
KR&R Approaches for Robot Manipulation
Tasks with Articulated Objects

Riccardo Bertolucci1, Alessio Capitanelli2, Carmine Dodaro2, Marco Maratea2,
Fulvio Mastrogiovanni2, and Mauro Vallati3

1 DeMaCS, University of Calabria, Italy
bertolucci@mat.unical.it

2 DIBRIS, University of Genova, Genova, Italy
{name.surname}@unige.it,

3 University of Huddersfield, UK
m.vallati@hud.ac.uk

Abstract. In this paper we present two approaches for solving robot
manipulation tasks with articulated objects by using knowledge repre-
sentation and reasoning languages and tools. Such languages and tools
are used both for representing initial and final configurations from an on-
tology description and for planning the robot (manipulation) actions. In
the first approach, standard PDDL language and solvers are used to plan
those actions, and DL solvers for ontology consistency checking. In the
second (ongoing) approach, ASP is employed as a unifying framework
for both ontology checking and planning.

1 Introduction

Articulated objects are made up of links connected via joints that can move
with respect to each other. The manipulation of such objects (which can be
considered as a good approximation for strings, ropes or cables) is of the utmost
importance in different application scenarios [25,35].

Apart from robot manipulation actions, the configurations of such objects
depend on their parts and may be the result also of external factors, such as the
constraints imposed by the geometry of the environment or the effects of gravity.
This leads to a multi-faceted representation problem: on the one hand, we must
address how to maintain the representation of articulated (or flexible) objects
depending on how they are perceived by the robot; on the other hand, we must
ground reasoning on such representation to manipulate such objects in order to
obtain a given goal configuration.

In the literature, a number of ad hoc solutions have been discussed, including
ones where robots manipulate ropes [37], cables [11], tie or untie knots [36], or
operate on mobile parts of their environment, e.g., various handles, furniture or
valves [16,27], even in human-robot collaborative scenarios [28]. However, these
approaches are characterized by at least one of two assumptions: the first posits
that manipulation actions are directly based on perceptual data and, therefore,
on the specific geometrical problem at hand [10,11,33], whereas the second one

2 Bertolucci et al.

argues that an a priori physical model of the object to manipulate is either
known or learned [26,32].

In this paper we present two action planning and execution architectures
for robot manipulation tasks with articulated objects. The two architectures
are aimed at reasoning about any pair of abstract representations of articulated
or flexible objects and the transitions induced by an appropriate sequence of
manipulation actions, based on knowledge representation and reasoning (KR&R)
languages and tools. Such languages and tools are used both for representing
initial and final object configurations in an ontology-based description and for
planning the robot manipulation actions. Both architectures are under testing on
a robot hybrid reactive/deliberative framework using a dual-arm Baxter robot
from Rethink Robotics.

In the first architecture (outlined in Section 2), the standard Planning Do-
main Description Language (PDDL) and domain-independent solvers are used
for modeling and planning those actions, and DL solvers are employed to check
for consistency in an OWL ontology [14]. In the second architecture, which is
currently under validation (see Section 3), Answer Set Programming (ASP) is
employed as a unifying framework for both planning and ontology checking.
The two architectures are compared (see Section 4) in terms for action planning
performance. In Section 5 we highlight possible future research directions.

2 Architecture #1

Capitanelli et al. [14] introduced a hybrid reactive/deliberative architecture for
robots based on PDDL and OWL2. The architecture, which extends the well-
known ROSPlan architecture [15], adopts the ARMOR framework4, as well as
two state-of-the-art planners, namely Probe [30] and Madagascar [34], along with
the MoveIt!5 motion planning library. Generated plans are validated by the VAL
plan validator.

Two different manipulation modes are allowed, and therefore we consider
data obtained by each of the two following modes:

• CAPF: for any given link, it is possible to operate only on the successive
link, and therefore only forward motion propagation is allowed, e.g., it is
possible to move link 2 only keeping link 1 firmly and acting on link 2 ;

• CAPFD: it is possible to move each link in each direction, therefore either
forward or back propagation is allowed, e.g., it is possible to move link 2 by
grasping link 1 or link 3 and then operating on link 2.

As far as the ontology is concerned, the architecture is able to store and
compute the differences between initial (and, in general, current) and goal ob-
ject configurations, in terms of normative knowledge. In this way, we can remove
unused constraints from the problem file and thus alleviate the planner’s work-
load. The architecture computes these differences at each action execution step.

4 Web: https://github.com/EMAROlab/armor
5 Web: http://moveit.ros.org/

https://github.com/EMAROlab/armor
http://moveit.ros.org/

KR&R Approaches for Robot Manipulation Tasks 3

Due this this feature, we can use SWRL rules to enforce plan execution ro-
bustness and flexibility: if a given link is accidentally misplaced by the robot,
or a human interacting with the robot does it purposely during plan execution,
SWRL rules compute the difference between current and goal configurations and
bootstrap a new planning process.

3 Architecture #2

The second architecture, which is subject of on-going work, is similar to the
first one, but it is completely based on ASP. An architecture based on a unified
logic framework is expected to have better performance or to find solutions to the
planning problem that are better optimized with respect to different parameters.
The parameter we aim at optimizing (in this case, minimizing) is the number of
actions computed by the planner.

Differently from PDDL, ASP is a general purpose language for a variety of
applications (e.g.[8,6,7]) and not devoted to automated planning, but it can be
used for planning purposes as well given the efficiency of ASP solvers, witnessed
by the results of a number of ASP-related competitions, e.g.[22,23,13,24,29,21].
Moreover, ASP can deal with ontology management.

We want to compute plans with both Clingo [18], i.e., the combination of the
grounder Gringo [19] and the solver Clasp [20], and DLV2 [1], i.e., the combina-
tion of the grounder I-DLV [12] and the solver WASP [4], to have an overview
of the performance of ASP-based planners [31].

ASP solutions to the planning problem are translated to the same output
format used by the standard PDDL-based planners, which is to be checked by
VAL.

We tried different options for the ASP-based planner:

• Wrapper. We compute the plan varying the number of allowed maximum
steps starting from 1 and increasing it by one unit if the plan is not found.
This allows us to find the optimal solution in terms of the number of actions
but sacrificing CPU performance.

• Weak Constraint [2,3,5]. We add to the domain a weak constraint on the
maximum number of allowed steps.

• Random. We select the maximum number of steps randomly. This does not
ensure an optimal solution neither with respect to the number of actions nor
in terms of planning computation time.

Currently, we are completing the development and the integration of the
ASP-based ontology component by means of an ASP encoding.

4 Results

In this section we discuss preliminary results obtained for the planning module
in the second architecture. As a reference, we analyze two of the experiments we

4 Bertolucci et al.

carried out. For each experiment, we have two different tables: the first shows
the planning execution time in seconds, the second shows the number of actions
as computed by the planners. Each table contains results for different set-ups:

• Madagascar: results obtained using the PDDL solver Madagascar [34].

• Probe: results obtained with the PDDL solver Probe [30].

• Clingo: results obtained with the ASP solver Clingo using the Wrapper set-
up as discussed above.

• Clingo Weak: results obtained with the ASP solver Clingo using the Weak
Constraint set-up as explained before.

• Clingo Not Optimal: results obtained with the ASP solver Clingo using the
Random set-up as discussed above.

The name of each experiment is composed by two numbers, respectively
representing the number of joints of the articulated object and the number of
possible angles that a link can assume. For each experiment, 10 different problem
instances, with different initial states and goals, were tested, with a timeout of 1
hour. The median value is computed and shown in the tables. A ”TIME” (resp.
−1) indicates that the solver can not find a solution (resp. a plan) within an
hour.

4.1 Experiment 5 6 (CAPF)

Experiment Number 1 2 3 4 5 6 7 8 9 10

Madagascar 0.15 0.31 0.1 0.18 0.02 0.18 0.03 0.1 0.11 0.13

Probe 0.01 0.05 0.02 0.02 0.01 0.01 0.02 0.01 0.01 0.01

Clingo 1.53 4.81 1.88 1.91 0.01 2.20 0.01 0.01 1.46 1.71

Clingo Weak 6.26 11.86 6.77 6.24 0.32 6.76 0.41 1.42 5.23 5.00

Clingo Not Optimal 2.02 2.45 0.97 3.48 0.32 4.53 0.88 5.17 9.25 2.45

Table 1: CPU times.

In tables 1 and 2 we show an experiment with a medium size problem (5
links and 6 possible angles). We have different result depending on the selected
approach:

• Clingo: As we said we have always the optimal solution. This result comes
at the cost of a longer execution time to compute the plan.

• Clingo Weak: As before it always finds an optimal solution. With this ap-
proach we avoid the need of external script (e.g. wrapper), but it comes with
a slower execution time to compute the plan.

KR&R Approaches for Robot Manipulation Tasks 5

Experiment Number 1 2 3 4 5 6 7 8 9 10

Madagascar 13 13 9 13 4 13 4 7 13 9

Probe 9 11 9 11 4 11 4 13 9 9

Clingo 9 9 9 9 4 9 4 7 9 9

Clingo Weak 9 9 9 9 4 9 4 7 9 9

Clingo Not Optimal 43 45 39 45 4 45 40 39 49 13

Table 2: Number of computed actions.

• Clingo Not Optimal: the computed solutions are way larger than the ones
computed by the two previous approaches. We expected a not optimal solu-
tion but we also expected to have a faster execution time. however, as the
table shows, the execution times is similar to the times of the Clingo Weak
approach.

4.2 Experiment 7 6 (CAPF)

Experiment Number 1 2 3 4 5 6 7 8 9 10

Madagascar 0.38 0.26 0.8 0.48 0.05 0.61 0.13 0.08 0.28 0.65

Probe 0.13 0.03 0.05 0.07 0.07 0.05 0.27 0.08 0.25 0.09

Clingo 1.77 2.43 TIME 184.71 0.01 TIME 2410.96 1.56 1006.86 19.13

Clingo Weak 7.85 8.86 TIME 614.90 0.91 TIME 2116.66 4.85 1119.21 24.70

Clingo Not Optimal 10.27 28.52 25.51 23.50 5.1 66.20 4.13 22.48 37.64 7.72

Table 3: CPU times.

Experiment Number 1 2 3 4 5 6 7 8 9 10

Madagascar 14 10 33 22 5 18 14 8 12 21

Probe 10 8 15 12 5 14 12 8 20 11

Clingo 8 8 -1 12 5 -1 12 8 12 9

Clingo Weak 8 8 -1 12 5 -1 12 8 12 9

Clingo Not Optimal 18 48 15 48 21 42 48 46 46 47

Table 4: Number of computed actions.

6 Bertolucci et al.

In tables 3 and 4 we show an experiment with a larger problem (7 links and
6 possible angles). We have different result depending on the selected approach:

• Clingo: As for the previous problem, the solution is always optimal and this,
in some cases, leads us to plans that are 50% smaller than the ones computed
from the PDDL solvers. However, since the problem is bigger than before,
some plans require too much time to be computed by the ASP solvers and
consequently we are unable to have a solutions for those problems.

• Clingo Weak: As before we ensure an optimal solution but we encounter the
same problems we have with the Clingo approach.

• Clingo Not Optimal: the computed solutions are way larger than the ones
computed by the two previous approaches. However it can be noticed from
the table that, even though the execution time is high, the plan is always
computed within the time limit.

The ASP-based approach is able to return plans sometimes significantly
smaller than in the previous solution, sometimes at the price of increased CPU
time. However, we should take into account that in real environment action’s
execution is not instantaneous (hypothesis of classical planning), but takes time,
so the total time for executing the plan by the architecture could be highly
influenced by the number of performed actions.

5 Conclusions and future work

In this paper, we have presented two KR&R approaches for solving robot ma-
nipulation tasks with articulated objects.

Current and future work include:

• Completing the ASP-based framework: the implementation of the storage
module has to be finished and validated.

• Testing the architecture, in particular the planning module, with DLV2.
• Testing the architectures on different robot platforms to evaluate the porta-

bility of our solutions, and adding more KR&R approaches, e.g. using the
mixed discrete-continuous approach of PDDL+ [17] and CASP [9].

References

1. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., Zangari, J.: The ASP system DLV2. In: LPNMR. Lecture Notes in
Computer Science, vol. 10377, pp. 215–221. Springer (2017)

2. Alviano, M., Dodaro, C.: Anytime answer set optimization via unsatisfiable core
shrinking. TPLP 16(5-6), 533–551 (2016)

3. Alviano, M., Dodaro, C.: Unsatisfiable core shrinking for anytime answer set opti-
mization. In: IJCAI. pp. 4781–4785. ijcai.org (2017)

4. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR.
Lecture Notes in Computer Science, vol. 9345, pp. 40–54. Springer (2015)

KR&R Approaches for Robot Manipulation Tasks 7

5. Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: Optimum stable model
search: Algorithms and implementation. J. Log. Comput. http://dx.doi.org/

10.1093/logcom/exv061, in press
6. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer

set programming to the conference paper assignment problem. In: AI*IA. Lecture
Notes in Computer Science, vol. 10037, pp. 164–178. Springer (2016)

7. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU
games via answer set programming. In: IJCAI 2016. pp. 38–45 (2016)

8. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The USA-Advisor: A case
study in answer set planning. In: LPNMR. LNCS, vol. 2173, pp. 439–442. Springer
(2001)

9. Balduccini, M., Magazzeni, D., Maratea, M., LeBlanc, E.: Casp solutions for plan-
ning in hybrid domains. arXiv preprint arXiv:1704.03574 (2017)

10. Berenson, D.: Manipulation of deformable objects without modeling and simu-
lating deformation. In: Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ
International Conference on. pp. 4525–4532. IEEE (2013)

11. Bodenhagen, L., Fugl, A.R., Jordt, A., Willatzen, M., Andersen, K.A., Olsen,
M.M., Koch, R., Petersen, H.G., Krüger, N.: An adaptable robot vision system
performing manipulation actions with flexible objects. IEEE transactions on au-
tomation science and engineering 11(3), 749–765 (2014)

12. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)

13. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the Fifth
Answer Set Programming Competition. Artif. Intell. 231, 151–181 (2016)

14. Capitanelli, A., Maratea, M., Mastrogiovanni, F., Vallati, M.: On the manipula-
tion of articulated objects in human-robot cooperation scenarios. Robotics and
Autonomous Systems 109, 139–155 (2018)

15. Cashmore, M., Fox, M., Long, D., Magazzeni, D., Ridder, B., Carrera, A., Palom-
eras, N., Hurtós, N., Carreras, M.: Rosplan: Planning in the robot operating sys-
tem. In: ICAPS. pp. 333–341 (2015)

16. Dang, H., Allen, P.K.: Robot learning of everyday object manipulations via hu-
man demonstration. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ
International Conference on. pp. 1284–1289. IEEE (2010)

17. Fox, M., Long, D.: Modelling mixed discrete-continuous domains for planning. J.
Artif. Intell. Res. 27, 235–297 (2006)

18. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In: ICLP (Technical Communications).
OASICS, vol. 52, pp. 2:1–2:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
(2016)

19. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3.
In: LPNMR. Lecture Notes in Computer Science, vol. 6645, pp. 345–351. Springer
(2011)

20. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven answer set solving: From
theory to practice. Artif. Intell. 187, 52–89 (2012)

21. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: Lang, J. (ed.)
Proceedings of the Twenty-Seventh International Joint Conference on Artificial
Intelligence, IJCAI 2018. pp. 5450–5456. ijcai.org (2018)

22. Gebser, M., Maratea, M., Ricca, F.: The Design of the Sixth Answer Set Program-
ming Competition. In: LPNMR. LNCS, vol. 9345, pp. 531–544. Springer (2015)

http://dx.doi.org/10.1093/logcom/exv061
http://dx.doi.org/10.1093/logcom/exv061

8 Bertolucci et al.

23. Gebser, M., Maratea, M., Ricca, F.: What’s hot in the answer set programming
competition. In: AAAI. pp. 4327–4329. AAAI Press (2016)

24. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. Journal of Artificial Intelligence Research 60, 41–95 (2017)

25. Henrich, D., Wörn, H.: Robot manipulation of deformable objects. Springer Science
& Business Media (2012)

26. Howard, A.M., Bekey, G.A.: Recursive learning for deformable object manipula-
tion. In: Advanced Robotics, 1997. ICAR’97. Proceedings., 8th International Con-
ference on. pp. 939–944. IEEE (1997)

27. Knepper, R.A., Layton, T., Romanishin, J., Rus, D.: Ikeabot: An autonomous
multi-robot coordinated furniture assembly system. In: Robotics and Automation
(ICRA), 2013 IEEE International Conference on. pp. 855–862. IEEE (2013)

28. Kruse, D., Radke, R.J., Wen, J.T.: Collaborative human-robot manipulation of
highly deformable materials. In: Robotics and Automation (ICRA), 2015 IEEE
International Conference on. pp. 3782–3787. IEEE (2015)

29. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Magazine 37(3), 45–52 (2016)

30. Lipovetzky, N., Geffner, H.: Searching for plans with carefully designed probes. In:
ICAPS. pp. 154–161 (2011)

31. M. Gebser, M. Maratea, F.R.: The sixth answer set programming competition. j.
artif. intell. res. 60: 41-95 (201)

32. Meier, U., López, O., Monserrat, C., Juan, M.C., Alcaniz, M.: Real-time deformable
models for surgery simulation: a survey. Computer methods and programs in
biomedicine 77(3), 183–197 (2005)

33. Miller, S., Van Den Berg, J., Fritz, M., Darrell, T., Goldberg, K., Abbeel, P.:
A geometric approach to robotic laundry folding. The International Journal of
Robotics Research 31(2), 249–267 (2012)

34. Rintanen, J.: Madagascar: Scalable planning with sat. Proceedings of the 8th In-
ternational Planning Competition (IPC-2014) (2014)

35. Saadat, M., Nan, P.: Industrial applications of automatic manipulation of flexible
materials. Industrial Robot: An International Journal 29(5), 434–442 (2002)

36. Wakamatsu, H., Arai, E., Hirai, S.: Knotting/unknotting manipulation of de-
formable linear objects. The International Journal of Robotics Research 25(4),
371–395 (2006)

37. Yamakawa, Y., Namiki, A., Ishikawa, M.: Dynamic high-speed knotting of a rope
by a manipulator. International Journal of Advanced Robotic Systems 10(10), 361
(2013)

	KR&R Approaches for Robot Manipulation Tasks with Articulated Objects
	Riccardo Bertolucci cl@@auth, Alessio Capitanelli cl@@auth, Carmine Dodaro cl@@auth, Marco Maratea cl@@auth, Fulvio Mastrogiovanni cl@@auth, Mauro Vallati

