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Abstract

This paper describes an approach to the random sampling of lattice
polytopes. The lattice polytopes we are interested in are contained in
the hypercube [0, k]d and we refer to them as lattice (d, k)-polytopes.
Our approach consists in using a Markov chain whose space of states
is the set of all d-dimensional lattice (d, k)-polytopes and whose tran-
sitions add or delete vertices following simple, well-defined rules. We
prove that this Markov chain provides a uniform random sampler of lat-
tice (d, k)-polytopes, and give a lower bound on the mixing time. We
also present a number of experimental results on a selection of values
of k in the 2-dimensional case.

1 Introduction

A polytope is the convex hull of a finite set of points in Rd. These objects appear in a wide range of mathematical
works, both in theoretical and applied contexts [Zie95]. Yet their combinatorics is not well understood. A class
of polytopes of special interest is that of lattice (d, k)-polytopes. These polytopes are contained in the hypercube
[0, k]d, where k is a positive integer, and their vertices have integer coordinates. A number of articles focus
on studying their properties as a function of d and k, even for small values of those parameters. Among these
properties one finds, for instance, the maximal possible value for the diameter of their graph [DM16, DMO18,
DP18, KO92, Nad89] which is strongly related to the Hirsch conjecture [BDSEHN14, BDF, KK92, KW67, San12]
and, more generally, to the complexity of the simplex algorithm.

The exhaustive enumeration of lattice (d, k)-polytopes up to a significant size is unachievable in practice
because their combinatorics quickly become intractable. In this case, one may still perform random sampling
in order to investigate the properties of typical large-sized objects and the average behavior of the algorithms
applied to them. Several generic methods already exist to design random generators such as the recursive method,
the Boltzmann samplers, and Markov chains. The first two methods are often more efficient than the latter but
they require a good knowledge of the object’s combinatorics.

In this paper we present a random sampler for the lattice (d, k)-polytopes of dimension exactly d. The
combinatorics of lattice (d, k)-polytopes remains elusive. For instance, there is as yet no closed formula and
no asymptotic estimation for their number as a function of d and k. Therefore, the recursive method and the
Boltzmann samplers seem inapplicable at the moment for arbitrary d and k. Note that, when d = 2, the sampler
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of convex polyominoes from [BDJM13] could be modified in order to obtain a Boltzmann sampler for lattice
polygons. Also, note that in [DDT14], the authors give a random generator of convex polygons. However their
setup is different from ours as they deal with polygons contained in a disc, whose vertices are not restricted to a
lattice. Another easier case is when k = 1. Indeed, any set of lattice points contained in [0, 1]d is the vertex set
of a lattice (d, 1)-polytope. Thus, an ad-hoc algorithm can be designed that samples random sets of points with
binary coordinates and rejects the resulting polytopes when they are not d-dimensional.

The random sampler we propose results from a Markov chain, whose space of states is the set of all d-
dimensional lattice (d, k)-polytopes. Its stationary distribution is uniform for any d ≥ 2 and positive k. The
transitions in this Markov chain, and the resulting random sampler can be described informally as follows. Given
a lattice (d, k)-polytope P with vertex set V, performing a transition will first consist in randomly choosing a
lattice point x in [0, k]d, and then proceeding according to the placement of x with respect to P . If x belongs to
V, then P will be replaced by the convex hull of V\{x}, thus removing x from P . If x does not belong to V and
V ∪ {x} is precisely the vertex set of its convex hull, then P will be replaced by the convex hull of V ∪ {x}, thus
inserting x in P . If none of these two cases occurs, then P will not be affected. These operations are elementary,
yet they raise very interesting geometric questions as, for instance, whether they always allow to transform any
d-dimensional lattice (d, k)-polytope into any other.

In order to sample a uniform random lattice (d, k)-polytope, we will run a random walk on our Markov chain
until we are close enough to the stationary distribution. The efficiency of the sampler is related to the time needed
for the walk to get close enough to the stationary distribution. In order to evaluate it, we need to determine the
rate of convergence of the Markov chain to the stationary distribution as a function of the geometry and the size
of the state space. Doing so is often a difficult problem (see for instance [CDF11, MDBM01]).

A formal definition of our Markov chain and of the resulting sampler shall be given in Section 2. In the sequel,
we provide both theoretical and experimental results regarding the behaviour of this Markov chain. Our main
result is that the random sampler built from the Markov chain for lattice (d, k)-polytopes is uniform. This is
shown in Section 3. Section 4 presents a general lower bound on the mixing time of our Markov chain. We
conclude by providing experimental results and discussing them in Section 5.

2 Markov chains and random samplers

We will introduce two variants of our Markov chain. The first one contains a minimal set of rules, sufficient to
obtain a uniform stationary distribution. It turns out that the proof of the irreducibility of this variant raises
interesting geometric questions. The second one contains an additional rule which simplifies this proof, as we
shall see in Section 3. For both chains, the space of states Ω is the set of all d-dimensional lattice (d, k)-polytopes,
for fixed d and k. Some effort will be needed in order to enforce the requirement that all the states of our Markov
chains are polytopes of dimension exactly d. The transition rules of our Markov chains are defined as local
operations on lattice (d, k)-polytopes. These rules consist in adding a single vertex to such a polytope or to
remove a vertex from it. Consider a d-dimensional lattice (d, k)-polytope P and denote by V its vertex set.
Consider a lattice point x in [0, k]d which, we assume has been uniformly drawn from all possible lattice points
in [0, k]d. The transition from P that corresponds to the chosen lattice point x goes as follows.

• If x is contained in P but is not a vertex of it (i.e. x ∈ P\V) then the chain will loop on P . In other words,
the current state is unaffected.

• If x is a vertex of P (i.e. x ∈ V), then

– If the convex hull Q of V\{x} is d-dimensional, the transition goes from P to Q. Note that if Q were
(d−1)-dimensional, then P would be a pyramid (with apex x) over Q. In this case, the transition from
P to Q would be impossible because it would exit Ω.

– Otherwise, we loop on P .

• If x does not belong to P , then

– If V ∪ {x} is precisely the vertex set of its convex hull, then the transition goes from P to the convex
hull of V ∪ {x}.

– Otherwise we loop on P .
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Figure 1 illustrates the transition rule in the case of a lattice triangle P contained in the square [0, 4]2,
depending on the placement of point x. Note that in this particular case, there is no transition that deletes a
vertex of P .

(1) (2) (3) (4)

Figure 1: An illustration of the transition rule for a triangle (depicted in grey), depending on the placement of
point x, colored red when the chain loops and blue when it does not loop: (1) x belongs to P\V, (2) the convex
hull of V\{x} is (d − 1)-dimensional, (3) V ∪ {x} is not the vertex set of its convex hull, and (4) the transition
changes P into the convex hull of V ∪ {x}.

By the above procedure, sampling a random lattice (d, k)-polytope consists in generating a random walk on
the Markov chain until we are close enough to the stationary distribution. Thereby, the resulting random sampler
for lattice (d, k)-polytopes is given by Algorithm 1.

Algorithm 1: Random sampling of a lattice (d, k)-polytope

Input: the dimension d, the size k of the hypercube
Output: a random lattice (d, k)-polytope

1 sample a random lattice (d, k)-simplex P with vertex set V
2 while we are not close enough to the stationary distribution do
3 generate a random lattice point x in [0, k]d

4 if x ∈ V then
5 if conv(V\{x}) is d-dimensional then
6 P ← conv(V\{x})

7 else
8 compute the convex hull Q of V ∪ {x}
9 if the vertex set of Q is V ∪ {x} then

10 P ← conv(V ∪ {x})

11 return P

In the other variant of our Markov chain, we introduce an additional rule when P is a simplex: if the chosen
random lattice point x is a vertex of P , we may move that vertex to another lattice point instead of having
a loop on P in our Markov chain. More precisely, in this case we generate a new random lattice point y in
[0, k]d and compute the convex hull Q of [V\{x}] ∪ {y}. If Q is d-dimensional, the transition goes from P to Q,
otherwise we loop on P . Note that, since P is a simplex, [V\{x}] ∪ {y} is precisely the vertex set of Q when Q
is d-dimensional. With this additional transition rule, we obtain Algorithm 2.
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Algorithm 2: Random sampling of a lattice (d, k)-polytope

Input: the dimension d, the size k of the hypercube
Output: a random lattice (d, k)-polytope

1 sample a random lattice (d, k)-simplex P with vertex set V
2 while we are not close enough to the stationary distribution do
3 generate random a lattice point x in [0, k]d

4 if x ∈ V then
5 if |V| = d+ 1 then
6 generate a random lattice point y in [0, k]d

7 if conv([V\{x}] ∪ {y}) is d-dimensional then
8 P ← conv([V\{x}] ∪ {y})

9 else if conv(V\{x}) is d-dimensional then
10 P ← conv(V\{x})

11 else
12 compute the convex hull Q of V ∪ {x}
13 if the vertex set of Q is V ∪ {x} then
14 P ← conv(V ∪ {x})

15 return P

The uniformity of both samplers is conditioned to the properties of the underlying Markov chains. These
properties are studied in the next section.

3 Properties of the Markov chain and uniformity of the sampler

It is well known that an irreducible, aperiodic, and symmetric Markov chain converges to the uniform distribu-
tion [LPW09]. In this section we prove that all these properties are satisfied by our Markov chains (reminders
on their definitions will be given in the proof as well). Thus, we show that the two variants of our d-dimensional
lattice (d, k)-polytopes sampler are uniform.

Theorem 1. For all d ≥ 2 and for all positive k, the Markov chain corresponding to Algorithm 1 is irreductible,
aperiodic and symmetric.

Proof. Three properties have to be verified, thus this proof will be done in three steps. Let P and Q be in Ω,
and let V be the vertex set of P .

i Irreducibility. A Markov chain is irreducible when all of its states can be reached from any other state. In
other words the graph Γ(d, k) underlying the Markov chain is connected. The vertex set of Γ(d, k) is Ω and
there is an edge in this graph between any two vertices that are related to one another by a single transition.
The complete proof for the connectedness of Γ(d, k) is quite involved and due to its length, we omit it here.
This proof can be found in [DPR]. An important piece of the proof consists in showing that, given a lattice
(d, k)-simplex S, there always is at least one lattice point in [0, k]d that can be inserted as a new vertex in
S. It turns out that proving this seemingly simple statement is quite tricky.

ii Symmetry. In order to prove the symmetry one needs to show that the probability P(P,Q) to move from P
to Q in a single step is equal to the probability P(Q,P ) of performing the opposite step.

By our transition rules, for any P 6= Q we have:

P(P,Q) = P(Q,P ) =

{
1

(k+1)d
, if Q is the convex hull of V\{x} or of V ∪ {x}, where x ∈ [0, k]d,

0 otherwise.

iii Aperiodicity. In order to prove that the chain is aperiodic, one needs to show that each state in Ω has period
1. By definition, the period of a state P is gcd(T (P )), where T (P ) is the set of the return times in P . Since
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for an irreductible chain, all the states of Ω have the same period, then we need to find a state P such that
gcd(T (P )) = 1. Now recall that the polytope resulting from a transition in our Markov chain must remain
d-dimensional. In particular, if one picks any vertex of a d-dimensional simplex P , this vertex cannot be
removed, and we get a loop in our Markov chain. Since there exist d-dimensional lattice (d, k)-simplices for
all d ≥ 2 and positive k, this shows that, at some state P ∈ Ω we have a positive probability to get back to
P from P in one step. Hence, 1 ∈ T (P ) and gcd(T (P )) is equal to 1.

We now prove a similar result for our modified Markov chain.

Theorem 2. For all d ≥ 2 and for all positive k, the Markov chain corresponding to Algorithm 2 is irreductible,
aperiodic and symmetric.

Proof. We proceed the same way as we did in the proof of Theorem 1.

i Irreducibility. The proof still relies on the fact that one can always find a transition path between two
simplices, yet the “moving a vertex” rule allows us to choose one vertex of the starting simplex and move
it directly to a vertex of the desired simplex. Indeed, recall that by definition, a d-dimensional simplex is
the convex hull of a set of d + 1 affinely independent points. Therefore, one can transform any P ∈ Ω into
a simplex by consecutive deletions of its vertices, until there only remains d + 1 of them. With an analog
reasoning, by a succession of addition of vertices, we always have a transition path from a simplex to a lattice
(d, k)-polytope. The graph of the Markov chain remains connected, hence the Markov chain is irreducible.

ii Symmetry. Here the only difference from the symmetry proof in Theorem 1 is that now we may have a one
step transition between two simplices. It occurs when they only differ by a single vertex. Then, let S and
S′ be two simplices in Ω. If they only differ by a single vertex, then all the vertices of S belong to S′ apart
from a vertex x, and all the vertices of S′ belong to S apart from a vertex y. The transition goes from S to
S′ consists in choosing x, with a 1

(k+1)d
probability, and then to move it to y with a 1

(k+1)d
probability. The

same argument allows to treat the transition from S′ to S. Thus,

P(S, S′) = P(S′, S) =


1

(k + 1)2d
, if S and S′ differ by a single vertex,

0 otherwise.

iii Aperiodicity. To prove the aperiodicity, it is necessary and sufficient to find a lattice (d, k)-polytope with a
positive probability to loop. Let us consider a simplex S with vertex set V and a lattice point x ∈ [0, k]d. If
x is chosen among the vertices of S, then we have to redraw a point y ∈ [0, k]d where we decide to move x.
The cases when we have a loop on S are: either y and x are the same point, or conv([V\{x}] ∪ {y}) is not a
d-simplex. Note that the probability to choose x again is 1

(k+1)d
. Therefore,

P(S, S) ≥ d+ 1

(k + 1)d
· 1

(k + 1)d
> 0.

Thereby, S has period 1. Since the chain is irreducible, each state of Ω has the same period 1. Hence, the
chain remains aperiodic.

It is an immediate consequence of Theorem 1 and of Theorem 2 that the two variations of our Markov chain
have a uniform stationary distribution. Thus, the lattice (d, k)-polytopes obtained from both samplers are picked
uniformly from Ω. We have the following theorem.

Theorem 3. The random samplers described in Algorithm 1 and in Algorithm 2 are uniform random samplers
for d-dimensional lattice (d, k)-polytopes.
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4 A lower bound on the mixing time

Recall that the total variation distance is a distance measure between probability distributions [LPW09]. The
effectiveness of the sampler is given by the number of steps it takes until one is close enough to the stationary
distribution on Ω, meaning that the total variation distance between the current distribution and the stationary
one is less than a small positive quantity ε. This number of steps is called the mixing time of the Markov
chain, denoted tmix(ε). That is, the quicker the Markov chain mixes, the more effective the resulting sampler
is. Obtaining an accurate estimation of the mixing time is often a difficult problem. In order to obtain a lower
bound, one may use the diameter of the graph of the Markov chain. This diameter is the length of the longest
geodesic walk on the chain between any two states. In our case, that length is bounded below by the difference
between the largest number of vertices of a d-dimensional lattice (d, k)-polytope and the number of vertices of a
d-dimensional simplex.

The largest number of vertices of a lattice polygon contained in a disk or a square has been studied in [Av95,
Thi91, BB91]. Deza, Manoussakis and Onn have generalized this result to higher dimensions by describing lattice
(d, k)-polytopes whose diameter is large and conjecturally maximal [DMO18]. According to [Av95], the largest
number of vertices of a lattice polygon contained in [0, k]2 is

12

(
k

2π

)2/3

+O(k1/3 log k). (1)

We therefore immediately obtain the following lower bound on the mixing time of our sampler in the 2-
dimensional case from equation (7.3) in [LPW09].

Theorem 4. Assume that d = 2. For any ε > 0, there exists c > 0 such that

tmix(ε) ≥ ck2/3.

For the case of higher dimensions, Bárány and Larman gave bounds on the number of faces of each dimension
of a lattice polytope contained in the the d-dimensional ball of radius r centered at the origin as a function of r
and d [BL98]. In particular they provide bounds on its number of vertices. Up to a translation and finding the
right constant, Theorem 1 in [BL98] also provide us the following lower bound on the mixing time.

Theorem 5. For any d ≥ 2 and for any ε > 0, there exists c > 0 such that

tmix(ε) ≥ ckd
d−1
d+1 .

We have carried out a number of experiments in order to get an estimation of the actual mixing time of the
sampler corresponding to Algorithm 1 in the 2-dimensional case. These results are presented in Section 5.

5 Experimental results

The empirical estimations we obtained are based on ergodic theory. This theory requires the studied Markov
chains to be irreducible and positive recurrent. These properties hold in our case since we have a finite space
of states [LPW09]. Ergodic theory states that the average of any real-valued function on the states over a long
enough walk is the same as the expectancy at the stationary distribution, see Theorem 4.16 in [LPW09]. Here
the function can be any quantity we can measure on lattice (d, k)-polytopes. The process is the following: we
run a long walk on the Markov chain, evaluate the quantity on each state we visit, then calculate the average
value of this quantity over the whole run. Our results are reported in Figure 2. One can see that the average
number of vertices of a polygon seems to stabilize after 100 thousand steps (resp. 1 million and 10 million) when
k ≤ 20 (resp. k ≤ 30 and k ≤ 50). We also measured the average area of a polygon after a 10 million steps walk
and show it on the right of the same figure. Our measures suggest that

E[n] ≥ 6

(
k

2π

)2/3

and E[a] ≤ 3

4
k2,

where E[n] and E[a] are respectively the expectancy of the number of vertices and the area of a polygon at the
stationary distribution.

The coupling method is another way to estimate the mixing time. The coupling is more general and often
used to bound rates of convergence to stationarity as well. It consists in running two walks on the Markov chain.
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Table 1: Time needed to reach the stationary distribution with two coupled walks. The first walk is starting
at the corner simplex with vertices (0, 0), (1, 0), and (0, 1). The second walk is starting at the opposite corner
simplex with vertices (k, k − 1), (k − 1, k), and (k, k).

k Number of steps Execution time
1 2 0.001s
2 5026 0.164s
3 42247 1.368s
4 11387661 6m11s
5 78745909 42m45s
6 3.928× 109 2133m20s

The coupling result on Markov chains tells us that once two coupled walks are at the same state, they will both
move following the stationary distribution with high probability. Note that the walk may have been already very
close to the stationary distribution much earlier. Our computations allowed us to get an empirical upper bound
on the mixing time in the 2-dimensional case for k up to 6, the computation time becoming prohibitive for larger
values of k. Table 1 presents execution times for this method and the number of steps needed for the two walks
to meet. As one can see, the required number of steps increases quickly. This suggests that the coupling method
may not provide sharp estimations of the mixing time for our sampler.
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Figure 2: The average number of vertices over a same long run after 100 thousand, 1 million, and 10 million
steps is shown on the left when the size k of the box satisfies 2 ≤ k < 100, together with the theoretical maximal
diameter of a lattice polygon contained in [0, k]2, that is half of the quantity (1). The average area of the visited
polygons over a 10 millions steps is shown on the right.
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