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Abstract. Extracting clinical entities and their relations from clinical texts is a 

preliminary task for constructing medical knowledge graph. Existing end-to-end 

models for extracting entity and relation have limited performance in clinical text 

because they rarely take both latent syntactic information and the effect of con-

text information into account. Thus, this paper proposed a context-aware end-to-

end neural model for extracting relations between entities from clinical texts with 

two level attention. We show that entity-level attention effectively acquires more 

syntactic information by learning a weighted sum of child word nodes rooted at 

the target entities. Meanwhile, sub sentence-level attention in an effort to capture 

the interactions between the target entity pairs and context entity pairs by assign-

ing weights of each context representation within one sentence. Experiments on 

real-world clinical texts from Shanghai Ruijin Hospital demonstrate that our 

model significantly gains better performance in the application of clinical texts 

compared with existing joint models. 

Keywords: Clinical Text, Clinical Entity Recognition, Relation Classification, 

Joint Model, Attention Mechanism. 

1 Introduction 

Clinical texts such as ultrasound reports and CT reports provide a wealth of clinical 

factual knowledge, mainly embodied in various clinical entities, such as organizational 

entities, location entities, index entities and attribute entities. Extracting these entities 

and their relation from unstructured reports are standard tasks of clinical information 

extraction and the foundation of constructing medical knowledge graphs. Named Entity 

Recognition (NER) and Relation Extraction (RE) as information extraction techniques 

are critical to natural language understanding and knowledge acquisition. Tradition 

work usually treat them as two steps to perform information extraction in a pipeline 

model, where the final performance will be hurt by the preceding errors generated in 

NER. To resolve this problem, joint models for NER and RE have been proposed and 

found effective for alleviating the problem of error propagation and utilizing the inter-

actions between the two sub-tasks [1,2,3,4]. 

Recently, deep learning has attracted much attention and become an alternative work 

because it employs automatic feature learning without handcrafted and complicated 
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feature engineering. Several neural models have dominated the joint models of RE due 

to the better results. Miwa M. and Bansal M. [5] proposed a neural network-based 

method using the shortest dependency path (SDP) between a given entity pair to incor-

porate the linguistic structures. Fei L. et al [6] applied similar methods into the field of 

medicine to extract the entities like drug names or disease names. Zhou P. et al [7] 

proposed an attention-based bidirectional long short-term memory (Bi-LSTM) model 

for RE to capture the most important semantic information in a sentence and Sorokin 

D. et al [8] combined the context representations with the attention mechanism. These 

previous models mostly did not consider both latent syntactic information and the effect 

of context information when modeling, which take on importance in informative and 

complex clinical texts because they are full of the disease description. 

 

Fig. 1. The annotation of an example sentence from the thyroid ultrasound reports. Based on the 

word segmentation with correction by completing the vocabulary set, words are annotated as 

Anatomical Location (LOC), Index (IND) or Attribute (ATT) in BIO (Beginning, Insider, Out-

sider) tagging scheme. The relation tags are annotated as Location-Index (Loc-Ind), Index-At-

tribute (Ind-Att), Index-Sub Index (Ind-Sub Ind) or Unknown. 

Given a sentence “左侧[left]甲状腺[thyroid]内[inside]可见[indicate]多个[multiple]

混合性[mixed]回声[echos]，之一[one of which]大小[size]为[is]7*4mm” 1, whose 

detail of annotation is shown in Figure 1, “大小” is an index and it is related to another 
index “回声”. In another case, “甲状腺[thyroid]左叶[left lobe]大小[size]及[and]形态

[appearance]正常[normal]”1, “大小” is also an index, but it is directly related to two 
anatomical locations “左” and “右叶”, not related to the other indexes. Tree-structured 

relation extraction models [5,9] have been demonstrated the effectiveness of building 

the paths between words relying on the dependency parsing trees to handle with com-

plex syntax information. As shown in Figure 2, “回声” and “大小” are parsed in two 
sub trees, whose relation is coordinating relation (“并列关系” in Chinese) and con-
tributes to identifying whether it exists a relation between both indexes (“大小” is re-
lated to the prior index). However, only including the syntactical relation in models is 

not enough, the latent information within entities themselves could also be beneficial 

in RE. Taking the example in Figure 2 again, the child word nodes “多” (an adjective), 
“个” (a quantifier) and “混合型” (a distinctive word) are under the word node “回声” 
(a norm). It implicitly indicates that the sub-tree means the description of “回声” and 
could be made use of to predict their relation as “Index-Attribute”. In addition, a 
                                                           
1  The words in square brackets are Chinese segmented words in English. The whole sentences 

of two examples in English are as followed: (1) There are multiple mixed echoes in the left 

thyroid, one of which is 7*4 mm big. (2) The size and appearance of the thyroid are normal. 



 

sentence in general contains at least one anatomic location, one index and one attribute. 

We need to find the related indexes for the anatomic locations, the related attributes for 

the indexes and detect whether the links between the indexes exist or not, so the inter-

actions between multiple relations (at least two) within one sentence should be captured 

but mostly be neglected in the tradition models. 

 

Fig. 2. An example of dependency parsing tree. A rectangular indicates a word node and part of 

speech tag (POS) is under the word, the strings covering the arrows denote the syntactic depend-

ency relation. 

In this paper, we propose a novel context-aware end-to-end neural RE model with 

entity-level and sub sentence-level attention mechanism to boost performance in clini-

cal information extraction. We introduce entity-level attention to capture richer syntac-

tical information by adopting a weighted sum of different child word nodes under the 

entities instead of the direct sum in traditional tree-structured models. Inspired by the 

previous work [8] incorporating context representations in RE, we additionally stack 

sub-sentence level attention layers on the original tree-structured RE models so that the 

other entity pairs within one sentence are taken as context information to facilitate the 

prediction of the target entity pairs.  

Experimental results show that the proposed model significantly achieves better per-

formance than state-of-the-art methods. We also analysis the contribution of different 

attention methods at entity-level and sub sentence-level based on the tests of composi-

tion change. We find entity-level attention’s performance of F1 no worse than no atten-

tion mechanism and it generally obtains 6-9% improvement of F1 when syntactic rules 

are more complex. Sub sentence-level attention boosts F1 by at least 4.2% compared 

with no attention mechanism and achieves an 3.1% improvement compared with joint 

models with simple attention. 



2 Related Work 

As for named entity recognition, traditional models are based on Hidden Markov Mod-

els (HMM) [10] and Conditional Random Fields (CRF) [11]. In recent years, a great 

mass of deep learning methods has been presented because they are able to take low 

dimensional and dense embeddings as inputs to represent the words or other natural 

language processing (NLP) features and save time and effort by learning features from 

trained data automatically. Huang Z. et al [12] and Lample G. et al [13] created a rep-

resentative model based on Bi-LSTM with CRF on top, which is able to capture 

memory of historical and future information in long dependency through gating units 

and the transition probability of the past and next tags thanks to CRF. Notice that both 

LSTM and Gated Recurrent Unit (GRU) belong to the family of recurrent neural net-

work (RNN). LSTM addresses the vanishing and exploding gradient problems of con-

ventional RNNs in long-term dependencies [14] and GRU is a variant of LSTM without 

separate memory cells to modulate information flows through units [15]. 

For relation classification, besides classic kernel-based models [16,17], several neu-

ral models have also been proposed, such as convolutional neural network (CNN)-

based models [18,19], RNN-based models [20], hybrid models combining RNN and 

CNN [21]. Recently, neural RE models investigated syntax information to facilitate 

performance by tree-structured LSTM(Tree-LSTM), Tai K. S. et al [9] firstly intro-

duced and Miwa M. and Bansal M. [5] improved it by using Bi-Tree-LSTM instead of 

one direction LSTM and handling an arbitrary number of children nodes in a depend-

ency tree instead of a fixed number. 

For end-to-end/joint extraction, Roth D. and Yih W. [1] proposed a joint inference 

framework via integer linear programming, Kate R. J. and Mooney R. J. [2] gave a 

graph-based method called card-pyramid parsing, and Li Q. and Ji H. [3] presented an 

incremental joint framework to accomplish entity recognition and relation classification 

simultaneously. Miwa M. and Bansal M. [5] applied joint extraction into Neural Net-

work model, which also was adopted in biomedical texts [6]. 

Zhou P. et al [7] proposed an attention-based Bi-LSTM model for RE and demon-

strated that attention mechanism is able to capture the important semantic information. 

Sorokin D. et al [8] introduce attention mechanism at sentence level to take context 

information into account and obtain great improvements. Among these, there is still 

room for further improvements, specially in information-rich clinical texts. We propose 

a novel end-to-end neural model with attention mechanism to assign different weights 

for child word nodes in the sub-trees under the target entities at entity-level and the 

context entity pairs in the same sentences at sub sentence-level and finally demonstrate 

that the model have the ability to capture the syntactic and context information from 

clinical texts. 

3 Model 

In this section, we introduce the proposed context-aware end-to-end model of entity 

and relation extraction with entity-level and sub sentence-level attention. The 



 

framework comprises of one preliminary task and two primary tasks: (1)input repre-

sentation: segment the sentences into words, retrieve Part Of Speech(POS) tags, parse 

the dependency of the sentences and convert them into vectors as inputs of the whole 

network; (2)clinical entity extraction: Bi-GRU with CRF layer to identify the entity 

types, as shown in Figure 3; (3)clinical relation extraction: Bi-Tree-GRU with attention 

mechanism at entity-level and sub sentence-level to extract relationships between the 

entity pairs recognized in step 2 and details are described in Figure 4. The input vectors 

are shared and affected by both clinical entity and relation extraction so that the inter-

actions between the two steps could be exploited and the error delivery from the previ-

ous step could be reduced.  

3.1 Clinical Entity Recognition 

 

Fig. 3. The architecture of clinical entity recognition. The concatenations of words and POS tags 

are fed into Bi-GRU with CRF on top and softmax layer outputs the predictions of entity types. 

Input Representation.  

For an input sentence consisting of n words X = ,ଵݔ} ,ଶݔ ⋯ , 𝑖ݔ 𝑛}, each wordݔ ∈ ℝV is 

represented by one-hot encoding and need to be transformed into a dense vector ݓ𝑖  by 

learned embedding matrix 𝑈𝑤 ∈ ℝV×ௗ𝑤 , where V is the total size of vocabularies in the 

dictionary and ݀𝑤 is a hyper-parameter to be chosen.  

𝑖ݓ  = 𝑈𝑤  𝑖 (1)ݔ 

 ݁𝑚ܾ𝑖ா 𝑖ݓ]  = 𝑖  ,   ] (2) 

Where ݓ𝑖  and 𝑖  denote the embeddings of the i-th word and the POS tag embed-

dings of ݓ𝑖 , respectively. Learned POS embedding matrix 𝑈ଵ ∈ ℝ𝐿1×ௗ1  reduces the 



dimensionality of original representations of POS tags, where ܮଵ is the numbers of POS 

tags in our biomedical datasets and ݀ଵ is the dimension of dense POS vectors. The con-

catenation of the word embedding and POS tag embedding is taken as the input for the 

task of clinical entity recognition and its dimension is ݀ா = ݀ଵ + ݀𝑤. 

Bi-GRU Layer.  

Given the input vectors ݁𝑚ܾ𝑡ா and the previous hidden state h𝑡−ଵሺாሻ
, we mainly use GRU 

model as the following implementation: 

 z𝑡ሺாሻ = σሺW௭ሺாሻ݁𝑚ܾ𝑡ா + U௭ሺாሻh𝑡−ଵሺாሻ + b௭ሺாሻሻ (1) 

 r𝑡ሺாሻ = σሺW𝑟ሺாሻ݁𝑚ܾ𝑡ா + U𝑟ሺாሻh𝑡−ଵሺாሻ + b𝑟ሺாሻሻ (4) 

 ℎ𝑡ሺாሻ̃ = tanhሺWℎሺாሻ݁𝑚ܾ𝑡ா + Uℎሺாሻ(r𝑡ሺாሻ⨀ h𝑡−ଵሺாሻ )  +  bℎሺாሻሻ (5) 

 h𝑡ሺாሻ = (ͳ − z𝑡ሺாሻ) ⨀h𝑡−ଵሺாሻ + z𝑡ሺாሻ ⨀ℎ𝑡ሺாሻ̃
 (6) 

Where σ is the sigmoid function and the ⨀ is element-wise multiplication. z𝑡ሺாሻ
 is 

the upgrade vector, r𝑡ሺாሻ is the reset vector and h𝑡ሺாሻ
 is the output vector.  𝑊∗ሺாሻ

 and 𝑈∗ሺாሻ
 

are the parameter matrices and ܾ∗ሺாሻ
 is the bias vectors. The left and right output vectors h𝑡ሺாሻ⃗⃗ ⃗⃗ ⃗⃗  ⃗

and h𝑡ሺாሻ⃐⃗ ⃗⃗ ⃗⃗ ⃗⃗
, referring to the forward and backward GRU, are concatenated to represent 

a word as h𝑡ሺாሻ = [ h𝑡ሺாሻ⃗⃗ ⃗⃗ ⃗⃗  ⃗;  h𝑡ሺாሻ⃐⃗ ⃗⃗ ⃗⃗ ⃗⃗ ], which are effective for numerous sequential tagging 

tasks because of the bidirectional information included. 

CRF Layer.  

Without CRF layer, the model will predict the tags based on the independence assump-

tions and ignore the strong dependencies (e.g, I-LOC cannot follow B-IND) between 

the adjacent outputs. Thus, we take the dependence between the two labels into consid-

eration through stacking CRF layer on Bi-GRU. Given by an input sentence, the model 

could jointly decode the best chain of labels effectively by adopting Viterbi algorithm 

after learning the distribution of annotated datasets. 

First, we compute the score of prediction sequences yா = {yଵா , yଶா , ⋯ , y𝑛ா}  of the in-

put sentence X as followed, where 𝐴୷𝑖𝐸,୷𝑖+1𝐸  denotes the transition score from tag y𝑖+ଵா  

to y𝑖ா   and ܲ𝑖,୷𝑖𝐸  is the score of tag y𝑖ா  of word  ݔ𝑖: 
 SሺX, yாሻ = ∑ 𝐴୷𝑖𝐸,୷𝑖+1𝐸 + ∑ ܲ𝑖,୷𝑖𝐸𝑛𝑖=ଵ𝑛𝑖=  (7) 

Afterwards, we maximize the conditional probability of the prediction sequences via 

softmax layer. In practice, we usually the log-likelihood to choose the parameters dur-

ing CRF training. Where Y(X) denotes all the possible prediction sequences including 

those go against the BIO tagging scheme: 



 

 𝓅ሺ ݕா|Xሻ = e୶p ሺSሺX,୷𝐸ሻሻ∑ e୶p ሺSሺX,୷�̃�ሻሻ𝑦�̃�∈ೊሺሻ  (8) 

ாܮ  = l݃(𝓅ሺ ݕா|Xሻ) =  SሺX, yாሻ − log ሺ∑ exp ሺSሺX, yா̃ሻሻ௬�̃�∈ሺሻ ሻ (9) 

While decoding, we predict the outputs by searching the posteriori sequences with 

the highest score:  

ா̂ݕ  = argmax௬�̃�∈ሺሻSሺX, yா̃ሻ (10) 

3.2 Context-Aware RE With Attention-Based Bi-Tree-GRU 

 

Fig. 4. The architecture of relation classification. The concatenations of hidden states from Bi-

GRU, the label embeddings from clinical entity recognition and the syntactic dependency em-

beddings from dependency parsing tree are fed into Bi-Tree-GRU with entity-level and sub sen-

tence-level attention and finally softmax predicts the relations between entity pairs. 

Input Representation.   

 ݁𝑚ܾ𝑖ோ =  [ℎ𝑖 𝑖݁݀，𝑖ா  ,   ]  (11) 



Where ℎ𝑖 denotes the hidden state which has been explained in Eq.(6), 𝑖ா denotes 

the label embeddings converted from the outputs of clinical entity recognition, the rep-

resentation of the entity tags. After dependency-parsing our clinical documents, we 

convert the dependency types between the words and their parents in the parsing tree 

into the dense vectors ݀݁𝑖  representing the syntactic information. For example, as 

shown in Figure 2, the syntactical dependency relationship between the word “左侧

[left]” and its parent “甲状腺[thyroid]” is attributive relation(“定中关系” in Chinese). 

We directly concatenate the three vectors and take them as the input vectors of relation 

extraction task. 

Entity-Level Attention. 

Supposed the t-th word node has N children, matrix ܴ𝑡 consists the representation vec-

tors of the children nodes,  Wh and W𝛼  are shared parameters to be learned, ߙ is the 

attention weight and the representation vector ܿℎ𝑡 is generated by a weighted sum of 

its children embeddings. 

 ܴ𝑡 = ,𝑡ଵݎ] ,𝑡ଶݎ …  𝑡𝑁]  (12)ݎ

𝑡ܯ  = tanhሺ Whܪ𝑡  ሻ  (13) 

ߙ  = ሺW𝛼ݔ𝑚ܽݐ݂ݏ  𝑡ሻ  (14)ܯ

 ܿℎ𝑡  = ்ߙ𝑡ܪ
  (15) 

Then, we calculate the hidden state vector of t-th word node in the GRU unit: 

 z𝑡ሺோሻ = σሺW௭ሺோሻ݁𝑚ܾ𝑡ோ + U௭ሺோሻܿℎݐ + b௭ሺோሻሻ  (16) 

 r𝑡ሺோሻ = σሺW𝑟ሺோሻ݁𝑚ܾ𝑡ோ + U𝑟ሺோሻܿℎݐ + b𝑟ሺோሻሻ  (17) 

 h𝑡ሺோሻ̃ = tanhሺWℎሺோሻ݁𝑚ܾ𝑡ோ + Uℎሺோሻ(r𝑡ሺோሻ⨀ h𝑡−ଵோ )  +  bℎሺோሻ
  (18) 

 h𝑡ሺோሻ = (ͳ − z𝑡ሺோሻ) ⨀ h𝑡−ଵሺோሻ + z𝑡ሺோሻ ⨀h𝑡ோ̃  (19) 

Finally, we obtain bidirectional output vector: 

 S𝑝 = [ ↑ h𝑝ሺோሻ; ↓ h′𝑡ሺோሻ; ↓ h′′𝑡ሺோሻ ]  (20) 

We adopt the concatenation strategy to represent a sub sentence S𝑡, which is similar 

with the entity recognition, but we call the two directions as bottom-up and top-down 

in the tree-structured network. 

Where ↑ h𝑡ሺோሻ
 denotes the hidden state vector in bottom-up direction for the lowest 

common ancestor of the focus entity pair, and ↓ h′𝑡ሺோሻ, ↓ h′′𝑡ሺோሻ
 denote the hidden state 

vector in top-down direction for the first and second entities. If the entity is comprised 

of more than one word, we take the word node which is less near to the root. 



 

Sub Sentence-Level Attention With Context.  

One sub-sentence incorporates the words of the target pairs and other words on the path 

to their lowest common ancestor. For example, as shown in Figure 2, the entity “左侧

[left]” pairs up with “回声[echos]”, and “甲状腺[thyroid]” is the word on the path to 

their lowest common ancestor “可见[indicate]”, so these four words count as one sub-

sentence. The sub-sentences may have overlaps. Take the above-mentioned example 

again, the word “回声[echos]” is also contained in another sub-sentence. 

Supposed that  S = { ଵܵ, ܵଶ, … , ܵ𝑘} is comprised of k context sub-sentences, which 

are related to target entity pairs, we use a weighted sum of the context sub-sentences as 

followed:  

ሺܩ  �ܵ� , ்ܵሻ = �ܵ�்W𝛼ሺௌሻ்ܵ  (21) 

𝑖ሺௌሻߙ  = ሺܩሺݔ𝑚ܽݐ݂ݏ �ܵ� , ்ܵሻሻ  (22) 

 ܵ = ∑ 𝑖ሺௌሻߙ �ܵ�𝑘𝑖=ଵ   (23) 

 ܵ∗ = [்ܵ; ܵ]  (24) 

Unlike the ways of simply getting a weighted sum of sub-sentences, we use ܩ𝑖 to 

capture the relationship between the target sub-sentence ்ܵ and it context sub-sentences �ܵ�ሺͳ ≤ 𝑖 ≤ 𝑘ሻ using the weight matrix W𝛼ሺௌሻ
 to be learned. ܵ denotes the resulting rep-

resentation of ்ܵ’s context sub-sentences, a weighted sum of each single context rep-

resentation ߙ𝑖ሺௌሻ
. Finally, we obtain S* as a context vector, the concatenation of  ்ܵ and ܵ, and feed it into the softmax layer. 

We maximize the conditional probability of the relation sequences via softmax, com-

pute log-likelihood and predict the outputs of relations via the highest conditional prob-

ability. 

 𝓅( ݕோ|ܵ∗;𝑊ሺ𝐶ሻ, ܾሺ𝐶ሻ) = ∗ሺ𝑊ሺ𝐶ሻܵݔ𝑚ܽݐ݂ݏ + ܾሺ𝐶ሻሻ  (25) 

ோܮ  = log ሺ𝓅( ݕோ|ܵ∗;𝑊ሺ𝐶ሻ, ܾሺ𝐶ሻ)ሻ  (26) 

ோ̂ݕ  = argmax௬𝑅∈ሺௌ∗ሻ𝓅( ݕோ|ܵ∗;𝑊ሺ𝐶ሻ, ܾሺ𝐶ሻ)  (27) 

3.3 The Adjusted Optimization Function.  

To increase the valid entity or relation prediction and reduce the impact of large 

amounts of O(outsider) tags in NER task and U(unknown) tags in RE task, we introduce 

the hyper-parameter ߛ to adjust the imbalance of data. The smaller ߛ is, the less impact 

of  ‘O’ tags in the model. We take adjusted  ܮா  as the example: 

ாܮ  = ∑ l݃(𝓅ሺ ݕா|Xሻ) ∙ ሺͳ − ሺܱሻሻܫ + (ா|Xሻݕ 𝓅ሺ)݃lߛ ∙  ሺܱሻ  (28)ܫ

ሺܱሻܫ  = {ͳ, 𝑖݂ ݃ܽݐ = ′ܱ′Ͳ, 𝑖݂ ݃ܽݐ ≠ ′ܱ′  



Finally, we combine two loss function into one and use a hyper-parameter ߚ to bal-

ance them. 

ݏݏܮ  = ோݏݏܮ  + ாݏݏܮߚ ாܮ− = − ோܮߚ   (29) 

4 Experiment 

4.1 Experimental Setting 

Dataset.  

The experiment datasets in this paper are collected from Ruijin Hospital. We evaluated 

the model on the ultrasonic reports, X-ray/CT reports, Puncture reports, pathology re-

ports of thyroid and mammary gland.  

Table 1. Statistics of datasets 

Dataset Number of sentences Number of entities Number of relations 

Thyroid 53,850  664,681  511,345  

Mammary Gland 33,373  318,077  263,907  

Metrics.  

Precision(P), recall(R) and F1-score are used to compare the performance of the mod-

els. 

Where True Positive (TP) denotes the number of entity types are identified as correct 

and boundaries are matched in NER or the numbers of correct relation types in RE. 

False Positive (FP) denotes the number of incorrectly identified entities or relations that 

do not meet the above conditions. False Negative (FN) denotes the number of uniden-

tified entities or relations. 

 ܲ = ்𝑃்𝑃+ி𝑃  ； ܴ = ்𝑃்𝑃+ி𝑁；  ܨͳ = ଶ∗𝑃∗𝑃𝑃+ோ   (30) 

Preprocessing.  

We pretrain our datasets by word2vec to initialize embeddings and adopt Chinese Nat-

ural Language Processing Tool HanLP [22] to conduct word segmentation, POS tag-

ging and dependency parsing on the clinical texts from Ruijin Hospital. Then, we man-

ually checkout the outputs and finally add some medicine-specific words and rules to 

complete annotations. 

Hyper-Parameters.  

While training, we use Adagrad optimization to tune the models with three-fold vali-

dation by adopting grid search for optional hyper-parameters and randomized search 

for scoped ones. Initially, we try {0.01/0.05/0.1/0.2} for learning rate, 

{50/100/150/200} for batch size, {25/50/100/150/200} for the dimension of variant 



 

embeddings and 0.0-1.0 for drop probability and importance β and  γ. During experi-

ments, we find a set of effective configuration, which is shown in Table 2. 

Table 2.  Settings of hyper-parameters 

Type Hyper-parameter Value 

Training  Learning Rate α 0.05 

 Batch Size 100 

 Drop Probability 0.5 

Loss Relation Importance β 0.5 

 ‘O’ tag importance γ 0.1 

Embedding Word Dimension 200 

 POS Dimension 25 

 Dependency Dimension 25 

Entity Recognition GRU Hidden Unit Dimension 100 

Relation Classification Tree-structured GRU Hidden Unit Dimension 100 

4.2 Results 

Comparison with the baseline model.  

Table 3 compares our model with the baseline model of Miwa M. and Bansal M. [5] on 

the different reports from the thyroid and mammary gland dataset. Results show that 

our model significantly achieve the better performance, due to the statistical signifi-

cance(p<0.01) using the Wilcoxon rank-sum test on F1-scores. 

Table 3. Comparison with the baseline model on the thyroid and mammary gland dataset 

 Miwa M. and Bansal M. [5] Our model 

Dataset Report P R F1 P R F1 

Thyroid Ultrasonic 72.0  73.7  72.8  83.4  85.7  84.5  

 X-ray/CT 71.4  74.9  73.1  80.0  89.7  84.6  

 Puncture 79.6  77.6  78.6  83.8  82.9  83.3  

 Pathology 69.3  76.0  72.5  77.5  83.3  80.3  

Mammary gland Ultrasonic 76.5  72.7  74.6  80.8  83.3  82.1  

 X-ray/CT 78.2  78.9  78.6  83.6  88.9  86.2  

 Puncture 78.5  78.1  78.3  84.4  83.8  84.1  

 Pathology 68.9  74.6  71.6  82.0  86.4  84.1  

Entity-Level Attention.  

To measure the contribution and effect of entity-level attention, we conduct the tests of 

composition change to compare three types of dependency layers with different selec-

tion of weighted nodes on four kinds of reports from the thyroid dataset. Shortest Path 



Tree(SP-Tree) [5] only consists of the nodes on the shortest path in dependency parsing 

tree between the target entity pairs, SubTree selects the nodes in the subtree under the 

lowest common ancestor of the target entity pair and FullTree take all the nodes into 

the entity-level attention. Results show the performance of F1 is significantly upgraded 

with assigned weights of other word nodes(p<0.1).2 We find the F1 performance no 

worse than no attention mechanism but the improvement is slight (about 1-2%) in punc-

ture reports because the syntax information puncture reports are commonly less com-

plicated than others. SP-Tree, SubTree and FullTree respectively improve F1 on the 

whole thyroid dataset by 8.4%, 7.2%, 6.7%, and especially boost the recall score, com-

pared with no entity-attention, but we do not observe significant difference between 

them. SP-Tree and FullTree achieve similar scores and SubTree slightly improves F1, 

which is slightly different from traditional information-sparse texts. However, SP-Tree 

is the most time-saving method, SubTree is the second and FullTree takes the longest 

amount of time. 

Table 4. Comparison of different entity-level attention on the whole thyroid dataset 

Type Method P R F1 

No attention SP-Tree 76.5  77.0  76.7  

 SubTree 79.4  76.9  78.2  

 FullTree 78.1  78.0  78.0  

Attention SP-Tree 82.2  84.2  83.2  

 SubTree 82.1  85.6  83.8  

 FullTree 82.5  84.0  83.3  

Sub Sentence-Level Attention.  

To assess the sub sentence-level attention mechanism, we also conduct the tests of com-

position change to compare no attention and two types attention mechanism on four 

kinds of reports from the thyroid dataset. “No attention” directly outputs the prediction 
through the softmax layer, “Simple Attention” [7] simply uses a weighted sum of all 
the sub-sentences including a waited classification of relation in one sentences and not 

distinguish the target pairs from other context sub-sentences. “Context Attention” uses 
the method as we mentioned in Section 3, fully exploits the interaction between the 

target entity pairs and its context information. 

Compared with “Context Attention”, F1 is significantly hurt without atten-

tion(p<0.1).2 No sub sentence-level attention degrades at least 4.2% in F1 on every kind 

of report and achieves a 8.6% reduction of F1 on the whole Thyroid dataset.  “Context 
Attention” performs better than “Simple Attention”, though the difference in prediction 

is not big. 

                                                           
2  The statistical significance is computed by the Wilcoxon rank-sum test on F1-scores of every 

report from the thyroid dataset. 



 

Table 5. Comparison of different sub sentence-level attention on the whole thyroid dataset 

Method P R F1 

No Attention 76.4  76.9  76.7  

Simple Attention [7] 79.5  82.1  80.8  

Context Attention 82.5  84.0  83.3  

5 Conclusion 

In this paper, we propose a context-aware end-to-end neural model with two level at-

tention to exploit the interaction between these two sub tasks and considering latent 

syntactic information within entities themselves and multiple relations in a single sen-

tence. Our experiments give the following findings: (1) In comparison to the baseline 

model, taking entity-level as well as sub-sentence level attention into account is bene-

ficial to clinical texts.  (2) Compared with no attention models, entity-level attention 

based on parsing paths between the entity pairs, has been demonstrated to be able to 

acquire underlying syntactic information within entities. Entity-level attention using 

SP-Tree is a good and effective choice when saving time is more prior based on the 

tests of composition change. (3) By incorporating attention at sub sentence-level, we 

are allowed to capture the interaction between a sub-sentence, including the target en-

tity pair, and its context sub-sentences, including other entity pairs, in the same sen-

tence. Context attention achieves significantly greater performance than no attention 

and shows a slight improvement compared with simple sentence-level attention. 
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