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Université Paris 13

bodini@lipn.univ-paris13.fr

Alexandros Hollender
Université Paris 13
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Abstract

This article introduces an algorithm, MergeShuffle, which is an ex-
tremely efficient algorithm to generate random permutations (or to
randomly permute an existing array). It is easy to implement, runs in
n log2 n+O(1) time, is in-place, uses n log2 n+ Θ(n) random bits, and
can be parallelized across any number of processes, in a shared-memory
PRAM model. Finally, our preliminary simulations using OpenMP1

suggest it is more efficient than the Rao-Sandelius algorithm, one of
the fastest existing random permutation algorithms.

We also show how it is possible to further reduce the number of random
bits consumed, by introducing a second algorithm BalancedShuffle,
a variant of the Rao-Sandelius algorithm which is more conservative in
the way it recursively partitions arrays to be shuffled. While this algo-
rithm is of lesser practical interest, we believe it may be of theoretical
value.

1 Introduction

Random permutations are a basic combinatorial object, which are useful in their own right for a lot of applications,
but also are usually the starting point in the generation of other combinatorial objects, notably through bijections.

The well-known Fisher-Yates shuffle [FY48, Dur64] iterates through a sequence from the end to the beginning
(or the other way) and for each location i, it swaps the value at i with the value at a random target location j at
or before i. This algorithm requires very few steps—indeed a random integer and a swap at each iteration—and
so its efficiency and simplicity have until now stood the test of time.

There have been two trends in trying to improve this algorithm. First, the algotithm initially assumed some
source of randomness that allows for discrete uniform variables, but there has been a shift towards measuring
randomness better with the random bit model. Second, with the avent of large core clusters and GPUs, there is
an interest in making parallel versions of this algorithm.
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Algorithm 1 The classical Fisher-Yates shuffle [FY48] to generate random permutations, as per Dursten-
feld [Dur64].

1: procedure FisherYatesShuffle(T )
2: for i = n− 1 to 0 do
3: j ← random integer from {0, . . . , i}
4: Swap(T , i, j)
5: end for
6: end procedure

The random-bit model.

Much research has gone into simulating probability distributions, with most algorithms designed using infinitely
precise continuous uniform random variables (see [Dev86, II.3.7]). But because (pseudo-)randomness on comput-
ers is typically provided as 32-bit integers—and even bypassing issues of true randomness and bias—this model
is questionable. Indeed as these integers have a fixed precision, two questions arise: when are they not precise
enough? when are they too precise? These are questions which are usually ignored in typical fixed-precision
implementations of the aforementioned algorithms. And it suggests the usefulness of a model where the unit of
randomness is not the uniform random variable, but the random bit.

This random bit model was first suggested by Von Neumann [Neu51], who humorously objected to the use
of fixed-precision pseudo-random uniform variates in conjunction with transcendant functions approximated by
truncated series. His remarks and algorithms spurred a fruitful line of theoretical research seeking to determine
which probabilities can be simulated using only random bits (unbiased or biased? with known or unknown bias?),
with which complexity (expected number of bits used?), and which guarantees (finite or infinite algorithms?
exponential or heavy-tailed time distribution?). Within the context of this article, we will focus on designing
practical algorithms using unbiased random bits.

In 1976, Knuth and Yao [KY76] provided a rigorous theoretical framework, which described generic optimal
algorithms able to simulate any distribution. These algorithms were generally not practically usable: their
description was made as an infinite tree—infinite not only in the sense that the algorithm terminates with
probability 1 (an unavoidable fact for any probability that does not have a finite binary expansion), but also in
the sense that the description of the tree is infinite and requires an infinite precision arithmetic to calculate the
binary expansion of the probabilities.

In 1997, Han and Hoshi [HH97] provided the interval algorithm, which can be seen as both a generalization and
implementation of Knuth and Yao’s model. Using a random bit stream, this algorithm amounts to simulating a
probability p by doing a binary search in the unit interval: splitting the main interval into two equal subintervals
and recurse into the subinterval which contains p. This approach naturally extends to splitting the interval
in more than two subintervals, not necessarily equal. Unlike Knuth and Yao’s model, the interval algorithm
is a concrete algorithm which can be readily programmed... as long as you have access to arbitrary precision
arithmetic (since the interval can be split to arbitrarily small sizes). This work has recently been extended and
generalized by Devroye and Gravel [DG15].

We were introduced to this problematic through the work of Flajolet, Pelletier and Soria [FPS11] on Buffon
machines, which are a framework of probabilistic algorithms allowing to simulate a wide range of probabilities
using only a source of random bits.

One easy optimization of the Fisher-Yates algorithm (which we use in our simulations) is to use a recently
discovered optimal way of drawing discrete uniform variables [Lum13].

Prior Work in Parallelization.

There has been a great deal of interest in finding efficient parallel algorithms to randomly generate permutations,
in various many contexts of parallelization, some theoretical and some practical [Gus03, Gus08, San98, Hag91,
AS96, CB05, CKKL98, And90].

Most recently, Shun et al.[SGBFG15] wrote an enlightening article, in which they looked at the intrinsic
parallelism inherent in classical sequential algorithms, and these can be broken down into independent parts which
may be executed separately. One of the algorithms they studied is the Fisher-Yates shuffle. They considered
the insertion of each element of the algorithm as a separate part, and showed that the dependency graph, which
provides the order in which the parts must be executed, is a random binary search tree, and as such, is well
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known to have on average a logarithmic height [Dev86]. This allowed them to show that the algorithm could be
distributed on n/ log n processors, by using linear auxiliary space to track the dependencies.

Our contribution takes a different direction to provide another algorithm with similar guarantees. Our algo-
rithm is completely in-place, and can be parallelized to give a log n speedup given enough processors. It runs,
in practice, extremely fast even when run sequentially (presumably due to better cache performance compared
with Fisher-Yates). We hope, in future work, to paralellize it further to approach the performance of Shun et
al.’s algorithm.

Algorithm 2 The MergeShuffle algorithm.

1: procedure MergeShuffle(T , k) . k is the cut-off threshold at which to shuffle with Fisher-Yates.
2: Divide T into 2k blocks of roughly the same size
3: Shuffle each block independently using the Fisher-Yates shuffle
4: p← k
5: repeat
6: Use the Merge procedure to merge adjacent blocks of size 2p into new blocks of size 2p+1

7: p← p + 1
8: until T consists of a single block
9: end procedure

Splitting Processes.

Relatively recently, Flajolet et al. [FPS11] formulated an elegant random permutation algorithm which uses only
random bits, using the trie data structure, which models a splitting process: associate to each element of a set
x ∈ S an infinite random binary word wx, and then insert the key-value pairs (wx, x) into the trie; the ordering
provided by the leaves is then a random permutation.

This general concept is elegant, and it is optimized in two ways:

• the binary words thus do not need to be infinite, but only long enough to completely distinguish the elements;
• the binary words do not need to be drawn a priori, but may be drawn one bit (at each level of the trie) at

a time, until each element is in a leaf of its own.

This algorithm turns out to have been already exposed in some form in the early 60’s, independently by
Rao [Rao61] and by Sandelius [San62]. Their generalization extends to the case where we split the set into
R subsets (and where we would then draw random integers instead of random bits), but in practice the case
R = 2 is the most efficient. The interest of this algorithm is that it is, as far as we know, the first example of a
random permutation algorithm which was written to be parallelized.

2 The MergeShuffle algorithm

The new algorithm which is the central focus of this paper was designed by progressively optimizing a splitting-
type idea for generating random permutation which we discovered in Flajolet et al.[FPS11]. The resulting
algorithm closely mimics the structure and behavior of the beloved MergeSort algorithm. It gets the same
guarantees as this sorting algorithm, in particular with respect to running time and being in-place.

To optimize the execution of this algorithm, we also set a cut-off threshold, a size below which permutations
are shuffled using the Fisher-Yates shuffle instead of increasingly smaller recursive calls. This is an optimization
similar in spirit to that of MergeSort, in which an auxiliary sorting algorithm is used on small instances.

2.1 In-Place Shuffled Merging

The following algorithm is the linchpin of the MergeShuffle algorithm. It is a procedure that takes two arrays (or
rather, two adjacent ranges of an array T ), both of which are assumed to be randomly shuffled, and produces a
shuffled union.

Importantly, this algorithm uses very few bits. Assuming a two equal-sized sub-arrays of size k each, the
algorithm requires 2k+Θ(

√
k log k) random bits, and is extremely efficient in time because it requires no auxiliary

space.

Lemma 2.1. Let A and B be two randomly shuffled arrays, respectively of sizes n1 and n2. Then the procedure
Merge produces a randomly shuffled union C of these arrays, of size n = n1 + n2.
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Algorithm 3 In-place shuffled merging of two random sub-arrays.

1: procedure Merge(T , s, n1, n2)
2: i← s . i, j, n are the beginning, middle, and end position considered in the array.
3: j ← s + n1

4: n← s + n1 + n2

5: loop
6: if Flip() = 0 then . Flip a coin to determine which sub-array to take an element from.
7: if i = j then break
8: else
9: if j = n then break

10: Swap(T , i, j)
11: j ← j + 1
12: end if
13: i← i + 1
14: end loop
15: while i < n do . One list is depleted; use Fisher-Yates to finish merging.
16: Draw a random integer m ∈ {s, . . . , i}
17: Swap(T , i, m)
18: i← i + 1
19: end while
20: end procedure

Proof. Since A and B are assumed to be initially randomly shuffled, we may assume that they consist of identical
symbols, say a’s and b’s respectively. It suffices to prove that, after the execution of the procedure, all words
with n1 occurrences of a and n2 of b appear with the same probability. We may reinterpret the procedure as first
randomly drawing a’s and b’s by flipping coins, stopping when we would write the n1 + 1-st a or the n2 + 1-st
b, and then writing down the missing b’s or a’s and using the Fisher-Yates shuffle to swap them into random
locations.

The correction of the procedure is based on the following fact: after the execution of the first loop (lines
5–14), the elements of T from 0 to i − 1 are randomly shuffled. Indeed, these elements consist either of n1 a’s
and n2 + i−n b’s (if the array A was depleted first) and n1 + i−n a’s and n2 b’s (if B was depleted first), which
can appear in every permutation with equal probability.

The rest of the proof then mimics that of the Fisher-Yates shuffle, based on the loop invariant: after every
iteration of the second loop (lines 15–19), the first i elements of T are randomly shuffled. This shows that the
whole array is randomly shuffled after the procedure.

Lemma 2.2. Assuming that |n1 − n2| = O(
√
n), the procedure Merge produces a shuffled array C of size n

using n + Θ(
√
n log n) random bits on average.

In practice, it is always possible to set up the arrays so that |n1 − n2| ≤ 1, which more that satisfies the
conditions of this result.

Proof. There are two places where the procedure consumes randomness: in the first loop at line 6 (one bit per
element) and in the second loop at line 16 (on average, Θ(log n) bits per element since we need to draw a random
integer). The number of iterations of the second loop is equal to the number of elements remaining after one of
the arrays A or B is depleted. If n1 and n2 are not too far apart (at most on the order of

√
n), this number will

have an expected value of Θ(
√
n). This gives the result.

2.2 Average number of random bits of MergeShuffle

We now give an estimate of the average number of random bits used by our algorithm to sample a random
permutation of size n. Let cost(k) denote the average number of random bits used by a merge operation with
an output of size k. For the sake of simplicity, assume that we sample a random permutation of size n = 2m.
The average number of random bits used is then

m∑
i=1

2m−i cost(2i).
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We have seen that cost(k) = k+Θ(
√
k log k). Thus, the average number of random bits used to sample a random

permutation of size n = 2m is

m∑
i=1

2m−i
(

2i + Θ
(√

2i log(2i)
))

= m2m + Θ

(
2m

m∑
i=1

i

2i/2

)

which finally yields
m2m + Θ(2m) = n log2 n + Θ(n).

3 BalancedShuffle

For theoretical value, we also present a second algorithm, which introduces an optimization which we believe has
some worth.

Algorithm 1: d

Algorithm 2: d

Algorithm 3: d

Algorithm 4: The BalancedShuffle algorithm.

Input: an array T

Result: T is randomly shuffled

Main Function BalancedShuffle(T)
n = length(T)

if n > 1 then

BalancedShuffle(T[0:

n
2
])

BalancedShuffle(T[

n
2
:n])

BalancedMerge(T)
end

Procedure BalancedMerge(T)
n = length(T)

w = uniformly sampled random balanced word of size n
i = 0
j = n/2
for k = 0 to n� 1 do

if w[k] = 1 then

swap elements at positions i and j in T

j = j + 1

end

i = i + 1

end

1

3.1 Balanced Word

Inspired by Rémy [Rem85]’s now classical and efficient algorithm to generate a random binary tree of exact size
from the repeated drawing of random integers, Bacher et al. [BBJ14] produced a more efficient version that
uses, on average 2k + Θ((log k)2). Binary trees, which are enumerated by the Catalan numbers [Sta15], are in
bijection with Dyck words, which are balanced words containing as many 0’s as 1’s. So Bacher et al.’s random
tree generation algorithm can be used to produce a balanced word of size 2k using very few extra bits.

Rationale.

The idea behind using a balanced word is that it is more efficient, in average number of bits.
Indeed, splitting processes (repeatedly randomly partition n elements until each is in its own partition), are

well known to require n log2 n + O(n) bits on average—this is the path length of a random trie [FS09]. The
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linear term comes from the fact that when processes are partitioned in two subsets, these subsets are not of equal
size (which would be the optimal case), but can be very unbalanced; furthermore, with small probability, it is
possible that all elements remain in the same set, especially in the lower levels.

On the other hand, if we are able to partition the elements into two equal-sized subsets, we should be able to
circumvent this issue. This idea is useful here, and we believe, would be useful in other contexts as well.

Disadvantages.

The advantage is that using balanced words allows to for a more efficient and sparing use of random bits (and
since random bits cost time to generate, this eventually translates to savings in running time). However this
requires a linear amount of auxiliary space; for this reason, our BalancedShuffled algorithm is generally slower
than the other, in-place algorithms.

3.2 Correctness

Denote by Sn the symmetric group containing all permutations of size n. Let C(n, k) be the set of all words of
length n on the alphabet {0, 1} containing k 0’s and n− k 1’s. We have |Sn| = n! and C(n, k) =

(
n
k

)
.

The algorithm works at follows: to shuffle a list of length m+n, we first shuffle recursively the first m and the
last n elements (we sample an element of Sm and one of Sn independently), then we use Bacher et al.’s algorithm
to sample an element of C(m + n,m). We combine those three elements to produce an element of Sm+n. Since
this combination is bijective, the correctness follows by induction.

3.3 Average number of random bits

We now give an estimate of the average number of random bits used by our algorithm to sample a random
permutation of size n. Let cost(2k) denote the average number of random bits used to sample a random
balanced word of length 2k (an element of C(2k, k)). For the sake of simplicity, assume that we sample a random
permutation of size n = 2m. The average number of random bits used is then

m∑
i=1

2m−i cost(2i).

For the algorithm we have cost(2k) = 2k + Θ(log2 k) [BBJ14]. Thus, the average number of random bits used
to sample a random permutation of size n = 2m is

m∑
i=1

2m−i
(
2i + Θ

(
log2(2i−1)

))
= m2m + Θ

(
2m

m∑
i=1

i2

2i

)
= m2m + Θ(2m)

which can be rewritten as

n log2 n + Θ(n).

4 Simulations

The simulations were run on a computing cluster with 40 cores. The algorithms were implemented in C, and their
parallel versions were implemented using the OpenMP library, and delegating the distribution of the threading
entirely to it.
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n 105 106 107 108

Fisher-Yates 1 631 434 19 550 941 229 329 728 2 628 248 831
MergeShuffle 1 636 560 19 686 051 231 641 075 2 650 387 993
Rao-Sandelius 1 631 519 19 550 449 229 327 120 2 628 251 036
BalancedShuffle 1 889 034 22 046 574

Table 1: Average number of random bits used by our implementation of various random permutation algorithms
over 100 trials. (The current implementation of BalancedShuffle were in Python rather than C, and are
prohibitively slow on larger permutations, but preliminary results show that it converges to an improved number
of random bits.)
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Figure 1: Running times of several random permutation algorithms. Fisher-Yates shuffle, while extremely fast,
gets slowed down once permutations are very large. Our parallel MergeShuffle algorithm is consistently faster
than all algorithms, although the lead is not yet much compare to the Rao-Sandelius algorithm.
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A Code Listing for the MergeSort algorithm

We reproduce here the most part of our algorithm, with some OpenMP [DE98, Cha06] hints. The full code can
be obtained at https://github.com/axel-bacher/mergeshuffle

A.1 The merge procedure

// merge together two lists of size m and n-m

void merge(unsigned int *t, unsigned int m, unsigned int n) {

unsigned int *u = t;

unsigned int *v = t + m;

unsigned int *w = t + n;

// randomly take elements of the first and second list according to flips

while (1) {

if(random_bit ()) {

if(v == w) break;

swap(u, v ++);

} else

if(u == v) break;

u ++;

}

// now one list is exhausted , use Fisher -Yates to finish merging

while(u < w) {

unsigned int i = random_int(u - t + 1);

swap(t + i, u ++);

}

}

A.2 The MergeSort algorithm itself

extern unsigned long cutoff;

void shuffle(unsigned int *t, unsigned int n) {

// select q = 2^c such that n/q <= cutoff

unsigned int c = 0;

while ((n >> c) > cutoff) c ++;

unsigned int q = 1 << c;

unsigned long nn = n;

// divide the input in q chunks , use Fisher -Yates to shuffle them

#pragma omp parallel for

for(unsigned int i = 0; i < q; i ++) {

unsigned long j = nn * i >> c;

unsigned long k = nn * (i+1) >> c;

fisher_yates(t + j, k - j);

}

for(unsigned int p = 1; p < q; p += p) {

// merge together the chunks in pairs

#pragma omp parallel for

for(unsigned int i = 0; i < q; i += 2*p) {

unsigned long j = nn * i >> c;

unsigned long k = nn * (i + p) >> c;
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unsigned long l = nn * (i + 2*p) >> c;

merge(t + j, k - j, l - j);

}

}

}
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