling paradigms could not handle without modifications and adaptations. 

Software Product Line Engineering (SPLE) [10, 16] suggests reducing variety and 

complexity of development and management by handling product families rather than 

individual products and promoting systematic reuse across products. In this context, 

variability management plays an essential role. Variability is defined as the ability of 

a software system or a software artifact to be changed so that it fits a specific context 

[19]. A common way to realize variability is through configuration [4, 14]. Configura-

tion enables choosing alternatives that may be specified either explicitly or implicitly. 

Particularly, potential configurations are all alternatives of an artifact, whereas valid 

configurations are all potential alternatives that satisfy given constraints.  

Current approaches to SPLE adopt a two-layered framework [16]: domain engi-

neering containing the specification and implementation of product line artifacts (po-

tential configurations) and application engineering consisting the specification and 

implementation of specific product artifacts (valid configurations). The rigid division 
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into these two levels imposes limitations on the ability to abstract concepts that are 

used across these levels and to define the semantics of the various models which may 

be expressed in different languages. Moreover, checking models for consistency and 

correctness is challenging in the general context of SPLE and particularly with respect 

to variability management. Scalability and visualization/graphical overload are men-

tioned among the most prominent challenges [3]. 

To address the above challenges, we propose to adopt a Multi-Level Modeling 

(MLM) approach. Generally, MLM [1, 2, 11] is a new modeling paradigm that sup-

ports abstraction through the use of both inheritance and meta-types, the latter is used 

to allow the modeler to integrate the language used for modeling together with the 

models themselves. As such MLM has the potential to support semantics integration, 

abstraction and reuse, as well as to define Domain-Specific Modeling Languages 

(DSML).  

In [18], we have explored MLM in the context of SPLE variability mechanisms – 

techniques applied in order to adapt software product line artifacts to the context of 

particular products. Here, we aim to analyze prospects of applying MLM to SPLE in 

the context of variability management. Particularly, we demonstrate the limitations of 

feature modeling [6], a well-known paradigm for variability management, which sup-

ports configuration specification. We further propose an MLM approach [12] to ad-

dress those drawbacks. This approach enables the creation of DSMLs on different 

levels of abstraction, where a lower level DSML is specified by a higher level DSML. 

In such an architecture the traditional dichotomy between modeling language and 

model is relaxed: each DSML is specified through a model which in turn was created 

with a higher level language. The approach enables a common representation of mod-

els and code, which promotes elegant specification and implementation of software 

product lines. 

The rest of the paper is structured as follows. Section 2 reviews current approaches 

to variability modeling, focusing on feature modeling and exemplifying its limita-

tions. Section 3 introduces the MLM approach and demonstrates its potential to model 

configurations and to address feature modeling drawbacks. Finally, Section 4 discuss-

es future research directions. 

2 Current Approaches to Model Variability 

Variability management has gained interest in the past decade [6]. Many of the ap-

proaches refer to modeling, utilizing feature modeling, UML extensions, formal 

(mathematical) techniques, and more. Of those, feature modeling is the mostly used 

paradigm, both in research [6] and in industry [5]. Commonality and variability speci-

fication is supported in feature modeling through the notion of features – prominent or 

distinctive user-visible aspects, qualities, or characteristics of a software system or 

systems. Dependencies among features enable constraining valid configurations 

through different utilities, such as mandatory and optional features and variants (using 

OR and XOR relations). Over the years, various extensions to the original feature 

models [15] have been suggested to address limitations in expressiveness. These ex-

tensions include among others adding cardinalities to features to enable specifications 



 

 

other than mandatory and optional features, adding cardinalities to dependencies 

(groups of features) to enable specifications other than OR and XOR relations, and 

supporting the specification of value choice from large or infinite domains (attributes) 

[7]. Moreover, feature-oriented programming (FOP) [17] has been proposed in order 

to percolate feature modeling concepts into code and support software modularization 

based on composition mechanisms, called refinements. Yet, to the best of our 

knowledge, the transition from feature models to feature-oriented code is not fully 

automated.  

While feature modeling may serve as a versatile tool for representing variability in 

requirements, they are limited in specifying and designing software product lines. In 

order to demonstrate the limitations, we use the feature model depicted in Fig. 1. The 

model specifies a family of software systems for bicycle dealerships. Each system 

needs to represent and manage domain objects – bicycles, which exist in a remarkable 

variety. Some dealers need to cover the full range in great detail (including the actual 

distinction between racing bikes and pro-racers). Others are more satisfied with a 

more generic concept of bicycle, which is characterized by its weight, its parts (fork, 

frame, two wheels), and so on.  

Analyzing the bicycles model, we observe the following limitations. 

 

Ambiguity: Apparently, a feature may represent a class (e.g., frame or fork), an at-

tribute (e.g., size or weight), a possible attribute value (e.g., alum or carbon), or even 

the result of an operation (e.g., the weight of a bicycle is the sum of its constituents’ 

weights). In an early stage of requirements analysis, it can be a good idea to use such 

an abstraction. However, the closer one gets to the design phase, the more problemat-

ic this abstraction may be: the concept of a feature does not allow for a clear corre-

spondence to software design concepts such as class, attribute, etc. Therefore, feature 

models do not allow for a straightforward transformation to design documents such as 

object models, and the synchronization of design documents and feature models is a 

remarkable challenge that requires introduction of additional languages and tracing 

capabilities, such as in orthogonal variability modeling [16].  

 

Lack of abstraction: The lack of classification will not only prevent modellers 

from expressing knowledge they have, it also creates a threat to maintainability and 

integrity. Since it is not possible to define classes that are characterized by a certain 

feature configuration, it is not possible to define constraints that apply to these clas-

ses. Defining corresponding constraints directly on features is not only cumbersome, 

it may in the end even be a wasted exercise, because it can create additional com-

plexity that compromises a model's readability. Since feature models lack the concept 

of class, they do not support a well-founded concept of generalization/specialization 

either. Therefore, redundancy will often be unavoidable, which jeopardizes a model's 

integrity. 

To demonstrate this limitation, consider the need to specify classes of racing bikes 

and pro-racers. Both are specializations of bicycles, whereas pro-racers are special 

racing bikes. The following constraints can be introduced for constraining valid con-

figurations of those classes of bicycles:  
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1. Racing => ¬Suspension ∧ ¬SaftyRelf ∧ ¬AllTerrain ∧ ¬AllTerrain1 ∧ Race 

∧ Race1 ∧ City 

2. ProRacer => Racing ∧ ¬MudMount ∧ Tubless ∧ UClcretified ∧ Carbon1 

This specification hinders the hierarchy of the three domains (regular bicycles, rac-

ing bikes, and pro racers). It makes the models less understandable for the modellers, 

especially when analyzing the consequences of feature modification, as all features 

appear in the same (domain engineering) level without separation into the different 

bicycles classes. 

 
Fig. 1.  A bicycle feature model 

 

Another example of the lack of abstraction refers to the need to specify that the 

size of the front wheel equals to the size of the back wheel, but its weight is lighter. 

Here, we need the distinction between classes, attributes, and attribute values. The 

expressiveness of feature models is insufficient, and hence we have to use extensions 

that support specification of feature cardinalities and attributes, e.g., the extension 

proposed in [7]. The cardinality of the feature wheel should be specified as [2..2] (ex-

actly 2) and the features size and weight3 should be replaced by attributes (of type 

real). The constraints can be then specified as follows: 

3.  Wheel[1].Location.Front =>  Wheel[2].Location.Back ∧  

    Wheel[1].Size = Wheel[2].Size ∧ 

    Wheel[1].Weight3 < Wheel[2].Weight3 

4. Wheel[1].Location.Back =>  Wheel[2].Location.Front ∧  

    Wheel[1].Size = Wheel[2].Size ∧ 

    Wheel[2].Weight3 < Wheel[1].Weight3 

This specification is complicated and its maintainability and comprehensibility are 

further questioned. Hence, in the following we propose a multi-level modelling lan-

guage for supporting variability modeling in software product lines without forcing 

overload of concepts. 

3 Beyond Feature Models: Prospects of an MLM Approach 

To develop a convincing rationale for this proposal we first give a brief overview 

of core concepts of MLM. Then, we outline why the additional abstraction enabled by 

MLM is promising for designing and managing product lines. Finally, we illustrate 



 

 

the potential of MLM for overcoming the aforementioned limitations using the bicy-

cles example. 

3.1 Multi-Level Modelling in a Nutshell 

In the traditional paradigm, all entity types or classes of a model are located on the 

same level of classification, which is usually M1. Therefore, it is not possible to ex-

press knowledge about classes of classes. Furthermore, classes cannot be modelled as 

objects that have a state and can execute operations. This lack of abstraction is some-

times handled by overloading one level of classification. However, the ambiguity 

caused by overloading creates a serious threat to integrity. A further option would be 

to extensionally model all cases that were otherwise covered by a metaclass. Unfortu-

nately, that may tremendously increase a model’s complexity and, therefore, jeopard-

ize its integrity and maintainability. 

Multi-level modelling [1, 2, 11] aims at overcoming the limitations of the tradi-

tional object-oriented paradigm. It is characterized by the following key characteris-

tics: 

• Unlimited number of classification levels: A class can be defined on any classifi-

cation level. 

• Classes as objects: Every class is an object at the same time, that is, it may have a 

state and may execute operations. 

• Deferred instantiation: Classes may define properties that apply not only to their 

direct instances, but to instances of instances of instances etc. Therefore, it is pos-

sible to specify that a property is to be instantiated only on a lower level. 

• Classes on different classification levels may co-exist in one model: In the tradi-

tional paradigm, there is a strict distinction between model and modelling lan-

guage. A multi-level model may include objects on different classification levels, 

which may located on M0 or M1 or may be part of languages or meta-languages. 

3.2 Prospects of Using MLM for Modelling Product Lines 

Modelling product lines is aimed at a clear definition of all relevant kinds of varia-

bility. To foster modelling productivity, a language for modelling product lines should 

promote reuse, which recommends powerful abstractions. Furthermore, such a lan-

guage should support the maintenance of product lines, which recommends powerful 

abstractions, too. In ideal case, the concepts provided with the language should be 

suited for the entire software lifecycle, at least on different levels of precision and 

detail. 

Classification is a powerful concept to express variability. A class defines the 

properties that are shared by all its instances. The property types define the extension 

of the set of instances. From another point of view a class can be regarded as a set of 

constraints that need to be satisfied by its instances. The more restrictive the proper-

ties, or more general: the constraints are, the better is the chance to clearly discrimi-

nate valid against invalid variants. Nevertheless, the variation that can be defined 

through classification is limited to the variation of instances of the class. Possible 
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variations of the class (and of other similar classes) cannot be accounted for. This is 

different with MLM. Metaclasses can be used to define variations of classes. In addi-

tion, they may serve to account for possible, future variability that is not known yet. 

For example, we know that types of bicycle frames are made of aluminum, carbon, 

and so on. Therefore, these materials can be used in a metaclass to define a range of 

possible variants. At the same time, we know that there may be other materials in the 

future, which can be accounted for by extending the set of materials at a later time. 

Hence, extending metaclasses on any level improves the chance to modify a product 

line in an elegant and convenient way.  

3.3 Illustration: A Multi-Level Model of a Product Line 

The diagram in Fig. 2 illustrates how variability can be represented in a multi-level 

model. In the example, we use the FMMLx [12], which is based on Xcore and im-

plemented in the Xmodeler [98, 10]. Its concrete syntax indicates the level of a class 

by the background color of the class name field. The name of the metaclass is placed 

on top of the class name. Deferred instantiation is expressed by intrinsic features, 

where a feature may be an attribute, an operation, or an associated class. The instanti-

ation level is defined through a white number printed on a black rectangle next to the 

name of a feature. In the case of intrinsic associations both sides of an association 

may have an instantiation level, which can be different. The state of an object (which 

may be a class at the same time) can be represented in a separate compartment (print-

ed in green) as well as the values returned by operations (yellow on black). 

The upper levels of Fig. 2 can be considered as models of products and corre-

sponding software systems at different levels of abstraction. Software vendors will 

benefit from introducing (domain-specific) concepts in various levels and receiving 

those concepts all the way down the hierarchy of products. Moreover, the transition 

among levels is smooth: each level reduces the number of valid configurations of its 

upper level by introducing constraints or assigning values to attributes. The transition 

from M4 to M3, for example, is done by specifying that a racing bike, as well as its 

frame, is not suited for tough terrains but suited for races, a racing bike is suited for 

cities, a racing fork does not have a suspension, and so on. Note that the constraint 

marked as c1 in the figure could be specified in feature modeling, yet its specification 

would require complicated dependencies between features in the single level model.  

The models in the MLM approach can be easily mapped into code as they already 

specify the type of the various elements. For example, a wheel, a frame, and a fork are 

classes, while size and weight are attributes. The three classes of bicycles, regular, 

racing, and pro-racers, are clearly shown in different abstraction levels of the MLM 

approach, M2, M3 and M4 in the figure, allowing their separation for different types 

of bicycle dealers, e.g., those who require differentiation between racing bikes and 

pro-racers (level M2) and those who do not require this (level M3).  
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Fig. 2. A bicycle model in the MLM approach 

4 Future Research 

In this paper we suggest using MLM for specifying variability in software product 

lines in general and configuration in particular. We demonstrated MLM advantages 

over feature modeling which include better abstraction and expressiveness, unambi-

guity, and integrity. Those properties ease the reuse and maintenance of models and 

allows for easy transformation into later stages of design and implementation.  

To take full advantage of the potential of the MLM approach, we plan to devise a 

multi-level constraint language which allows defining constraints that span over mul-
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tiple levels of classification. In addition, we plan to develop a comprehensive method 

to guide the construction of multilevel DSMLs. While a method for developing 

DSMLs within the MOF paradigm provides useful support, it does not help with deci-

sions concerning the appropriate number of levels or the separation of levels. We 

further intend to evaluate the usefulness of the approach for performing different 

SPLE activities, including constraining valid software configurations and deriving 

specific configurations to certain requirements.  
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