
Towards a Domain-Specific Language for
Automated Network Management

Tim Molderez
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
tim.molderez@vub.be

Coen De Roover
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
coen.de.roover@vub.be

Wolfgang De Meuter
Software Languages Lab
Vrije Universiteit Brussel

Brussels, Belgium
wolfgang.de.meuter@vub.be

Abstract—Software applications involving networks, in a broad

sense of the term, are becoming more complex and are deployed

on a growing number of devices. These applications can involve

wireless sensor networks, smart grids, intelligent traffic light sys-

tems, and so on. Manually managing such networks is becoming

increasingly difficult. To automate this management process, this

paper introduces the initial design of the Marlon domain-specific

language. Marlon is suited to specify the desired management

policies that should be achieved. It can automatically apply these

policies using machine learning techniques, effectively reducing

the amount of effort needed to manage such systems.

Index Terms—domain-specific languages, multi-agent systems,

machine learning

I. INTRODUCTION

This work is situated in the context of software applications
that are meant to be deployed on a network. We use the term
network in a broad sense. While it includes the commonly used
notion of computer networks, it also involves quite different
environments such as wireless sensor networks, power grids
or traffic light systems. Hardware plays a large role in such
networked environments, but as there is growing need to
make these environments “smart” (e.g. smart grids, intelligent
traffic light systems), software is necessary. This software is
becoming increasingly more complex, and it is deployed in
an environment that can potentially scale up to millions of
devices. As such, configuring and managing such systems,
which is often done manually, does not come easy.

This paper introduces an initial version of Marlon (Multi-
Agent Reinforcement Learning On Networks), a domain-
specific language (DSL) that aims to simplify automating this
management process. To achieve this goal, developers can use
Marlon to specify a number of policies or goals that need to be
attained. As the DSL’s complete name implies, the automation
itself is done using reinforcement learning [3], a machine
learning technique. The network itself is represented in Marlon
as a multi-agent system, a term from the domain of artificial
intelligence. Each device in the network is then represented
as an agent, which can be roughly defined as an entity that
can act autonomously. We chose to implement Marlon as a
DSL, with the aim of reducing the development and main-
tenance cost, compared to using general purpose-language to

Tim Molderez is supported by the FWO-SBO-SMILE-IT project, funded
by the Research Foundation Flanders (FWO)

Fig. 1. Overview of a simple smart grid system

automate a specific multi-agent system. For instance, Marlon is
designed to easily switch from a simulated multi-agent system
to deployment in a real environment. It also is possible to
specify and combine multiple machine learning goals, without
depending on which specific machine learning algorithm is
used.

Marlon is a DSL implemented on top of the Elixir1 lan-
guage. Elixir was chosen as the host language for three main
reasons. First, it focuses on building distributed, fault-tolerant
systems. Elixir leverages the Erlang VM, which has a proven
track record of scaling to very large systems, used by services
such as Amazon and WhatsApp. Second, Elixir implements
the actor concurrency model, where each actor/process is
isolated and can only communicate with other actors via mes-
sages. This model coincides well with multi-agent systems,
such that each agent corresponds with an actor. Finally, we
chose Elixir because it has been designed with extensibility
and domain-specific languages in mind. As such, a prototype
implementation of Marlon, which essentially consists of a set
of macros, could be developed in a short time frame.

The remainder of this paper introduces Marlon by means
of an example in Sec. II, and we briefly describes its informal
semantics in Sec. III.

II. SMART GRID EXAMPLE

To illustrate the use of Marlon, we will discuss a small
example in this section. This example is situated in the
context of smart grids, i.e. an electrical grid where power

1https://elixir-lang.org/

39

usage/production is monitored with the aim of making a more
efficient use of the available energy. An overview of the
example system is given in Fig. 1: it consists of a grid manager
and multiple houses each having a central heating system.
The role of the grid manager is to provide power to each
house, and to keep track of the total power usage. Each heating
system keeps track of how much power it consumes, and its
current temperature. The only policy we want to deploy in
this example is that each house should reach and maintain its
desired temperature.2

The entire Marlon source code that specifies how to simulate
this system is given in Fig. 2. It also is possible to use Marlon
to deploy this system in a real environment, but this is not
discussed in more detail in this paper. Before examining the
code of Fig. 2 in more detail, it is important to note that multi-
agent systems commonly are modeled as discrete systems,
which is also reflected in the design of Marlon. It means
that the execution of a multi-agent system corresponds to an
infinite main loop, where each iteration computes the next state
of the system, based on the state of the previous iteration.

The code in Fig. 2 consists of four separate sections, each
defining a different part of the smart grid; the defworld
statement on lines 1-10 specifies the grid manager; the
defcomponent statement on lines 12-25 specifies the cen-
tral heating system of a house; the defagent statement on
lines 27-46 represents the specification of a house. Finally, the
defgoal statement on lines 48-68 specifies the goal/policy
that each house should reach its desired temperature.

The code that initializes the entire system is the following:
House.create :h1
House.create :h2
House.add_goal :h1, ReachDesiredTemp
House.add_goal :h2, ReachDesiredTemp
{:ok, world} = World.start_link()
World.set_behaviour world, GridManager
World.add_agent world, :h1
World.add_agent world, :h2

This code snippet creates two houses, installs the
ReachDesiredTemp policy in each house, initializes the
grid manager and adds the two houses to it.

We can now examine the code in Fig. 2 in some more
detail. At each iteration of the simulation, the machine learning
algorithm must first make a decision, based on the goals
that have been specified. In our case, there only is the
ReachDesiredTemp goal, installed on both houses. Line
49 states that the goal should choose between the behaviours
of the centralheating component of a house, defined
on line 33. The CentralHeating component itself (lines 12-
25), has two behaviours: on or off. Let us assume that the
machine learning algorithm has currently decided to choose
the ”on” behaviour in both houses. These chosen behaviours
are now executed: the CentralHeating component updates the

2We chose this policy only for its simplicity. Marlon uses machine learning
to apply this policy, but there are simpler methods to implement a thermostat.
The use of machine learning can be demonstrated in more complex examples,
such as a grid where energy is traded between houses, and the optimal selling
price is learned. This is part of future work.

state of the house it belongs to by raising its temperature and
energy consumption (lines 14-20). After executing the chosen
component behaviours, each agent executes its step function
(lines 42-45) to make any further adjustments to its state. Once
this is done, the grid manager can update its global state, based
on each of the house’s states. More specifically, on lines 5-9,
the grid manager computes the total power consumption of
all houses. On this is done, one iteration of the system has
finished, and the next one can start.

While walking through the code of this example, we have
not explained much yet regarding how the machine learning al-
gorithm works. The algorithm we have currently implemented
is a basic Q-learning [7] algorithm, in which a “Q-table” is
maintained to learn which action needs to be taken when
the system is in a given state. In this example, there are
only two actions: turning the heating component on, or off.
Representing the system’s state is more complex: as the system
can be in an infinite amount of different states, an abstraction
must be defined over the state in order to create a finite amount
of abstract states. This abstraction is defined on lines 51-57,
in which the current system state is mapped to either -1, 0
or 1. The 1 value represents an abstracted state where the
temperature is too hot; -1 is too cold, and 0 is just right.
Once the abstracted state space, and the list of possible actions
is defined, we only need to specify the reward function that
computes a reward value for a given combination of current
abstracted state, and the action that is taken. This function
is defined in lines 58-66. This completes the specification of
the ReachDesiredTemp goal. To illustrate the Q-learning
algorithm in action, Fig. 3 shows how the temperature of
one house (y-axis) changes per iteration (x-axis). The learning
algorithm keeps increasing the heating system’s temperature,
until it crosses the desired temperature (22 �C) in iteration 20,
after which the temperature remains fairly stable. (Note that
the temperature slowly drops when the heating is turned off
due to line 43.)

III. MARLON OVERVIEW

After illustrating Marlon with an example, we can now
describe the language’s concepts and informal semantics in
general terms.

The four main concepts used in the language are: world,
agents, components and goals.

World - A Marlon multi-agent system has one ”world”,
an actor that maintains any global state in the system,
which is shared with all agents. The input_data and
output_data fields (lines 2-9 in Fig. 2) respectively define
which data the world receives from its agents, and which parts
of its state are published to all agents.

Agent - An agent corresponds to an actor. The fields
field (line 28) specifies an agent’s internal state. The
components field lists which components are contained
by this agent. The input_data and output_data fields
respectively define which data the agent receives from the
world, and which parts of its state are published to the world.
An agent also defines a ”step” function; this function is used

40

1 defworld GridManager, [
2 input_data: [
3 {:agents, :power_consumption, :as, :agents_power_consumption}
4],
5 output_data: [
6 {:data, :power_consumption, fn (_global_state, knowledge) ->
7 knowledge[:agents_power_consumption] |> elem 1 |> Enum.sum
8 end}
9]

10]
11
12 defcomponent CentralHeating, [
13 behaviour: [
14 on: fn(component, _knowledge, agent_state) ->
15 agent_state = %{agent_state |
16 temperature: agent_state.temperature + 1,
17 power_consumption: agent_state.power_consumption + 100
18 }
19 {component, agent_state}
20 end,
21 off: fn(component, _knowledge, agent_state) ->
22 {component, agent_state}
23 end
24]
25]
26
27 defagent House, [
28 fields: %{
29 temperature: 5,
30 power_consumption: 0
31 },
32 components: %{
33 centralheating: CentralHeating
34 },
35 input_data: [
36 {:world, :power_consumption, :as, :world_power_consumption}
37],
38 output_data: [
39 {:data, :power_consumption,
40 fn(_components, agent_state, _knowledge) -> agent_state[:power_consumption] end}
41],
42 step: fn(_identifier, components, knowledge, agent_state) ->
43 agent_state = %{agent_state | temperature: agent_state.temperature - 0.125} # Subtraction to account

for colder outside temperature
44 {components, agent_state}
45 end
46]
47
48 defgoal ReachDesiredTemp, [
49 components: [:centralheating],
50 attributes: %{target_temperature: 22},
51 state_fields: [
52 {:delta_temperature, [-1, 0, 1], fn(attributes, _knowledge, _components, agent_state) ->
53 %{temperature: temperature} = agent_state
54 %{target_temperature: target_temperature} = attributes
55 Utils.sign(temperature - target_temperature) # +1 = too hot, 0 = ok, -0 = too cold
56 end}
57],
58 reward: fn (attributes, _components, _old_components, _knowledge, _old_knowledge, agent_state,

old_agent_state) ->
59 target_temperature = attributes.target_temperature
60 if (abs(agent_state.temperature - target_temperature) <= 1) do
61 10000
62 else
63 old_difference = abs(old_agent_state.temperature - target_temperature)
64 new_difference = abs(agent_state.temperature - target_temperature)
65 if (old_difference >= new_difference), do: 5, else: -500
66 end
67 end
68]

Fig. 2. Marlon code of the example smart grid

41

Fig. 3. Temperature evolution of a single house

to compute the agents’ next state, based on its current state
and the world’s state.

Component - A component is part of an agent. It can
(optionally) have its own internal state. It only contains a
number functions that define the possible behaviours of this
component. Only one of these functions is executed at each
iteration of the system. Which function will be executed is
determined by the machine learning algorithm. 3

Goal - Finally, a goal specifies a desired property that
an agent should reach, by means of a Q-learning algorithm.
The components field (line 49 in Fig. 2) determines which
components the machine learning algorithm can control. It is
possible to attach multiple goals to the same component, but a
weight function (not shown) should then be specified to deter-
mine which goal has the highest priority. The attributes
field specifies any parameters that may be relevant to the goal.
The state_fields field defines the abstract state space
used by the Q-learning algorithm, together with a function that
maps the current state to an abstracted state. Finally, there is
the reward function that computes a reward value for the
current state of the system, given the previous state.

As mentioned before, the multi-agent systems implemented
with Marlon are discrete. The execution of such a system
corresponds to a loop where each iteration represents the
system’s next state. The pseudocode in Fig. 4 gives a more
precise idea of what happens in each iteration: first, for each
goal, an action/behaviour is selected from the components it
may affect. This selection is then executed. Next, all agents
make their output data available to the world, which the world
uses to update its input data. After this, all agent execute their
step function. Once this is done, the world publishes its output
data, and makes it available as the input data for all agents. The
computation of the system’s new current state is now finished,
and all that remains is to use the reward function of each goal
to compute how effective its chosen action was.

3Alternatively, it also is possible to write your own function that chooses
which behaviour is executed, rather than letting the machine learning algo-
rithm choose.

1 step = 1
2 executeAndUpdate(step)
3
4 loop {
5 step++
6 Action selection + execution
7 executeAndUpdate(step)
8 Learning reward is computed
9 }

10
11 def executeAndUpdate(int x) {
12 Agents publish output data
13 World updates input data
14 World and all agents execute step x
15 World publishes output data
16 Agents update input data
17 }

Fig. 4. Pseudocode for the execution loop of a multi-agent system

IV. RELATED WORK

Regarding related work, there are several existing frame-
works and domain-specific languages that cater to specific
types of multi-agent systems:

For instance, Frenetic [2] and Nettle [6] focus on program-
ming computer networks. TeenyLime [1], TinyDb [5] and
Semantic Streams [8] tackle querying and composing data in
the area of wireless sensor networks. Whereas these papers do
not involve machine learning techniques to manage networks,
the work of Kara et al. [4] presents a learning-based framework
to automate smart grid management. While the example we
presented is also situated in a smart grid context, our aim for
Marlon is to focus on the more general domain of multi-agent
systems.

V. CONCLUSION AND FUTURE WORK

This paper has presented an initial version of Marlon, a
DSL for automating the management of multi-agent systems.
The DSL was illustrated by means of an example in a smart
grid context. As this initial version of the language was also
developed starting from this context, one direction of future
work is to apply the language in other types of multi-agent
systems, and to evolve and extend the language with new
features on an as-needed basis. We also need to evaluate
the language in terms of its expressiveness, how it compares
to frameworks/DSLs that focus on a specific domain, and
how effective Marlon it is at reaching its machine learning
goals. Another direction of future work is to add support
for collaboration among agents, so it becomes possible to
specify goals that span across groups of agents, rather than
only specifying goals that apply to individual agents.

REFERENCES

[1] Paolo Costa, Luca Mottola, Amy L Murphy, and Gian Pietro Picco.
Teenylime: transiently shared tuple space middleware for wireless sensor
networks. In Proceedings of the international workshop on Middleware
for sensor networks, pages 43–48. ACM, 2006.

[2] Nate Foster, Rob Harrison, Michael J Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. Frenetic: A network
programming language. In ACM Sigplan Notices, volume 46, pages 279–
291. ACM, 2011.

42

[3] Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore.
Reinforcement learning: A survey. Journal of artificial intelligence
research, 4:237–285, 1996.

[4] Emre Can Kara, Mario Berges, Bruce Krogh, and Soummya Kar. Using
smart devices for system-level management and control in the smart grid:
A reinforcement learning framework. In Smart Grid Communications
(SmartGridComm), 2012 IEEE Third International Conference on, pages
85–90. IEEE, 2012.

[5] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei
Hong. Tinydb: an acquisitional query processing system for sensor
networks. ACM Transactions on database systems (TODS), 30(1):122–
173, 2005.

[6] Andreas Voellmy and Paul Hudak. Nettle: Taking the sting out of pro-
gramming network routers. Practical Aspects of Declarative Languages,
pages 235–249, 2011.

[7] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine
learning, 8(3-4):279–292, 1992.

[8] Kamin Whitehouse, Feng Zhao, and Jie Liu. Semantic streams: A frame-
work for composable semantic interpretation of sensor data. Wireless
Sensor Networks, pages 5–20, 2006.

43

