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Abstract

A class of power series ¢-distributions, generated by considering a g-
Taylor expansion of a parametric function into powers of the parameter,
is discussed. The g¢-Poisson (Heine and Euler), g-binomial, negative
g-binomial and g-logarithmic distributions belong in this class. The
probability generating functions and g-factorial moments of the power
series g¢-distributions are derived. In particular, the g-mean and the
g-variance are deduced.

1 Introduction

Benkherouf and Bather|[BB88| derived the Heine and Euler distributions, which constitute g-analogs of the
Poisson distribution, as feasible priors in a simple Bayesian model for oil exploration. The probability function
of the ¢g-Poisson distributions is given by (Charalambides[Chal6l p. 107])

pm(>\; Q) = Eq(_)‘) [x]q|

where 0 < A < 1/(1 —¢) and 0 < ¢ < 1 (Euler distribution) or 0 < A < oo and 1 < ¢ < oo (Heine
distribution). Also, E,(t) = [[io,(1 4+ t(1 — q)¢"!) is a g-exponential function. It should be noted that
eqt) = [Ii2,(1 —t(1 — q)¢"~')~! is another g-exponential function and that these g-exponential functions are
connected by Ey(t)eq(—t) =1 and E -1 (t) = eq(1).

Kemp and Kemp [KK91], in their study of the Weldon’s classical dice data, introduced a g-binomial distribu-
tion. It is the distribution of the number of successes in a sequence of n independent Bernoulli trials, with the
odds of success at a trial varying geometrically with the number of trials. Kemp and Newton [KN90] further
studied it as stationary distribution of a birth and death process. The probability function of this g-binomial
distribution of the first kind is given by

pz(05q) = [Z]ql—m?

where 0 < < oo, and 0 <g<lorl<qg< co.

Charalambides [Chal(] in his study of the ¢g-Bernstein polynomials as a ¢g-binomial distribution of the second
kind, introduced the negative g-binomial distribution of the second kind. It is the distribution of the number of
failures until the occurrence of the nth success in a sequence of independent Bernoulli trials, with the probability

=0,1,...,n,
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of success at a trial varying geometrically with the number of successes. The probability function of this negative
g-binomial distribution of the second kind is given by

n

n+x—1| i
z 7 =1
where 0 < # <1land 0 < g < 1.
A g-logarithmic distribution was studied by C. D. Kemp[Kem97] as a group size distribution. Its probability

function is given by
07
pz(97Q):[_lq(1_e)] 177 $:1727"'7
[2]q

where 0 < 8 <1,0< ¢ <1, and

) o1 — fgr it > pi

is a g-logarithmic function.

The class of power series ¢-distributions, introduced in section 2, provides a unified approach to the study
of these distributions. Its probability generating function and g-factorial moments are derived. Demonstrating
this approach, the probability generating function and g-factorial moments of the ¢-Poisson (Heine and Euler),
g-binomial, negative g-binomial, and g-logarithmic distributions are obtained.

2 Power series g-distributions

Consider a positive function g(f) of a positive parameter 6 and assume that it is analytic with a g¢-Taylor
expansion

9(0) = as 407, 0<0<p, p>0, (1)
=0

where the coefficient

Qzq = [

with D, = d,/d,t the g-derivative operator,

_ deg(t) _ 9(t) — g(qt)
Dygg(t) = dgt T (gt

does not involve the parameter 6. Clearly, the function

Oz q0"

pz(0;q9) = OB z=0,1,..., (3)

with 0 <g<lorl<g<oo,and 0< 8 < p, satisfies the properties of a probability (mass) function.

Definition 2.1. A family of discrete g-distributions p,(0;q), 0 € ©, ¢ € @, is said to be a class of power series
g-distributions, with parameters 6, ¢ and series function g(0) if it has the representation , with series function
satisfying condition .

Remark 2.2. The range of z in (3)), as in the case of the (usual) power series distributions), may be reduced.
Thus, we may have a; 4 > 0 for x € T, with

T:{l'o,xo—f—l,...,l‘o—f—l'l—l}, .’L‘()ZO, 11121

Moreover, note that the truncated versions of the a power series g-distribution are also power series ¢g-distributions
in their own right.



The probability generating function P(t) = >°>7 ; px(0; ¢)t*, on using and , is readily deduced as
9(0t)

Clearly, the mth g-derivative, with respect to t, of the probability generating function is

= pe(0;@)[almgt" ™

Thus, the mth g-factorial moment of the power series ¢-distribution, on using , is obtained as

1 [dyrg(0t) o™ dgg(9) _
BXlna) = o5 | L] = gy g m=12 o)
In particular the g-mean is given by
B(X],) = - 140 ©
Also, on using the expression
V([X]g) = ¢E([X]2,4) — E([X]o) (E([X]y) — 1), (7)

T g(0) df2  g(0)  def \g(0) dgb

Example 2.3. g-Poisson distributions. These are power series g-distributions, with series function g(A) =
eq(A) =1/E4(—X), where 0 < A< 1/(1-¢)and 0 <g<lor0<A<ooandl<g<oo. Since Dye,(t) = eq(t)
and e,(0) = 1, it follows from (2|) that

Agz,q =

Also, the probability generating function of the g-Poisson distributions, on using (4)), is deduced as

eq(At)
eq(A)
The g-factorial moments, by and since Dy'e () = e4(A), are readily deduced as

P(t) = Ey(—Neg(At).

E([X]m,q) =", m=12,....

In particular, the ¢-mean is given by
E([X]q) = A

Also, using , the g-variance is obtained as
V([X])) = % = AA— 1) = A1+ (g — )A).

Example 2.4. ¢-Binomial distribution of the first kind. The series function of this distribution is g(8) =
[T (1+6g""), where 0 < § < co and 0 < ¢ < 1 or 1 < g < co. Since

[T (1 +0¢ ") =TT, (14 0q")

[ +6) — (1 +0gM) TS (1 + g i
- (1—q) qg” @0)a™),



it follows successively that

Dgg(e) = [n}m,q I424-t(z=1) H 1Jr 9(] Z 1) = [n}m’qq(g) (1 + (qu)qifl)’
=1 i=1
for x =1,2,...,n. Thus, by ,
1 " n ©
Og,q = Wq![Dqg(t)]t:o = L] qq(2), z=0,1,...,n.

Also, the probability generating function of the g-binomial distribution of the first kind, on using , is deduced
as

IS, + 6t )
Pl = H?zll(l +0q-1) "

The g¢-factorial moments, by and since

n

D:Ing(o): mqq 1:[ 1+ Gq Z 1):[n}m7qq(gb) H (1+9qi71),

i=m-+1

are obtained as ,
[2)m 0™ ?)

E([X]m,q) = W’

m=1,2,....

In particular, the g-mean is

Also, using @ and, subsequently, the expression g[n — 1], = [n], — 1, the g-variance is obtained as

[n]q[n - 1]1192(]2 [n]q9 [n]qa
1+0)(1+0g) 1+9<1_ 1+9>
B [n]40 [n],0(q — 1)

T 101109 (H 140 >

>

V([X]q) =

Example 2.5. Negative q-binomial distribution of the second kind. It is a power series g-distribution, with series
function ¢(0) =[], (1 — 0¢"~')~!, where 0 < # < 1 and 0 < ¢ < 1. Since

i, (=0~ —T[L, (1 — 6g) "

D,g(0) =
(- 0g") — A O A= 06Y)  Ty i
- (1—q)f ' = [nq H(l—@q b,
i=1
it follows successively that
n+x ) n+x )
Dig(0) = [nlgln+ 1 [n+ao -1, [[0 -0 =In+z -1, [T -0,
i=1 i=1
forx =1,2,.... Thus, by ,
1 n+ax—1
T,q — D7 =0 — s =0,1,....
Qz,q [x]q'[ qg(t)]t 0 |: T :|q € 0

Also, the probability generating function of the negative g-binomial distribution of the second kind, on using ,

is deduced as N prai-1)-1
[[i=1 (1 —08g" 1)~




The g-factorial moments, by and since

n+m
D;”g(Q) =[n+m-—1]m, H (1- [
i=1
=n+m—1mg [J0—0¢~ ") ] - 0g"T 1),
i=1 i=1

are obtained as

E([X]mg) = [n+m—1mq0" [J(1— 0", m=12....
i=1
In particular, the g-expected value is
[n]40
E([X],) = .
Also, using and, subsequently, the expression [n + 1], = [n], + ¢", the g-variance is successively obtained as
[n]q[n +1]46%¢ [n]qf [n]40
V(X],) = 1-
(X1) (1 —=0g™)(1—0gnth) Tz Oq" 1 —6gn

o [n]qﬁ [n}qG(q —1)
‘(1—eqn><1—eqn+1><” 1 6g" )

Example 2.6. q-Logarithmic distribution. The series function of this distribution is
g(0) = —1,(1-6 ZT 0<f<1, 0<g<l.
j=1

Taking successively its g-derivatives,

. B [ee) . _— o0 j _ 1 -
Dig(0) = ;[y 11,0 = [z — 1]42 [7. i x} qeﬂ :

and using the negative g-binomial formula

fﬁﬁ*:_qszfh1_@“5”,

k=0 i=1
we find )
Dmg Jf _ 1 q| H oqz 1
=1
Thus, by (2), 1 1
Ao = 775 [Dg9( )]t=0 = 75, z=12,....
q [z ] [I]q

Also, the probability generating function of the g-logarithmic distribution, on using , is deduced as

—1,(1 - 0t)

PO

The ¢-factorial moments, by (5)) and since

are obtained as




In particular, the g-mean value is

B([x],) = TGO
Also, using , the g-variance is obtained as
_ (-0 | [l (1-0)]'0 [—l,(1—0)"'0
VXl = (1—-0)(1—6q) 1—-6 ( a 1-6 )
_ =0t 1 [—l,(1—0)""0
B 1-6 <1—9q 1-6 )
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