A Lightweight Architecture for RSS Polling of
Arbitrary Web sources

Sergio Bossa, Giacomo Fiumara and Alessandro Provetti
Dip. di Fisica, Universi degli Studi di Messina
Sal. Sperone 31, 1-98166 Messina, Italy
sergio.bossa@gmail.conffiumara,alg @unime.it

Abstract—We describe a new Web service architecture de- processing. RSS today is used mainly for content synditatio
signed to make it possible to collect data from traditional plain it organizes the semantics inchannel element, containing
HTML Web sites, aggregate and serve them in more advanced g era|| information regarding the resource, and a seitesh
formats, e.g. as RSS feeds. To locate the relevant data in the | t h taini loicall lated Di frines
plain HTML pages, the architecture requires the insertion of gemen S, €ach containing og|cg y refate .p|_eces orm
some meta tags in the commented text. Hence, the extra mark- tion. Moreover, every channel or item containstie element,
up remains totally transparent to users and programs. Such alink element and aescription element.
annotated HTML documents are then routinely pulled by our Eyen though it has been developed for syndication purposes,

Web service, which then aggregates the data and serves them : . o
over several channels, e.g. RSS 1.0 or 2.0. Also, a REST—sterRSS can be applied to realize sophisticated forms of content

Web Service allows users to submit XQuery queries to the Manipulation, like aggregation or advanced querying. gsin
feeds database. Finally, we discuss scalability issues w.r.t. polingRSS feeds is indeed simple: Web portals must publish, to-
frequencies. gether with HTML documents, the related feeds. Users can
then consumethese feeds by a particular client, called RSS
aggregator, by which they can read, queraggregatefeeds.
This article describes a new, experimental architecture fo However, this simple process has some limitations: Web
automated data collection and RSS delivery of data fromasters have to create their RSS feeds by some RSS genera-
traditional HTML Web sites. Our solution requires minimation tool, which are often proprietary and may limit inteesp
and totally transparent changes on their HTML pages. Thgility. Moreover, users may not be able to view older feeds,
data of interest will be routinelpolled from the actual sources nor to query feedsn the fly,directly on the server.
by standard HTTP querying. Subsequently, the so-creatdd We The architecture described hérevercomes these limita-
service can be queried with REST-style sessions that éxtrggns by proposing aull-basedwWeb service to generate, store,

the aggregated data at their wish. As a result, we provideaggregate and query contents using RSS standards. With this
complete layout for the implementation of RSS Web servicggplication it is possible to:

\t;:;-lnteract with the traditional Web in an almost seamless. Automatically and dynamically generate RSS feeds start-
Even though this research project is only at the beginning,. gtgc]):éotreHmTil\r/luz:rngr?oFoigc?ZI order

and only a proof-of-concept implementation is available, w . Query and aggregate them thanks to REST [4], [5] Web

believe that there is room for the application of this type of services acting as software agents '

approach to bridging Web services and the traditional Web. L

us discuss why. Today we find on the Web several interesting Clearly, there are scalability issues involved in our archi

popular news sites that consist, essentially, of plain gt~ tecture, and the pulling policy for each site must be calgful

pages. Even though the content is continuously updated, gansidered. Section VI-B below describes a common stractur

site layout and organization is not changing much. Several 40 pulling policies.

vanced techniques for news broadcasting and syndicat®n ar

now available, the main one being RSS feeds, yet it seems that!l. ADDING META-TAGS TO EXISTINGHTML PAGES

e B e, MWL documents coran a miure of mormaon o be
9 ' ublished, i.e., meaningful to humans, and of directives, i

extr?cglngt tht?\ relevztant data fr?/(/n é)laln HT'\:'L :n_d makes ﬁm form of tags, for graphical formatting, i.e. intended fo
avariable to the contemporary YVeb Service techniques. J:Jrowsers interpretation. Moreover, since the HTML fornsat i

i Indlelt_a'%/ltiday WebRpSo;tadls are putbllshlngt,l alli)ng with trssi%signed for visualization purposes only, its tags do riotal
lona pages, ocuments, mostly known as phisticated machine processing of the information ¢oeth

feeds [1], [2]. therein.

Inasmuch as HTML is aimed at content visualization for
enq user experience, RSS is an XML for.mat aimed at CaP1The architecture was first outlined in the first author's geebn project
turing channels of data items, thus enabling automated dgga

I. INTRODUCTION

118

Among other things, one factor preventing the spread of the
Semantic Web is the complexity of extracting, from existing <Xi3;392}°: ‘iXTVPe name="i mgeType" >
heterogeneous HTML documents machine-readable informa- " _, <. of enent nanme="title" type="xsd: string"/>
tion. Although our project addresses only a fraction of the <xsd: el ement name="link" type="xsd:anyUri"/>
Semantic Web vision, our management of HTML documents ~_ 23";: enent name="url " type="xsd: anylri"/>
needs some technique to locate and extract some valuable and s 4. conpl exType>
meaningful content.

Therefore, we define a set of annotations in form of meta-<xsd: conpl exType nane="ext ensi onsType">
<xsd: sequence>

tags, which can be inserted inside an HTML document in <xsd: any namespace="##any"
order give it semantic structure and highlight informagibn pr ocessCont ent s="ski p"
content. In our application, meta-tags are used as anoosati m nGceur s="0" maxCccur s="unbounded"/ >

. . ; . . . </ xsd: sequence>
to describe and mark all interesting information, in order <,XS§: Conpﬁngype>

to help in the extraction and so-calletML-ization phases.

The set of meta-tags we defined (and recognizable by ouﬁxigisgf)g}’: ‘iXTYPe name="channel Type" >

application) is listed in Table | below. The m_eta—tags are <xsd: el ement name="title" type="xsd:string"/>
enclosed in HTML comment tags, so they remain transparent <xsd: el ement name="|ink" type="xsd:anyUri"/>

to Web browsers and do not alter the original HTML structure ~ <xsd: el ement name="descri pti on"
type="xsd: string"/>

of the document. .) <xsd: el enent nane="i nage" type="i mageType"

The conceptual model of the meta-tags described above is m nCccur s="0" maxCceurs="1"/>
rather straightforward and remains orthogonal to the abjec ~ <xsSd: el enent nane="ext ensi ons”

- type="ext ensi onsType"
tags found in the page. mi nCccurs="0" maxQccurs="1"/>
. . </ xsd:all >

A. Meta tags vs. dynamic XSLT transformations </ xsd: conpl exType>

An obvious alternative t.o our approach to the treatr_nent of<xsd: conpl exType name="i t enType" >
existing HTML structures is that of applying, after the [l <xsd: al | >
phase, some clever XSLT transformation [6] to the HTML <ng1 e: ement narfe="|t!t:(e" type="x§di st U ng;/>
+ : ; <xsd: el ement nanme="link" type="xsd:anyUri"/>
file. It should be con5|d(_ered,_ howev_er, that applying such <xsd- el ement name="descri pti on”
type of XSLT transformations is possible (or at least gseatl type="xsd: string"/>

facilitated) only when the [X]HTML document is well-formed <xsd: el enent name="image" type="imageType"
m nCccurs="0" maxCccurs="1"/>

This, regrettaply, seems rather u_nreahs.tlc to us, exp.ofdr <xsd: el emBnt name="ext ensi ons"
documents. Viceversa, our solution relieves the webnmster t ype="ext ensi onsType"
from any time-consuming translation of her HTML documents m nQccurs="0" maxCccurs="1"/>
into well-formed XHTML ones, which would then make a </xsd:all> . . e .
B <xsd:attribute name="index" type="xsd:integer
subsequent XSLT transformation successful. use="required"/>
<xsd:attri bute nanme="id" type="xsd:string"
IIl. STRUCTURE OF THEXML OUTPUT use="required"/>

L </ xsd: | exT >
Once HTML documents are processed by our application, xsd:conplextype

annotated semantic structures are extracted and organized <xsd: conpl exType nane="resour ceType" >

a simple XML format which will be stored and used as a <xsd: sequence>
<xsd: el ement

starting point for documgnt querying and transformatiolnisT name="channel " t ype="channel Type"/ >
XML format has been simply calleXMLData This neutral <xsd: el ement _
format has also been introduced in order to avoid storing the name="item' type="itemrype"

: o i nCccur s="0" Qccur s="unbounded" / >
same information in both RSS 1.0 and 2.0 formats. Indeed, <,Xsd:?egueﬁggi axEeeurs=runbounde

we found more economic for our application to create RSS <xsd:attribute name="url" type="xsd:anyUri"
feedson the fly rather than store them. This approach is use="required"/>

| flexibl h f dicati f <xsd:attribute nane="rssld"
also more flexible as the support of new syndication formats 'y pe="xsd: string” use="required"/>
(see for example, the Atom format) does not require the re- <xsd:attribute name="ti mestanp"”
design of the lower levels of the application (see furthée théPsz"Xlsg;(gat :I' me" use="required"/>
structure of the XML output resembles the structure of meta- -eonp P

tags previously defined and the RSS XML structure, in order<xsd: el ement name="r esour ce" type="resourceType">

to facilitate transformations from the former to the lattéiis <X23355_egelﬂzgfg:i ;eg‘t g"_fi Cont) >
defined by the following XML Schema Definition [7]: <xsd: field xpat ﬁz.. @d'/>

</ xsd: key>
<xsd: key nane="itenm ndex">
<xsd: schema <xsd: sel ector xpath="itent/>

xm ns: xsd="ht t p: / / ww. w3. or g/ 2001/ XM_Schena" <xsd:field xpath="@ndex"/>
el ement For nDef aul t ="unqual i fi ed" > </ xsd: key>

<?xm version="1.0" encodi ng="UTF-8"?>

119

Meta-tag

Description

<channeltitle- ...</channel:title-

<channel:description> ...< /channel:description
<channel:image url=" link=" title=" &

<channel:extension uri=" prefix=? ...</channel:extension
<item:link index="> ...</item:link >

<item:description index=% ...</item:description>
<item:extension uri=" prefix=% ...</item:extensiorn>

Channel title
Channel description
URL, link and title of an image associated to the channel
Channel extension (e.g., publication date)
item link

item description

item extension (e.g., item publication date)

TABLE |
THE SET OF METATAGS

Service Level

<< COMm ponent
Web Service L

<< COIM POnEnt -
Web Service 2

<25 COM PIof Ent 53
Web Service M

Cors Level

<< COM ponent >
Engine

|2 com porent ==
Wrapper

<t com porent ==
Foller

<< COm ponert =

Retriever

44 LOMPonent ==
CataManuger

S COM POnent = |
Transfonm er

Physical Data Storage Level

L COM POOEN &5
Cata Sowce

Fig. 1. The general schema

</ xsd: el enent >

</ xsd: schema>

IV. THE OVERALL APPLICATION ARCHITECTURE

without affecting other components, i.e., by simply tuning
the application configuration files.
« Service Level. Itis the highest level, interacting with Web
clients by means of REST Web services.
A more detailed explanation follows, starting from the Core
level, the foundation over which our application is based.

A. The Core Level

The Core level is composed by several components defining
how the application i) retrieves HTML resources, ii) proses
to extract information about channeling, iii) manages ttas/
piece of information and finally iv)transforms and prepaites
for client consumption:

« engine:the code that routinely invokes the Retriever and
thus the whole polling process.

« Poller: it monitors changes in a set of HTML resources
configured in a particular file, using some polling policy
(see next section). Moreover, the poller has the important
task of coordinating other components in the retrieving,
extraction, and storing phases.

o Retriever: when invoked by the Poller, it captures the
Web resource from its URL and makes it available to
other components.

o Wrapper: it takes care of extracting the annotated seman-
tic structures from the retrieved HTML resources, wrap-
ping them in a new one, that is, assembling the extracted
structures in a fresh, pure XML format, containing the
desired informational content: the previously-described
XMLData format. So, this component must produce a
well formed XML document, ready to be stored by the
Physical Data Storage level.

Figure 1 shows the overall architecture of the application. ,
Our application is based on a modular structure, for maximiz
ing the flexibility and the extensibility of configurationhiiee
levels can be distinguished:

« Physical Data Storage Level It is the lowermost level,
which stores resources, and provides a means for retrieve
ing and querying them. It can be implemented in various
ways, using also established technologies like relational
or XML database[8].

DataManager. it acts as a gateway to the Physical Data
Storage level, taking care of managing information in
the form of the new XML documents previously created,
storing them and permitting client components to query
their contents.

Transformer: it finally takes care of transforming the
stored XML documents into the RSS format requested
by clients, using XSLT transformations.

Typical parameters of this level can be changed simply

« Core Level. It holds the core part of the entire architeenodifying the corresponding parameters which are listed in
ture, including the software components which implemesbme configuration files, in XML format. The configuration
the logic of information management and processingjle of the Engine Component, for example, allows to set the
each component can be implemented using differetype of polling policy of the Web resources. Currently, the
strategies or algorithms, and plugged into the systechoice is betweelfflat, i.e, constant over time, asmart, i.e.,

120

depending on the recent rate of updates. Other parameter our application, these RSS resources are accessed throug
are: the type of data manager (currently, the Exist nativelTTP requests, using the GET method of HTTP 1.1 protocol;
XML database together with its connection parameters) aolients can ask for:
the format of the RSSs sent to Dynamo subscribers (currently, A list of collections of RSS resources, each representing
RSS1 and RSS2). the chronological history of a resource.
« Alist of RSS resources contained in a given collection.
« An RSS resource, identified by an index.

The Physical Data Storage level can be implemented with, An RSS resource containing only up to a given number
various technologies: our choice has been to implement it of items, starting from the most recent one.
using a native XML database. This choice allows us to, An RSS resource obtained by querying a collection

store and manage XML documents produced by the Wrapper of resources, searching for keywords in titles, links or
software component in their native format, and to use the descriptions of items.

powerful XQuery language for advanced content queryinghe GET method, in principle, should not modify the original

and aggregation. The native XML database is organized @3, rce. A detailed description of how REST Web Services
a set of collections of XML resources, where the nestinghq resources are accessed follows.

of collections is allowed. In our application, we store XML a) /resources[?type=rssType]:Accesses an RSS re-
resources as provided by the Wrapper software componeny, ce |isting all collections of resources that clients ca

one collection for each resource. Each collection holds ﬂ?@quest and query. The optiongbe parameter identifies the
various chronological versions of the resource: so, eath cggg type of the requested resource

lection effectively contains the history of the resourdé,ta b) /resources/rssld[?type=rssType]Accesses an RSS

informational content an(_j a changelog.) resource listing all resources contained in the colleciitam-
When a new resource is to be stored, a check is done by {i y the resource id, thessid URL section. The optional

DataManager software component, in order to avoid du@lica{ e narameter identifies the RSS type of the requested re-
resources. Two resources are considered to be differemtiif t source

informational content changes. More precisely, they diferdi c) Iresources/rssid?index=n & [type=rssType]Ac-

ent if changes to titles, links or descriptions of the reseur .osses an RSS resource identified byrstsid and theindex

channel or items are detected. Once stored, thg rgsoum%a{?‘ameter, that is the index number into the chronological
chronologically archived and ready for later retnevmgdanhistory: use "1” for the first resource (the most recent one),

querying. "2" for the second and so on. The optionige parameter
identifies the RSS type of the requested resource.

. . d) /resources/rssld?max=n & [type=rssTypefccesses
The Service level lets Web clients access the RSS feeéjé RSS resource identified by itssid, containing only up

through the use of REST Web Services [9]. REST, an acronyfiayitems. The optionatype parameter identifies the RSS
for Representational State Transfés, an architectural style type of the requested resource.

which conceives everything as a resource identified by a
URI. In particular, it imposes a restriction about of the URL
defining the page info, that, in the REST view, are considerd§sources/rssid?max=n & [type=rssType] ~
resources. Each resource on the Web, such as a particular par g EggLe(LrI:ako\r)t]zlescrlptnon\ desc)=value]
specification file, must have a unique URL (without GET fields & [(title | link | description desc)=value]

after it), that totally represents it. & ...

With respect to the well-known SOAP archltecﬁjren js intended to query all resources identified by the givesld
REST we never access a method on a service, but ratigfyesting only up tomax items and combining, using logical
a resource on the Web, directly using the standard HTT&hd/or" operators, searches for title, link, or description of items.
protocol and its methods, To put it differently, in REST th@he optionaltype parameter identifies the RSS type of the requested
hypertext linking controls the application state. Thistfea of resource.

REST allows greater simplicity and maximum interoperapili
with any Web client, eithethick, like a desktop application,
or thin, like a Web browser.

B. The Physical Data Storage Level

C. The Service Level

e) Complex queriesThe following query:

V. THE APPLICATION AT WORK

To illustrate how our application works we consider a frag-
ment of a HTML document taken from the reference Web site

. . www.theserverside.comAfter the insertion of the meta-tags, the
D. Accessing REST Web Services and resources fragment looks as in Figure 2. Then the fragment is converted in

Adhenng to the REST arch|tecture and V|5|0n’ everyth”‘]é'v”_ format and, if not already present in the database, is stored

; jn,the appropriate collection of the database. Upon request from the
Is a resource and so any request and any search returns tdcrké%t, the XML file is extracted and converted into one of the two

client an RSS resource, actually in the format of RSS 1.0 gj4ts currently supported by our application, that is to say RSS

2.0, depending on the client choice. 1.0 or RSS 2.0. For sake of brevity we present here only the RSS2
version of the output (see Figure 3). It should be noted that in order
2Please refer to [10] for an introduction to SOAP to work properly our application strongly relies upon the insertion of

121

Collection path Description

/db/resources Root collection
/db/resources/headlines.rss | Collection holding XML resources related to the headlirsssresource, that is, its history
/db/resources/headlines.rss/123XML resource identified by its time-stamp (123)

TABLE Il
COLLECTION EXAMPLES

<! -- <channel:image - jon="2 ">
url="http: / /oy, theserverside. con/skin/inages/feed-logo. Jpg” - TISS Version= ..
title='The Enterprise Java Community. - <channel>
Four Enterprise Java Community' _ <titlex
Link="http://wmnr. theserverside.com /="—-F . . .
<! -— «channel:extension uri="http: //purl. orgfdeielenents /L. 17 Enterprise Java Community: Your Enterprise Java Community
prefix="dc” locallame="langquage"> <ftitle>
en-us</channel:extensions --)) <link=>http:/fdynamo. dynalias. orgftss jsp</link=
<l-- <channel:title> -->The Enterprise Jawva Community. 2d P
Tour Enterprise Java Community - “description o _ o
<!-- <channel:link> -—->http://uww. theserverside. con Enterprise Java Community is a developer community, containing up-to-date news,
<!-- </chamnel: link> -->» discuzsions, patterns, rezources, and media
<!-- </chanmel: citler --> <id PR,
! -— <channel:descriptions-->Enterprise Java Community is a description:
developer community, containing up-to-date news, - <i.1nage>
dizcussions, patterns, resources and media =title>The ServerSide. com</title=
<!l-- <fchanmel:descriptions:--> .) . -
<1-- <chammel:extension uri="http://purl.org/dc/elements/l.1/" <linke=http:ffwrarar theserverside. com=/link >
prefix="dc” localName="date"> --> - <ml=
<!-- </chamnel: extension> -- httpeffwrarar thezerverside. comfskinfimagesffeed-logo jpg
<td colspan="2"= <turl>
<hle=<!-- <item:title index="1"F -->wing® 2.0 web framework released ur
<l-- <£/item:titlex --> <fimage>
</hl> o <dc:language>en-us</dc:language>
<div class="iteninfo"» < N
Posted by: - <item. .
l-- <item:link index="1"> -—> <title>wimng? 2.0 web famework released</title>
<a href="/user/userthreads.tasruser_ id=194346" _ zlink=
title="view Joseph's recent threads ..."=
<1-- < iten:link> ——>Joseph Ottinger</eron httpfffeeds feedburner. comftechtargettsscomhome?m=315
<!-- <item:extension index="1" uri="http://purl.org/dcielements/L.1/" <flink=
prefix="dc” locallaue="date"> -->December 08, 2005 @ 05:25 AM _ <(1€1Cl‘i]]til]ll>
<l-- fitenrextensions --k</dive
op Th?T WS project has Jpst re.leased version 2.0 of its framework with lots of
<!-- <item:description index="1" --> major improvements. wings is a component based web framework resembling
The =a href="http://fwnr. j-wings. org/” target="_blank">wingd projectd/d- the Tava Swing AFT with tts MV C paradigm and event oriented design principles.

has just released wversion 2.0 of its framework with lots of major

improvements. <brx<brxwing% is a component based web framework resembling It wiilizes the mOdEIS’ events, and event listeners of Swmg and Orgamzes the

the Java Swing API with its MVC paradigm and event oriented design components as a hierarchy of contamers with layout managers.
principles. It utilizes the models, ewents, and event listeners of <J’(lescri11tiuu>
Swing and organizes the components as a hierarchy of containers with .
Layout managers. <pubDate=Thu, 08 Dec 2005 08:28:04 EST</pubDate>
£l-- </itentdescription index="1": --> <fitem>
<fchannel>
Fig. 2. An HTML fragment after the insertion of meta-tags <frss>

Fig. 3. The fragment in RSS 2.0 format

meta-tags, which can be accomplished with a very little effort and/or
change in currently available content management and publishin

systems. It is beyond the scope of our application to be able which produces about 4-5 news (in plain HTML format) every

discover the appropriate patterns inside the HTML documents afi@- N order to avoid any interaction with the portals we resorted to
bprop P wnload the HTML pages containing the news, insert the meta-tags

automaticallyinsert the meta-tags, which can be successfully do defined and submit th h ; d f -
by our application only if the HTML document never changes in ity€ defined and submit them to the entire procedure of extraction,
storing and publishing.

internal structure.

Let us now see hov_v a user ir!teracts with the application. FirBt_ Scalability issues
of all, a user can verify the available RSS resources through his
Web browser. She obtains a list of the available resources which carf: YPical problem in the design of an architecture like ours consists
be formatted in one of the two currently supported formats, nam R the forecast of all possible critical elements that can raise as work
RSS 1.0 or 2.0. Following the link, the user gets the archi\}e of tigads become bigger and bigger. First of all it must be considered that

resource, chronologically ordered from the newest to the oldest. G} Instance of Dynamo can be installed for each Web server. In those

application allows also to aggregate RSS items and to query thefgSes in which we have a very frequent production of news coming

It is then possible to keep up-to-date by requesting a fixed num pﬁ?m different sources of information, it is possible to install a "copy”

of the newest items. It is also possible to request the newest iteff Q%/hnamo for each source so to ‘.jgftr'lb”t.te ?nd tevfk? balapce the Ioat?.
containing a certain keyword in the title or in the description. nother, even more Severe, possible limitation to the periormance o

the proposed architecture is represented from the bandwidth required

VI. APPLICATION EXPERIENCE to forward the requests for updates, because in those cases of non
) . regular updates a lot of requests would be useless thus resulting in
A. The proof-of-concept: dynamo.dynalias.org wasting bandwidth. This is the reason of an improvement we are

We made a working prototype of our architecture, that we callexfudying, that is a polling policy able to fit the frequency of the
Dynamo, available at http://dynamo.dynalias.org. By now Dynamgpdates of the news from the Web servers: this policy, we called
publishes the news feeds, in both RSS1 and RSS2 formats, takerart polling policy, adjusts the frequency of the requests for updates
from the Web portals www.serverside.com and www.java.net, eatdhthe frequency with which Web portals generate new information.

122

Another factor that may affect the overall performances of Dy- In order to collect the information relevant for the generation of
namoNews is the host database management system, which i® IRSS feed we have defined a set of XML-like annotations which
our implementation ieXist,an Open Source native XML databaseéhave to be inserted inside the HTML documents that contain the
whose performance seems not up to those of the DBMSs normadiltjormation we want to convert. The information is then extracted and
adopted to service Web portals. To avoid long response times ewgganized into an XML format for storing. Typical actions which can
for simple queries, we have implemented a cache engine where tigemade include aggregation, query and conversion to RSS formats
most frequently requested queries are stored. for syndication.

We introduced two different polling policies, which can be chosen The most contemporary Web Content Management Systems
and plugged in our application independently from each other. TGEMS) can handle news publishing and channeling by dynamic
first is called "flat” polling policy, as it does not depend from updaterocedures which, upon user’s request, retrieve data from the DBMS
frequency, while the second is called "smart”, as it tries to fit thihe insertion of Dynamo meta-tags is accomplish just by some slight
update frequency of each Web portal. It is possible to reconfigumeodification of those procedures (usually coded in PHP, JSP or ASP).
at run-time the Poller component of the application (see further), Athough content management systems of the last generation allow
order to switch policy at runtime. It must however be considered thdite publication of news in RSS format, Dynamo has the advantage
the smart polling converges asymptotically to the flat one. of preparing and storing XML news and querying the database in a

With the flat polling policy, Web resources are queried for updatésore semantics-drivenvay than with the relational databases which
at regular time intervals which can be modified. It is the simplesiormally underlie CMSs.
strategy and it well applies to regularly updated information. The We believe that there is room in the current landscape of the Web
first improvement one can make over flat polling is to compute tHer this solution as it allows upgrading existing Web portals with
frequency of the requests of updated Web documents as an estimatainfmal effort. As an instance, our recent work [15] describes how
the frequency. Then such estimate is compared taghkfrequency to bring a legacy system for the managing of community Web pages
with which Web documents are updated or newly generated. Bath to RSS news channeling. By hosting hundreds of discussion lists,
the estimate and theeal times are used to compute a new estimateiccessed daily by thousands of users, the considered application is a
That is: good, and successful testbed for Dynamo.

) REFERENCES

.) . . [1] WC, “Rdf site summary (rss) 1.0 [Online]. Available: hitp
where 7,41 is the estimate at thén + 1)-th iteration, ., the Ilweb.resource.org/rss/1.0/spec
estimate at then-th iteration, ¢, the real frequency at then-th [2] “Rss 2.0 specification.” [Online]. Available: http:Itigs.law.harvard.
iteration. The parameter, whose value stands in the interval between edu/tech/rss _ '
0 and1, represents the relative weight of the previous estimate w.r.t3] S. Bossa, Towards the Semantic Web: a platform for dynamic
thereal frequency. Asr,,+1 takes into account the previous iterations, gengratlon, query and archival of RSS contents (In Italian)
o represents the importance given to previous iterations. http.//lnformat!ca.umme.lrj Graduation Project in Computer Science,
- . - Univ. of Messina, 2005.
Some considerations about the parametelts value, comprised 4]

. . . h R. T. Fielding, Architectural Styles and the Design of Network-based
between0 and 1, influences the velocity with which the frequency Software Arc‘%itectures Ph.D. %issertation 2000.9

of polling equals the frequency with which Web portals publish news; r. L. Costello, “Building web services the rest way” [Dre].
information. We found, on the other side, that its value does not Available: http://www.xfront.com/REST-Web-Servicesriit

influence theconvergencef the frequency of polling to the frequency [6] W3C, “Xsl transformations (xslt) version 1.0,” 11 1999.

of publication, but only its velocity. Analogous results can be found?] ——, “Xml schema part 0: Primer version 2.0, 10 2004. [Online
in literature, even if in rather different situations. See, for example, ~Available: http.//www.w3.org/TR/xmischema-0

the algorithm of processes scheduling knowslasrtest job firsf11], (8] R. Bourret, “Xml and databases.” [Online]. Available: tpt/www.
as well as the weighed mean frequently used in iterative calculatiorB] rpbourret.com/xml/XMLAndDatabases. htm

typical of the Self-Consistent Integral Theories in Statistical Many- \[](.)nl\ﬁlhelsni\l\ll,aiIsbelzgufr;g/—/mtﬁsecszl0ﬁ;g%g&y&nﬂfgﬁ)@%j@mgﬁ:ﬂ
Body Thermodynamics. Please refer to the survey in ' b odf ' o

library/ws-restvsoap.pdf
[10] W3C, “Soap version 1.2 part O: Primer,” 06 2003. [Onlin&yailable:
VIl. RELATIONSHIP WITH LITERATURE http://www.w3.0rg/TR/2003/REC-soapl12-part0-20030624

The amount of information currently available in HTML format is[ll] G. G. Abraham Silberschatz, Peter Gal@perating System Concepts

A L N VI Edition. John Wiley & Sons, 2002.

really_huge, but Fhe main I_|m|Fat|_0n in its fruition consists in its POO[12] G. Gottlob, R. Baumgartner, and S. Flesca, “Visual wetorimation
machine-readability, that is, in its lack structure.Such problem extraction with lixto,” Proc. of VLDB Conference2001.
can be solved, vis-a-vis the size of the Web and of individual Wgh3] G. Gottlob and C. Koch, “Monadic datalog and the exprespower of
portals, by making the extraction and annotation phase automated at languages for web information extractioddurnal of the ACMvol. 51,
least to some extent. To the best of our knowledge, the most advanced 2004.
example of this approach is the LiXto [12] suite. LiXto supports thE4] G. Gottlob and et Al., “The lixto data extraction projechack and forth
semi-automated creation of extraction programs, called filters, which, gig’;’g;’;ztgggry and practiceProc. of PODS, Principles of Database
thanks to some clever logic-based representation of the HTML/X eV . . N

.] F. DeCindio, G. Fiumara, M. Marchi, A. Provetti, L. Ripantg and
structure_ [13], [14] of the document, |S_tolerant to some d_egre_e L. Sonnante, “Aggregating information and enforcing awassnacross
elaboration of the source. We are planning to experiment with LiXto ommunities: the dynamo rss feeds creation engineProe. of COM-
to make our extraction function capable of re-arranging the meta-tags |NFo6 Workshop Springer LNCS, 2006.

annotation to adapt to changes in the HTML source.

Tnt1 = aTn + (1 — @)ty

VIII. FINAL CONSIDERATIONS

We have described a Web application that generates and manages
the RSS feeds extracted from HTML Web documents. The proposed
architecture is intended to be applicable to arbitrary Web sites,
provided that the Web administrator decides to start the service by
adding the proposed meta-tags to the commented part of each page.

123

