
Linear-time exact sampling of

sum-constrained random variables

Frédérique Bassino
frederique.bassino@univ-paris13.fr

Andrea Sportiello
andrea.sportiiello@liipn.uniiv-paris13.fr

Université Paris 13
Sorbonne Paris Cité

LIPN, CNRS umr 7030
93430 Villetaneuse, France

Abstract

In the problem of exactly-sampling from a probability distribution,
one is often led to sample from a measure of the form µ(x1, . . . , xn) ∝∏
i fi(xi) × δx1+···+xn,m, with fi’s integer-valued distributions. When

the fi’s are all equal, an algorithm of Devroye essentially solves this
problem in linear time. However, in several important cases these fi’s
are in the same family, but have distinct parameters. A typical example
is the sampling of random set partitions, related to a set of fi’s which
are geometric distributions with different averages. We describe here a
simple algorithmic solution for a large family of n-tuples of functions.
At this aim we provide the notion of “positive decomposition” of one
probability distribution into another.

1 The problem

In this paper we address a problem in Algorithmics which is motivated by an application to the so-called
“Boltzmann” Exact Sampling [DFLS04], but is most probably not confined to this realm of applications, and in
fact can be formulated in terms of a rather fundamental problem in Probability. The algorithmic problem reads
as follows:

Problem 1.1. Let n be a positive integer, and f = (f1, . . . , fn) a n-tuple of integer-valued probability distributions
taken in a family F of functions satisfying the hypotheses of the Central Limit Theorem. Let xi be the random
variable associated to the function fi. Let m = b

∑
i E(xi)c. Assume that we can sample efficiently from the fi’s

(i.e., we can extract a random xi with complexity of order 1). We want an algorithm which samples from the
constrained measure

µm(x) ∝
∏
i

fi(xi)× δx1+···+xn,m (1)

and whose average complexity is linear in n, the constant depending only on F and on the ratio m/n.

This problem is essentially solved, by Devroye [Dev12], when the distributions fi are all equal. However his
ideas do not apply in the generic case, and it is often the case in real-life applications that these distributions
are indeed in the same family, but have distinct underlying parameters (see the examples in Section 4).

Copyright c© by the paper’s authors. Copying permitted for private and academic purposes.

In: L. Ferrari, M. Vamvakari (eds.): Proceedings of the GASCom 2018 Workshop, Athens, Greece, 18–20 June 2018, published at
http://ceur-ws.org

94

The main idea of our algorithm is as follows: suppose that you can decompose 1

fi(x) =
∑
s∈Nd

qi(s) g
∗s(x) (2)

where

• g(x) is a ‘simple’ probability distribution (for example, g = Bern 1
2
);

• the qi(s) are non-negative, and, seen as probability distributions for the variable s, can be sampled efficiently;

• call σ2 =
∑
iVarfi ; we need

√
m/σ = Θ(1).

In this case, as we will show in the following, we can sample in linear time the n-tuple s = (s1, . . . , sn), from
the distribution µq(s) =

∏
i qi(si), apply a rejection scheme with average acceptance rate related to the quantity√

m/σ above (and thus of order 1), and finally sample x from the measure µm(x|s) =
∏
i g
∗si(xi)× δx1+···+xn,m,

this latter operation can be performed efficiently because the function g is ‘simple’, and it enters this final stage
just with an n-fold convolution. Thus, the resulting algorithm has linear average complexity.

The understanding of which functions f admit a decomposition as in equation (2) turns out to be an interesting
question per se. We outline here the main results, for which more details will be given in a forthcoming paper.
Then, we provide a detailed description of the algorithm, justify the claim on its complexity, and illustrate it
on some relevant examples. In particular, we provide a linear-time algorithm for the uniform sampling of set
partitions of a set of cardinality n+m into exactly n parts. This marks an improvement w.r.t. previous results
of the authors [BS15] (indeed this application has been the main motivation for this work), and, by previous
results [BN07, BDS12], implies a linear exact sampling algorithm for uniform accessible deterministic complete
automata (ACDA), and for minimal automata, in any given alphabet of finite size.

2 On positive decomposition

2.1 Positive decomposition of integer-valued probability distributions

In this section we introduce our ‘fundamental’ problem in Probability. As we have anticipated, for implementing
our algorithm we are faced with the following basic construction. Let F and G = {gs(x)} be two families of
integer-valued probability distributions.

Definition 2.1. We say that F decomposes in G if all f ∈ F are linear combinations of functions in G:

f(x) =
∑
s

q(s) gs(x) q(s) ∈ R . (3)

We say that F decomposes positively in G if the coefficients are non-negative, i.e. q(s) ∈ R+. In this case we
write F / G.

Remark 2.2. Decomposing positively is a transitive relation: if F / G and G /H, then F /H.

Remark 2.3. In case of positive decomposition, the coefficients q(s) are themselves a probability distribution.
Indeed, they are real-positive, and their sum is 1, because

1 =
∑
x

f(x) =
∑
x

∑
s

q(s) gs(x) =
∑
s

q(s)
∑
x

gs(x) =
∑
s

q(s) . (4)

Definition 2.4. We say that G is the convolution family of g if G = {gs}s∈N, and gs = g∗s (convolution power,
g∗s(x) =

∑
x1,...,xs−1

g(x1) · · · g(xs−1)g(x− x1 − · · · − xs−1)). In this case we write G = Conv[g].

We are now ready to state our problem.

Problem 2.5. For a given function g, which functions f decompose positively in G = Conv[g]?

A first useful property is the following

1For s ≥ 0, here we use g∗s as a shortcut for the ‘convolution power’, i.e. the s-fold convolution of g.

95

Proposition 2.6. If f1 and f2 decompose positively in the same G = Conv[g], also f1 ∗f2 does, and the resulting
set of coefficients, seen as a probability distribution, is the convolution of the two sets.

(f1 ∗ f2)(x) =
∑
s1,s2

q1(s1)q2(s2) (gs1 ∗ gs2)(x) =
∑
s1,s2

q1(s1)q2(s2) gs1+s2(x) =
∑
s

(q1 ∗ q2)(s) gs(x) . (5)

When G is a convolution family, the average and variance of gs are linear in s, and we have

Ef (x) =
∑
x

xf(x) =
∑
s

q(s)
∑
x

xgs(x) =
∑
s

q(s)
∑
x

xg∗s(x) =
∑
s

q(s)s Eg(x) = Eq(s) Eg(x) ; (6)

Varf (x) =
∑
x,x′

x(x− x′)f(x)f(x′) =
∑
s,s′

q(s)q(s′)
∑
x,x′

x(x− x′)gs(x)gs′(x
′)

=
∑
s,s′

q(s)q(s′)
(
s Varg(x) + s(s− s′) Eg(x)2

)
= Eq(s) Varg(x) + Varq(s)Eg(x)2 .

(7)

Solving for Eq(s) and Varq(s) gives

Eq(s) =
Ef (x)

Eg(x)
; Varq(s) =

Varf (x)

Eg(x)2
− Ef (x)Varg(x)

Eg(x)3
; (8)

which implies in particular that
Varf (x)

Ef (x)
≥ Varg(x)

Eg(x)
. (9)

Equation (9) implies that, if F = Conv[f], G = Conv[g], F / G and G / F , then f = g and F = G. In other
words, the symbol / is an order relation among convolution families, which thus form a semilattice, in which the
top element is Conv[δx,1].2

Write f̃(y) =
∑
x y

xf(x) for the generating function associated to f . It is well known that g̃∗s = (g̃)s, and
thus

f̃(y) =
∑
x

yxf(x) =
∑
x

∑
s

q(s) yxgs(x) =
∑
s

q(s)g̃∗s(y) =
∑
s

q(s)(g̃(y))s = q̃(g̃(y)) . (10)

Call y(z) the function such that g̃(y(z)) = z (a solution to g̃(ȳ(z)) = 1+z exists at least as a formal power series,
ȳ(z) = 1 +

∑
n≥1 aiz

i, and we can set y(z) = ȳ(z − 1)). As a result, we have the formal rule

q(s) = [zs]f̃(y(z)) =

∮
dz

2πizs+1
f̃(y(z)) . (11)

This formula is valid provided that f̃(y(z)) is analytic in a neighbourhood of z = 0. This is a non-trivial
condition, as analyticity is guaranteed under weak hypotheses only in a neighbourhood of z = 1.

Let now F = Conv[f] and G = Conv[g]. In light of Proposition 2.6, a necessary and sufficient condition for

F / G is that f decomposes positively in G, that, from (11) above, means that f̃(y(z)) shall be analytic in a
neighbourhood of z = 0, and have all non-negative Taylor coefficients.

This is our best answer to the question posed by Problem 2.5.

2.2 Three fundamental distributions

There are three fundamental examples of basic functions g, to be used for constructing convolution families
G = Conv[g], corresponding to the three fundamental statistics of identically-distributed particles in statistical
physics. We start with two of them:

2Because Conv[δx,1] = {δs,x}s∈N is just the canonical basis for distributions on N, and any distribution decomposes positively in
it, so we have proven that this poset is at least a semilattice, and we have identified its top element.

96

Fermionic statistics: For b ∈ (0, 1], the family GFermi
b is defined by

gs(r) = Binos,b(r) = Bern∗sb (r) = br(1− b)s−r
(
s

r

)
. (12)

The functions gs are Binomial distributions, that is, s-fold convolutions of Bernoulli random variables of
parameter b. The average and variance of the Bernoulli distribution of parameter b are

Eg(r) = b ; Varg(r) = b(1− b) . (13)

At b = 1 this set of functions reduces to the canonical basis gs(r) = δs,r.

Bosonic statistics: For b ∈ R+, the family GBose
b is defined as

gs(r) = Geoms,b(r) = Geom∗sb (r) = br(1 + b)−s−r
(
s+ r − 1

r

)
. (14)

The functions gs are s-fold convolutions of Geometric random variables of parameter b. The average and
variance of the geometric distribution of parameter b are

Eg(r) = b ; Varg(r) = b(1 + b) . (15)

Due to the obvious fact
(
n
k

)
= (−1)k

(−n+k−1
k

)
, these two families are in fact the analytic continuation one of

the other: Geoms,b(r) = Bino−s,−b(r). As a result, the positive decomposition f =
∑
s q(s)g

∗s, in the two
cases of binomial and geometric distributions, have the same limit b→ 0, related to the Poissonian distribution
Poissρ(x) = e−ρρx/x!. In this case the discretisation is lost, as well as the parameter b, and we have a different
notion of positive decomposition, namely one of the form f decomposes positively in Conv[Poiss] iff

f(x) =

∫ ∞
0

dt q(t) Poisst(x) (16)

with q(t) : R+ → R+.3

The possibility of having an integral, instead of a sum, is obviously related to the fact that the Poissonian
is infinitely divisible, and would hold for all and only the infinitely divisible distributions. This leads us to our
third fundamental statistics:

Classical statistics: The family GClass is defined as

gt(r) = Poisst(r) = e−t
tr

r!
. (17)

The average and variance of gt are

Egt(r) = t ; Vargt(r) = t . (18)

The analogue of (11) states in this case that q(t) is the inverse Laplace transform of f̃(y + 1), and the
condition for f to be positively decomposable in Conv[Poiss] is that this function is both supported on and
valued in R+.

By investigating the expressions f̃(y(g̃)), we can identify the restriction to these families of the poset induced by
the order F / G. In particular, for our three families of distributions we have the tables

g̃(y) y(g̃ = z)

Binob 1 + b(y − 1)
b− 1 + z

b

Geomb (1− b(y − 1))−1 bz − 1 + z

bz

Poiss exp(y − 1) 1 + ln(z)

f̃ \ g̃ Binob Geomb Poiss

Binoa
b− a
b

+ z
a

b
· ·

Geoma
b

(a+ b)− az
bz

a− (a− b)z
1

1− a ln z

Poiss exp

[
1

b
(z − 1)

]
exp

[
1

b

(
1− 1

z

)]
·

3We will often write just Poiss, with no parameter, contrarily to Binob and Geomb. When referring to a family G, we mean a
decomposition as in (16), while, when referring to a function, we mean Poiss ≡ Poiss1.

97

(obvious entries are omitted). The case of Poiss shall be treated separately, by explicit calculation, because of
the variation in the criterium (11), which involves integrals instead of sums. In summary, we have,

Binoa(x) =
∑

0≤s≤1

Bino a
b
(s) Binos,b(x) (19)

Poissa(x) =
∑
s

Poiss a
b
(s) Binos,b(x) =

∫ ∞
0

ds δ(s− a) Poisss(x) (20)

Geoma(x) =
∑
s

Geom a
a+b

(s) Binos,b(x) =

∫ ∞
0

ds

a
e−

s
aPoisss(x) =

∑
s≥1

Geom a−b
a

(s− 1) Geoms,b(x) (21)

As a result we have a rather simple picture of the associated portion of our semilattice: the restriction of
the partial order to these families is indeed a total order, isomorphic to an interval β ∈ (−∞, 1], through the
identification:

s s
−∞ 0 1

β

δx,1BinoβPoissGeom−β

Recall that, as implied by equation (9), the order relation must be compatible with the total order given by
Varg/Eg. Referring back to the explicit expressions (13), (15) and (18), we see that in this parametrisation we
just have Varg/Eg = 1− β for our three families of distributions.

Having identified this ordering is important for our algorithm. Indeed, in our problem we are faced with the
question if a given function f is positively decomposable in some family Conv[g]. The transitivity property of
positive decomposition implies that, within our three families of distributions, the set of functions g for which
f is positively decomposable in the family Conv[g] is an up-set of the lattice, and thus, under the identification
above, an interval [βmin(f), 1] for some βmin(f) ≤ 1.

Analogously, for a family F of functions we define

βmin(F) := max
f∈F

(
βmin(f)

)
. (22)

We have thus established that all the functions in the family F can be positively decomposed by any family
G = Conv[g], for g being one of our fundamental distributions, with parameter βmin(F) ≤ β ≤ 1, and under the
identification above.

3 The algorithm

3.1 The rejection paradigm

There exists a correspondence between measure decompositions and rejection schemes in exact-sampling algo-
rithms, namely, given a decomposition of a measure

µ(x) ∝
∑
y

µ1(y) µ2(x|y) a(y) (23)

with a(y) ∈ [0, 1], Algorithm 1 is an exact-sampling algorithm for µ.

Algorithm 1: Rejection paradigm.

begin
repeat

y ←− µ1;
α←− Berna(y);

until α = 1;
x←− µ2(· |y);
return x

Call T1(y) and T2(y) the average complexities for sampling from µ1 when the outcome is y (plus sampling
one Bernoulli with parameter a(y)), and for sampling from µ2(· |y), respectively. The number of failed runs

98

in the repeat-until loop is geometrically-distributed, and the complexity of each of these runs is an independent
random variable. As a result, the average complexities of the failed runs of the loop, of the successful run of the
loop, and of the unique run of the final instruction just add up, and the average complexity of the full algorithm
is easily calculated via some surprising cancellations

T =
1−

∑
y µ1(y)a(y)∑

y µ1(y)a(y)

∑
y T1(y)µ1(y)(1− a(y))∑

y µ1(y)(1− a(y))
+

∑
y T1(y)µ1(y)a(y)∑

y µ1(y)a(y)
+

∑
y T2(y)µ1(y)a(y)∑

y µ1(y)a(y)

=
E(T1 + a T2)

E(a)

(24)

where averages E(·) are taken w.r.t. µ1. If the functions T1(y) and T2(y) are bounded by the constants T1 and
T2, we get the bound

T ≤ T1

E(a)
+ T2 . (25)

Of course, the inequality above is an equality if the functions T1(y) and T2(y) are indeed constants.

3.2 Why the algorithm has linear complexity

First, let us address the question of why we shall hope that linear complexity can be achieved, without concen-
trating on the technical detail of how a single variable can be sampled with Θ(1) complexity.

Following the framework described in the introduction, n is a ‘large’ positive integer, and f = (f1, . . . , fn) is
a n-tuple of integer-valued probability distributions, taken in a family F of functions satisfying the hypotheses
of the Central Limit Theorem, and such that βmin(F) < 1.

Let xi be the random variable associated to the function fi, and suppose that m =
∑
i E(xi) is an integer.

Under our hypotheses, it is trivial to sample in linear time from the unconstrained measure

µ(f1,...,fn)(x1, . . . , xn) = µ(f)(x) =
∏
i

fi(xi) ; (26)

however we want an algorithm which samples from the constrained measure

µ(f)
m (x) ∝

∏
i

fi(xi)× δx1+···+xn,m (27)

with average complexity which is linear in n, the constant depending only on F and on the ratio m/n.
Call Pf (m′) the probability, in the unconstrained measure, that

∑
i xi = m′. By our CLT hypothesis, this

probability is maximal around m′ = m, has variance which is linear in n, and thus its value is of order 1/
√
n at

m′ = m. By definition,

Pf (m′) =

∑
x

∏
i fi(xi)× δx1+···+xn,m′∑

x

∏
i fi(xi)

. (28)

Now, choose β ∈ [βmin(F), 1), and decompose the fi’s in the family G = Conv[g], for g the fundamental
distribution corresponding to b. Call qi(s) the corresponding expansion coefficients. We use a sum notation,
with the disclaimer that for Poiss sums are replaced by integrals.

Thus we can write (call gs = (gs1 , . . . , gsn) and q = (q1, . . . , qn))

µ(f)(x) =
∏
i

fi(xi) =
∑
s

∏
i

qi(si)gsi(xi) =
∑
s

µ(q)(s) µ(gs)(x) ; (29)

and

µ
(f)
m′ (x)Pf (m′) =

∏
i

fi(xi) δ∑
ixi,m

′ =
∑
s

∏
i

qi(si)gsi(xi) δ
∑
ixi,m

′ =
∑
s

µ(q)(s) µ
(gs)
m′ (x)Pgs(m′) . (30)

Now, call N = N(s) =
∑
i si. As gs = g∗s, in fact Pgs(m′) depends on s only through N(s), and is

PgN (m) = g∗N (m) =

 BinoN,b(m) if g = Binob
PoissN (m) if g = Poiss
GeomN,b(m) if g = Geomb

(31)

99

In all three cases, we can easily evaluate N̄ := argmaxN (PgN (m)) (the distributions above are easily seen
to be log-concave in N , by direct calculation on (12), (14) and (17)), thus it suffices to analyse the ratios
PgN (m)/PgN−1

(m)). We get

N̄ =


bmb c if g = Binob
b(1− e− 1

m)−1c if g = Poiss
dmb e if g = Geomb

(32)

Note that, in all three cases, when m is large, this corresponds to N̄ ' m/Eg. This is in agreement with (8), as
indeed we have

N̄α =
∑
i

(Eqi)α =
∑
i

(Efi)α
Egα

=
mα

Egα
, (33)

and the fact that, as by CLT we converge to a normal distribution, average and mode are equal at leading order.
Combining the previous results, we can write

µ(f1,...,fn)
m (x) ∝

∑
s

µ(q1,...,qn)(s) µ
(gs1 ,...,gsn)
m (x)

PgN(s)
(m)

PgN̄ (m)
. (34)

By definition of N̄ , the ratio a(N) :=
PgN (m)

PgN̄ (m) is in [0, 1], and thus can be used as the acceptance rate in a rejection

algorithm as in Section 3.1. Indeed, at this point we can apply Algorithm 1 with the identifications

x x

y s

a(y) PgN(s)
(m)/PgN̄ (m)

µ(x) µ
(f1,...,fn)
m (x)

µ1(y) µ(q1,...,qn)(s)

µ2(x|y) µ
(gs1 ,...,gsn)
m (x)

Let us neglect the dependence of the complexities T1(s) and T2(s) from s, and use directly equation (25). Let
us assume that we have determined that T1 and T2 are linear in n. We shall thus calculate the acceptance rate
E(a) of that formula, and verifies that it scales as θ(1) for large n. In this setting, this reads

E(a) =
∑
s

µ(q1,...,qn)(s)
PgN(s)

(m)

PgN̄ (m)
. (35)

In other words, call µ̂(N) the distribution on N = N(s) induced by µ(q1,...,qn)(s). Then we have

E(a) =
∑
N

µ̂(N)
PgN (m)

PgN̄ (m)
=

Eµ̂(PgN (m))

PgN̄ (m)
. (36)

This already makes clear why our strategy is successful. When n tends to infinity, because of our CLT hypothesis,
µ̂ converges to a normalised Gaussian, with average N̄ and some variance σ2

1 of order n. On the other side,
PgN (m)/PgN̄ (m) converges to a non-normalised Gaussian, with average N̄ and variance σ2

2 of order n. This
Gaussian has been rescaled as to be valued 1 when N = N̄ . As a result, we just have

E(a) '
∫

dx
1√

2πσ1

e
− x2

2σ2
1
− x2

2σ2
2 =

σ2√
σ2

1 + σ2
2

. (37)

The resulting expression is homogeneous, so that it evaluates to a constant of order 1 for a whatever scaling in
n of σ2

1 and σ2
2 (provided that the two variances have the same scaling). In this case the average complexity is

T ' T1

√
1 + (σ1/σ2)2 + T2 , (38)

and thus, by our assumptions, is linear.
Note that we would have obtained an expression still of order 1, even if we did take a “wrong” tuning of m,

in the sense that
∑
i Efi = m+ δm, with δm� 1, provided that δm is small w.r.t. σ1 and σ2 (which, under the

hypotheses of the Central Limit Theorem, are of order
√
n). That is, in the language of Boltzmann samplers, we

have a tolerance on the tuning of the Boltzmann parameter up to a relative error on the average outcome size
of order 1/

√
n.

100

Now let us relate the parameters σ1 and σ2 to the parameters of the problem. One case is rather easy: as the
variances sum up under convolution,

σ2
1 =

∑
i

Varqi . (39)

For what concerns σ2, we shall calculate the variance in the variable N of the function g∗N (m). From the

calculation on the explicit expressions (12), (14) and (17)) one easily derives that, in all three cases, σ2
2 = m

Varg
E3
g

.

Now, using (8) we get

σ2
1 + σ2

2 =
1

E2
g

∑
i

Varfi (40)

so that

E(a) ' σ2√
σ2

1 + σ2
2

=

√
m Varg

Eg
∑
iVarfi

. (41)

If we take as function g the one with parameter βmin(F) (which we have determined to be optimal), the asymptotic
maximal acceptance rate for the set F = {f1, . . . , fn} within our algorithm is given by

a(F) :=

√
(1− βmin(F)) m∑

i Varfi
. (42)

Under our assumption that the fi’s satisfy the hypotheses of the Central Limit Theorem, we have that all Efi ’s
and Varfi ’s are of order 1, so that m =

∑
i Efi and

∑
iVarfi have the same scaling behaviour. Once again we

have obtained that, for n going to infinity, a(F) converges to a finite quantity.

3.3 How the algorithm works in practice

At the level of generality of this paper, we cannot give an algorithm that works just out of the box. For a given
problem, given by the n-tuple (f1, . . . , fn), a preliminary analytical study of the functions fi is mandatory. One
has to

• Determine that F / G for G = Conv[gβ], for some parameter β smaller than 1.

• Devise an algorithm to sample from the corresponding distributions qi(s), in average time τi, so that
∑
i τi

scales linearly with n.

Only at this point, one is ready to apply our general algorithm, which reads as in Algorithm 2.

Algorithm 2: Our new algorithm.

begin
N̄ = round(m/Eg);
repeat

N = 0;
for i← 1 to n do

si ←− qi;
N += si;

a = g∗N (m)/g∗N̄ (m);
α←− Berna;

until α = 1;

Sample x with µ
(gs)
m (x);

return x

Contrarily to the first part of the algorithm, where a preliminary analysis concerning the functions qi is

required, the final step of the algorithm, of sampling x with µ
(gs)
m (x), is “universal”, as it depends only on the

family of basic distribution gβ , among binomial, geometric or Poissonian.

101

The Poissonian case is trivial in spirit (it suffices to sample m independent values ξi ∈ [0, N], and then

increment xi if 0 < ξi −
∑i−1
j=1 sj < si), however, as now the intermediate variables si are real-valued, must be

performed with float numbers and has complexity O(m lnn). In the special case in which the si are integer-
valued, that is the qi’s are supported on bN for some b, we have a genuinely linear alternate algorithm, which we
will describe elsewhere.

The binomial and geometric case are in a sense ‘dual’, and are solved by the same algorithm, provided by
Bacher, Bodini, Hollender and Lumbroso in [BBHL15, sec. 1.1] (see also [BBHT17]), which is genuinely linear.
This algorithm, that we shall call “BBHL-shuffling(n, k)”, may be seen as a black box which samples strings
ν = (ν1, . . . , νn) ∈ {0, 1}n with

∑
i νi = k, uniformly, and that, for n/k − 1 = Θ(1), requires a time linear in n.4

Then, in the two cases we have:

Case g∗N (m) = BinoN,b(m): Use BBHL-shuffling(N,m), then set

xi = νj(i−1)+1 + · · ·+ νj(i) ; j(i) = s1 + s2 + · · ·+ si . (43)

Case g∗N (m) = GeomN,b(m): Use BBHL-shuffling(m + N − 1,m). Call j1, . . . , jN−1 the positions of the νi’s
which are valued 0. Let j0 = 0. Then

xi = ji − ji−1 . (44)

3.4 Bacher, Bodini, Hollender and Lumbroso algorithm

Here we describe an algorithm, given by Bacher, Bodini, Hollender and Lumbroso in [BBHL15, sec. 1.1], for the
uniform sampling of strings ν = (ν1, . . . , νn) ∈ {0, 1}n with

∑
i νi = k. In Section 3.3 this algorithm is called

“BBHL-shuffling(n, k)”. Recall that it is ‘optimal’ for the randomness resource, in the sense that the random-bit
complexity at leading order saturates the Shannon bound.

Call β = k/n. The idea is that you sample the νi’s one by one, as if ν were to be sampled with the measure
µ(ν) = Bernnβ , (this costs Θ(1) per variable), and, as soon as you have an excess of νi’s equal to 0 or to 1, complete
with a sequence of Fisher–Yates random swaps. These swaps cost ∼ lnn each, but are performed on average
only ∼

√
n times, so the swap part of the algorithm has subleading complexity, and the overall complexity is

genuinely linear, with no logarithmic factors. For completeness, we give in Algorithm 3 a summary of the main
features. In this algorithm RndIntj returns an uniform random integer in {1, . . . , j}.

Algorithm 3: BBHL-shuffling.

begin
a = k, b = n− k, i = 0;
repeat

i ++;
νi ←− Bernβ ;
if νi = 1 then a --;
else b --;

until a < 0 or b < 0;
if a < 0 then ν̄ = 0;
else ν̄ = 1;
for j ← i to n do

νj = ν̄;
h←− RndIntj ;
swap νj and νh;

return ν

Note that, if β is almost a 2-adic number, namely β = k/n = a2−d + ε for some integers a and d, and
ε = O(1/

√
n), it is convenient to just use the source of randomness Bernβ′ for the value β′ = a2−d, which speeds

up the main part of the algorithm, at the price of slowing down the subleading part.

4For completeness, this algorithm is quickly described in the following subsection.

102

4 Examples

The drawback of the algorithm outlined in Section 3.3 is that the user needs to perform a preliminary analytic
study of its given probability distributions fi. There are obvious cases in which this work is not required: when
all of the fi’s are distributions in our three basic families, i.e. binomial, geometric or Poissonian. In this case
βmin(F) is evaluated directly, the functions qi(s) are given explicitly in Section 2.2, and are just, yet again,
binomial, geometric or Poissonian (we provide the generating function for the basic cases, Bernb = Bino1,b and
Geomb = Geom1,b, however the generic case is deduced immediately via Proposition 2.6). It is well known that
one can sample from these distributions in constant complexity, so that we know that we have a linear-time
algorithm as soon as we verify that Varfi/(Efi(1− β)) = Θ(1), which is straightforward in most cases.

The paradigm of sum-constrained geometric random variables with distinct parameters applies, for example,
to set partitions, enumerated by the Stirling numbers of the second kind. The same paradigm with Bernoulli
variables applies, for example, to permutations with a given number of cycles, enumerated by the Stirling numbers
of the first kind. In this section we describe in detail these two examples.

4.1 Set partitions, Stirling numbers of the second kind and Automata

Each of the Pn partitions B of a set of cardinality n has a number k(B) of parts in the range {1, 2, . . . , n}.
The Stirling numbers of the second kind S2(n, k) are the corresponding enumeration, and a classical algorithmic
problem is to sample B uniformly from the corresponding ensemble S2(n, k) [FS09].

This problem has acquired further interest since it has been shown, in [BN07], that accessible deterministic
complete automata (ACDA) are in bijection with a certain subset of set partitions in S2(kn + 1, n) (where
k = Θ(1) is the size of the alphabet, and n is the number of states), characterised by a property easy to test
(the ‘backbone’ should stay above the diagonal), and that this subset is asymptotically a finite fraction of the
ensemble. As a result, up to a rejection scheme, a uniform sampling algorithm for set partitions provides a
uniform sampling algorithm for accessible deterministic complete automata.

Furthermore, in [BDS12] it is shown that minimal automata, which are at sight a subset of ACDA’s, are
asymptotically dense in this ensemble (i.e., the ratio of the cardinalities of the sets converges to 1), so, yet again,
up to a rejection scheme, a uniform sampling algorithm for set partitions provides a uniform sampling algorithm
for minimal automata.

Sampling from S2(n + m,n), when m/n is θ(1), can be done by the Boltzmann Method [DFLS04] with

complexity O(n
3
2), and we show here that our new method gives a linear complexity. The recursive description

of S2(n, k) provides a natural bijection with certain tableaux, which are described in [FS09, pag. 63], and, in
more detail, in [BDS12], for which the so-called ‘backbone’ relates to a list x = (x1, . . . , xn) as in our setting,
with µ(f)(x) ∝

∏
i Geombi(xi) × δx1+···+xn,n−k. As a result, a uniform set partition in S2(n + m,n) can be

sampled in two steps: first we sample the backbone x = (x1, . . . , xn) with the measure above, then, for every
1 ≤ i ≤ n, we sample xi independent random integers in {1, . . . , i}, which describe the so-called ‘wiring part’
of the tableau. The latter step has a complexity O(m lnn), which is intrinsic to this problem and is in fact
implied by the Shannon bound (i.e., the asymptotics of lnS2(αn, n), as evinced by well-known saddle-point
calculations, see e.g. [BN07]). As this latter step is invoked only once in the algorithm, it turns out that this
part of the algorithm is optimal for the randomness resource. As, in our algorithm, the first part of sampling
the backbone has complexity linear in n and off from optimal only by a multiplicative factor, we deduce that
the whole algorithm is asymptotically optimal (although, admittedly, the convergence to optimality is slow, as
it goes as 1/ lnn).

The parameters bi of the geometric variables are tuned as to have bi/(bi + 1) ∝ i and
∑
i E(xi) = m+ o(

√
m),

which is solved by

bi =
ωi

n− ωi
; 1 +

m

n
= − ln(1− ω)

ω
. (45)

Then, using the fact, seen in Section 2.2, that Geoma(x) =
∑
s Geom a

a+b
(s) Binos,b(x), and choosing for simplicity

β = 1
2 , we have

Geombi(x) =
∑
s

Geom 1
1+2bi

(s) Binos, 12 (x) =
∑
s

Geomn−ωi
n+ωi

(s) Binos, 12 (x) (46)

103

Also, N̄ = 2m. At this point we are ready to use our Algorithm 2, with this value of N̄ , functions qi given by
Geomn−ωi

n+ωi
, and acceptance factor

a(N) =
g∗N (m)

g∗N̄ (m)
= 22m−N N ! m!

(N −m)! (2m)!
(47)

and the part “Sample x with µ
(gs)
m (x)” is performed via the BBHL-shuffling(N,m) with parameter β = 1

2 . The
acceptance rate a = E(a(N)) is given by (42), just with βmin = 0 traded for β = 1

2 , which we have chosen as a
good compromise between efficiency and complexity of coding, and gives

a =

√
m

2
∑
i bi(1 + bi)

. (48)

However, ∑
i

bi(1 + bi) ' n
∫ 1

0

dx
ωx

(1− ωx)2
= n

(
ln(1− ω)

ω
+

1

1− ω

)
. (49)

Using (45), and calling ω = 1− e−θ (it turns out that ω ∈ (0, 1)), we have

a =

√
e−θ − 1 + θ

2(eθ − 1− θ)
, (50)

which behaves as 1√
2

(
1− 1

3θ + · · ·
)

for θ small, and as
√

θ
2e
− θ2 for θ large. On the other side, the ratio m/n is

parametrised by θ as
m

n
=
e−θ − 1 + θ

1− e−θ
(51)

which is a monotone function, valued ∼ θ/2 near θ = 0 and ∼ θ for θ →∞, so that a ∼ 1√
2

(
1− 2

3
m
n + · · ·

)
for

m/n small, and as
√

m
2ne
− m

2n for m/n large.

4.2 Cycles in permutations and Stirling numbers of the first kind

Each of the n! permutations σ of Sn has a number k(σ) of cycles in the range {1, 2, . . . , n}. The Stirling numbers
of the first kind S1(n, k) are the corresponding enumeration, and a classical algorithmic problem is to sample
uniformly from the corresponding ensemble S1(n, k) [FS09, pag. 121]. When n/k − 1 is θ(1), this problem is

solved by Boltzmann sampling [DFLS04] with complexity O(n
3
2), and we show here that our new method gives

a linear complexity.
The recursive description of S1(n, k), namely S1(n, k) ' S1(n−1, k−1)∪S1(n−1, k)×{1, . . . , n−1}, provides

a natural bijection with certain 0-1 matrices Mij , for which the diagonal relates to a list x = (x1, . . . , xn) as in
our setting, with xi = 1−Mii and µ(f)(x) ∝

∏
i Bernbi(xi)× δx1+···+xn,n−k. The parameters bi are tuned as to

have bi/(1− bi) ∝ i− 1 and m := n− k =
∑
i E(xi) + o(

√
n), with solution

bi =
ω(i− 1)

n+ ω(i− 1)
; 1− m

n
=

ln(1 + ω)

ω
. (52)

Then, using the fact, seen in Section 2.2, that Binoa(x) =
∑
s Bino a

b
(s) Binos,b(x), this expansion being positive

for a ≤ b, and choosing β = ω
1+ω ≥ maxi bi, we have

Binobi(x) =
∑
s

Bino (i−1)(1+ω)
n+(i−1)ω

(s) Binos,β(x) (53)

Also, N̄ = bm/βc. At this point we are ready to use our Algorithm 2, with this value of N̄ , functions qi given
by Bino (i−1)(1+ω)

n+(i−1)ω

, and acceptance factor

a(N) =
g∗N (m)

g∗N̄ (m)
= (1− β)N−N̄

N ! (N̄ −m)!

(N −m)! N̄ !
(54)

104

and the part “Sample x with µ
(gs)
m (x)” is performed via the BBHL-shuffling(N,m) with parameter β. From this

point on, the analysis can be performed in a similar way as for set partitions. We finally get for the acceptance
rate, given implicitly as a function of m/n,

m

n
= 1− θ

eθ − 1
; a =

√
eθ − 1− θ

1 + eθ(θ − 1)
. (55)

Acknowledgements

A.S. is supported by ANRMetaConc (ANR-15-CE40-0014, France).

References

[BBHL15] A. Bacher, O. Bodini, A. Hollender and J. Lumbroso. MergeShuffle: A Very Fast, Parallel Random
Permutation Algorithm. At https://arxiv.org/abs/1508.03167, 2015.

[BBHT17] A. Bacher, O. Bodini, H.-K. Hwang and T.-H. Tsai. Generating random permutations by coin tossing:
classical algorithms, new analysis, and modern implementation. ACM Transactions on Algorithms, 13:#24,
2017.

[BDS12] F. Bassino, J. David and A. Sportiello. Asymptotic enumeration of minimal automata. In: STACS
2012, Paris, France, LIPIcs – Leibniz International Proceedings in Informatics, 14:88–99, 2012.

[BN07] F. Bassino and C. Nicaud. Enumeration and Random Generation of Accessible Automata. Theoretical
Computer Science, 381:86–104, 2007.

[BS15] F. Bassino and A. Sportiello. Linear-time generation of inhomogenous random directed walks. In:
ANALCO’15, San Diego, California, pp. 51–65, 2015.

[Dev12] L. Devroye. Simulating Size-constrained Galton-Watson Trees. SIAM Journal on Computing, 41:1–11,
2012.

[DFLS04] P. Duchon, P. Flajolet, G. Louchard and G. Schaeffer. Boltzmann Samplers for the Random Generation
of Combinatorial Structures. Combinatorics Probability and Computing, 13:577-625, 2004.

[FS09] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, 2009.

105

	The problem
	On positive decomposition
	Positive decomposition of integer-valued probability distributions
	Three fundamental distributions

	The algorithm
	The rejection paradigm
	Why the algorithm has linear complexity
	How the algorithm works in practice
	Bacher, Bodini, Hollender and Lumbroso algorithm

	Examples
	Set partitions, Stirling numbers of the second kind and Automata
	Cycles in permutations and Stirling numbers of the first kind

