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ABSTRACT
This position paper presents an attempt to improve the scalability
of existing object recognition methods, which largely rely on su-
pervision and imply a huge availability of manually-labelled data
points. Moreover, in the context of mobile robotics, data sets and ex-
perimental settings are often handcrafted based on the specific task
the object recognition is aimed at, e.g. object grasping. In this work,
we argue instead that publicly available open data such as ShapeNet
[8] can be used for object classification first, and then to link objects
to their related concepts, leading to task-agnostic knowledge acqui-
sition practices. To this aim, we evaluated five pipelines for object
recognition, where target classes were all entities collected from
ShapeNet and matching was based on: (i) shape-only features, (ii)
RGB histogram comparison, (iii) a combination of shape and colour
matching, (iv) image feature descriptors, and (v) inexact, normalised
cross-correlation, resembling the Deep, Siamese-like NN architec-
ture of [31]. We discussed the relative impact of shape-derived and
colour-derived features, as well as suitability of all tested solutions
for future application to real-life use cases.

1 INTRODUCTION
Autonomous sensemaking under rapidly-evolving and uncertain cir-
cumstances goes beyond building intelligent and knowledge-based
systems, requiring mobile systems that are not only able to reason
on their surroundings, but also to readily adapt to their context.
Context is, first and foremost, bound to the physical objects spread
around the observed space, all belonging to different categories,
and holding static or dynamic qualities, based on their evolution
over time. Scalable and adaptable object recognition through mo-
bile robots is then of crucial importance for successful knowledge
acquisition and mapping from rapidly-evolving environments. In
fact, accurate object recognition is the essential prerequisite to a
number of applications in Robotics, including but not limited to:
health and safety monitoring [2], retrieving entities across space
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through human instructions provided in natural language [18], pre-
emptive obstacle removal, particularly in the context of elderly
care [1, 20], door-to-door garbage collection in Smart Cities [13]. In
this scenario, the ability to generalise across different domains by
learning features independently from the end goal, e.g., grasping
or mapping, can allow agents to flexibly switch between different
tasks and capability sets [32].
State-of-the-art supervised approaches in object recognition from
natural scenes [23–25] imply the availability of large collections
of labelled examples and lack flexibility, when applied on unseen
classes and mutable environments. On the other hand, fully unsu-
pervised approaches can provide exploratory insights and guide-
lines that, however, require significant further tuning and error
analysis. These evidences provide much incentive to explore alter-
native semi-supervised approaches, to balance out the accuracy
and precision of the recognition process with the scalability of the
achieved solution. Besides, the recent availability of open, multi-
modal common sense knowledge [8, 10, 30], has expanded the
opportunities to further refine, ground and enrich the extracted
object entities.
To form a task-agnostic image representation that enables object
recognition under varying classes and conditions, different features
can come into play. For instance, chairs and plants can be discrimi-
nated from one another, in principle, thanks to their shape alone.
However, coat hangers could be mistaken for plants, if colours
were not taken into account. Hence, the contribution of shape
and colour to the resulting classification needs careful assessment,
before applying Neural Net-based methods that can produce less
interpretable results, with respect to feature importance. Further,
relying on ShapetNet-derived models [8] for similarity matching
provides readily available data, already segmented and labelled,
while also linking object entities with a set of related concepts, for
future knowledge grounding.
Based on these premises, we interrogated on: (i) the relative im-
pact of shape and colour features on the overall object recognition
performance, when the presence of errors propagated from prior
segmentation faults is minimised, (ii) the scalability and perfor-
mance of Siamese-like approaches already proven successful for
person re-identification [31], when applied to ShapeNet based ob-
ject recognition instead. To tackle these questions, we designed five



pipelines, as the starting point to weigh up further application on
images collected on a mobile robot.
In this paper, we present our main contributions, with respect to:

• Assessing the relative importance of shape-derived, colour-
derived and hybrid features when similarity-based matching
is applied against entities from ShapeNet.

• Evaluating the adequacy of feature descriptors in providing a
less expensive and more general object representation, when
applied to ShapeNet 2D views.

• Learning object similarity through inexact matching and a
CNN-based architectures that shares weights in modelling
the two input images, in a Siamese fashion, following an
approach that has only be applied to person re-identification
across successive frames, but not for task-agnostic object
recognition.

For all of the above, we conclude with discussing the obtained
results and the emerged challenges, which will inform future im-
provements in this work. All described data, implemented code and
pre-trained models are available at our Github repository1.

2 BACKGROUND AND MOTIVATION
Recent advances in object recognition methods, such as YOLO
[23, 24] or Faster R-CNN [25], have significantly improved perfor-
mance on predetermined sets of object classes, thanks to expensive
ad hoc training on manually-labelled data.
The costs and lack of flexibility associated with said solutions, espe-
cially when dealing with autonomous agents, have fuelled efforts in
designing a number of unsupervised and semi-supervised methods,
requiring limited labelled data points and ensuring more abstract
and general data representations [4, 14, 33]. Along the same lines,
recent efforts have emphasised the need for autonomous agents
to recognise cross-domain objects and react flexibly to rapidly-
evolving contexts [35]. Addressing similar concerns but from a
different angle, other proposed methods [5] have used Generative
Adversarial Learning on pre-trained Deep Neural Nets, to foster
adaptability to new domains.
On the other hand, the reduced explainability of results obtained
through Deep Neural Network based methods [11], suggests that a
more careful analysis of the contributing features should be com-
bined with "black-box" learning settings, and can benefit all stages
of the knowledge discovery process [26]. Furthermore, identifying
the most prominent descriptors has the potential to provide bet-
ter insights on which modules to fine tune when optimising the
solution, in terms of both performance and computational costs.
As a result, more scalable solutions also represent a more suitable
alternative for mobile robot on-board installation [2, 32]. There-
fore, these strategies can ultimately ensure a tradeoff between the
more expensive and constrained supervised approaches and the
more challenging fully-unsupervised scenarios, where objects are
autonomously recognised, e.g., based on the dynamics of their en-
vironment [12, 17].
As unsupervised and semi-supervised approaches grow in number
and become more established in the context of scene segmentation,
object classification and object grasping, knowledge acquisition pro-
cesses applied upfront, for mapping the robot environment within
1https://github.com/kmi-robots/semantic-map-object-recognition

classes carrying semantic meaning (i.e., semantic mapping [22])
mainly rely on handcrafted knowledge bases or are often based
on ARTags, to control for the complexity of autonomous object
recognition and rather focus on spatial reasoning and rule imple-
mentation [2].
To the best of our knowledge, there has been no prior work, in
the related literature, evaluating possibilities to extract general
features through ShapeNet-based [8] similarity matching, for the
purpose of acquiring task-agnostic knowledge. Further, relative
impacts are here evaluated by isolating the classification problem
from the additional noise carried over from the object segmentation
routines. Thus, the integration of ShapeNet in the proposed work-
flow is not only motivated by the availability of pre-segmented and
pre-labelled data that comes with it, but also by the existing link
between objects and their related concepts, enabling future knowl-
edge grounding. Already used for learning object intrinsics [29]
and for 3D scene understanding [33], models in ShapeNet have in
fact never been used to assess the relative importance of colour and
shape derived features when classifying objects, nor have they been
combined with CNN-based inexact matching methods. Inspired the
application of Siamese-like Networks for person re-identification
[31, 34], we seek to test whether similar methods can be applied to
Shapenet-based object recognition, to ultimately test their ability
to scale towards more diverse classes.

3 EXPERIMENTAL SETUP
3.1 Data preparation
The experiments described in this paper involve different combina-
tions of two main datasets. We focused on natural scenes from the
NYUDepth V2 collection [21], already annotated and segmented,
and reference 2D models derived from the ShapeNet dataset.
NYUSet NYUDepth V2 [21] comprises of 1449 densely labeled
pairs of aligned RGB and depth images and is provided with a
MatLab Toolbox for basic data retrieval and manipulation. We im-
plemented our own Matlab script - extending the provided methods
for segmented entities extraction - in order to mask out each la-
belled region belonging to one of the target object classes and store
them as separate RGB frames. To reduce cross-class imbalances,
we further down-sampled the chair examples available to 1000
instances (see also Table 1).
ShapeNetSet. ShapeNet is a large-scale collection of richly anno-
tated 3D models [8], organised into two subsets: (i) ShapeNetCore,
covering 55 object classes with about 51,300 unique 3D models,
and (ii) ShapeNetSem, consisting of 12,000 more densely-annotated
models across 270 categories. For a number of 3D models, 2D views
of the object surfaces are available as well. Further, ShapeNet ob-
ject annotation is based on synsets, i.e., sets of synonyms defined
according to the WordNet lexical database [19], and is linked with
the ImageNet set as well [10].
We first selected a subset of models, i.e., two for each of the ten
object classes of interest. We will refer to this subset as ShapeNet-
Set1, or SNS1, in the remainder of this paper. Specifically, for most
classes, four 2D views of the selected model were collected, or
manually-derived by rotating an existing view, when not avail-
able. Less window and door examples were included, representing
rotation-invariant models, whereas objects that were either more
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complex in nature or more highly-represented and diversified in the
NYUset, such as chairs and bottles, were slightly oversampled (see
Table 1). Further, we selected a second, larger, subset (ShapeNetSet2,
or SNS2) spread across the same object classes, with ten 2D views
for each target category. Class-wise cardinalities are outlined in
Table 1.

Table 1: Dataset statistics.

Object ShapeNetSet1 ShapeNetSet2 NYUSet

Chair 14 10 1000
Bottle 12 10 920
Paper 8 10 790
Book 8 10 760
Table 8 10 726
Box 8 10 637
Window 6 10 617
Door 4 10 511
Sofa 8 10 495
Lamp 6 10 478

Total 82 100 6,934

3.2 Shape and Color Feature Matching
To tackle the first question on relative importance of colour and
shape features in recognising a specific class of objects, we con-
ducted a first exploratory analysis on the NYUSet, i.e., we evaluated
feature matching-based classification methods alone, leaving poten-
tial error-propagation from segmentation faults out of the picture.
On a similar note, since the segmented regions from the NYUset
were extracted through a blackmask, while 2D views from ShapeNet
lay on a white background, the marginal noise surrounding both the
input objects to classify and the reference views to match against

Table 2: Cumulative (cross-class) accuracy under compari-
son, for all configurations in the exploratory trials and for
two data sets: (i) images in the NYUset matched against
ShapeNetSet1 (SNS1), (ii) views in ShapeNetSet1 (SNS1)
matched against ShapeNetSet2 (SNS2).

Approach Dataset
NYU v. SNS1 SNS1 v. SNS2

Baseline 0.10787 0.10

Shape only L1 0.14350 0.18
Shape only L2 0.14537 0.12
Shape only L3 0.15835 0.19
Color only Correlation 0.15965 0.28
Color only Chi-square 0.14537 0.10
Color only Intersection 0.18777 0.29
Color only Hellinger 0.20637 0.32

Shape+Color (weighted sum) 0.20637 0.32
Shape+Color (micro-avg) 0.16945 0.28
Shape+Color (macro-avg) 0.16513 0.22

had to be reduced. To achieve this, we (i) first converted to grayscale,
(ii) applied global binary thresholding (or its inverse, depending on
whether the input background was black or white respectively), (iii)
contour detection on cascade, and (iv) cropped the original RGB
image to the contour of largest area.
We then framed the classification task as follows: a set of K Shapenet
models,Mc , is defined for c = 1, ...,N object classes of interest (i.e.,
N = 10 in this case). LetVi be the set of 2D views available for each
modelmi ∈ Mc , with i = 1, ..,K . Each input object to classify is
thus matched against each single view vj ∈ Vi , for all K models,
and for all N classes. The mi determining the predicted label is
then the argument optimising either a certain similarity or distance
function, based on the following approaches.
Shape-only matching. Contours extracted from input samples
were matched through the OpenCV built-in similarity function
based on Hu moments [15], i.e. moments invariant to translation,
rotation and scale.We tested three different variants of this methods,
with distance metric between image moments set to be the L1, L2,
or L3 norm respectively.
Colour-only matching comparing the RGB histograms of the
input image pairs. Similarly to the previous case, we relied on the
OpenCV library and tested different comparison metrics, namely
Correlation, Chi-square, Intersection and Hellinger distance.
Hybrid matching. The colour-only and shape-only similarity sco-
res obtained in the previous steps were further combined, using
three different objective functions. In all hybrid configurations, the
selected ShapeNet modelmi was defined as:

mi = argminΘ (1)

Let S andC be the scores obtained with shape-only and colour-only
matching when matching all views against each input image, with
α and β being their relative weights. Then, the weighted sum of
scores is defined as:

θ = αS + βC (2)
Since S is based on Hu-moment norms and should therefore be
minimised, the inverse ofC was taken in those cases were histogram
comparison returned a similarity function with opposite trend, i.e.,
for the Correlation and Intersection metrics. However, the Θ set
was composed differently depending on the considered strategy.
First, ΘT included all θt , so that ΘT = {θt : t = 1, ...,

∑
c
∑
i |Vi |}.

Second, we averaged each θ by model (micro-average), creating ΘZ
and computing its argmin. For z = 1, ...,N

∑
c |Mc |:

θz =

∑
vj ∈Vi θ

|Vi |
(3)

Finally, each θ was averaged by class (macro-average), before being
added to a ΘC :

θc =

∑
i
∑
vj ∈Vi θ∑
i |Vi |

(4)

We assessed results for equal importance of contributing scores
(i.e., α = 1, β = 1), and then, increasing the relative importance of
histogram comparison (i.e., α = 0.3, β = 0.7), based on the prior
batch of tests.
Cross-class cumulative accuracies are outlined in Table 2. Further
class-wise details are left to Appendix A. In the hybrid trials, all com-
binations of shape-only and colour-only methods were evaluated,

3



but we report only the configuration leading to the most consistent
cumulative accuracy across all trials here, for the sake of brevity.
The segmented objects in the NYUset were first matched against
ShapeNetSet1 and, then, the latter was matched against different
views collected under ShapeNetSet2, to control for the inherent
characteristics of the NYU sample. In all described experiments, we
took randomised label assignment as reference baseline.

3.3 Matching Feature Descriptors
Based on the results obtained in Section 3.2, we then tested whether
relying on more general descriptions of image features would in-
crease the accuracy of ShapeNet-based matching. To more easily
assess the marginal variation introduced by these methods with re-
spect to the prior trials, we directly compared ShapeNetSet2 against
the reference ShapeNetSet1, in a more controlled scenario.
For all these trials, we relied on OpenCV built-in methods and
used brute-force matching. Using FLANN-based matching for opti-
mised nearest neighbour search did not lead to any performance
gains, compared to the brute-force approach, most likely due to the
fairly limited size of the input datasets. Therefore, we refrain from
reporting results obtained with FLANN-based matching.
SIFT Firstly introduced by Lowe [16], the SIFT algorithm is based
on the main rationale of describing images through scale-invariant
keypoints. We used L2 norm as distance measure for the match-
ing and trimmed the resulting matching keypoints to the second-
nearest neighbour. A ratio test was then applied to select the best
match among all reference 2D views at each iteration, as proposed
in the original paper [16], setting the threshold to 0.75 and 0.5.
respectively.
SURF was originally conceived for providing a more scalable al-
ternative to SIFT, performing convolutions through square-shaped
filters and, therefore, speeding up the computation [3]. Further,
in SURF the keypoints are identified through maximising the de-
terminant of the Hessian matrix for blob detection. We kept all
the settings used for SURF in these trials and set the Hessian filter
threshold to 400, to not overly reduce the output of the feature
descriptor and thus retain sufficient richness in the representation.
ORB is another alternative approach to feature description im-
plemented in the OpenCV Labs and proposed in [28]. ORB com-
bines FAST for corner-based keypoint detection [27] with improved
feature descriptors derived from BRIEF [7], to accommodate for
rotation invariance. Since in BRIEF descriptors are parsed to bi-
nary strings to reduce their dimensionality, we used the Hamming
distance instead of the L2 norm for this latter set of experiments.
During the evaluation, results were compared against randomised
label assignment, similarly to 3.2. The obtained cumulative accuracy
values are summarised in Table 3. The details on class-wise results
obtained for the illustrated pipeline, are left to Appendix A.

3.4 Deep Neural Inexact Matching
Adapting the inexact-matching architecture proposed in [31] to our
purpose, we implemented a Keras pipeline on top of a Tensorflow
backend [9] for matching pairs of input images and binary classify
them as similar or dissimilar. In [31] this method was designed to
re-identify the same person across different frames; here we test
for whether a similar approach can successfully scale to recognise

Table 3: Cumulative (cross-class) accuracies after matching
feature descriptors of views in ShapeNetSet1 (SNS1) against
ShapeNetSet2 (SNS2).

Approach Accuracy

Baseline 0.10

SIFT 0.25
SURF 0.22
ORB 0.25

diverse objects, in a task-agnostic fashion. This CNN-based archi-
tecture combines successive convolutions and pooling layers to
both input images, sharing weights across the two input pipelines,
drawing from the same rationale as Siamese Networks [6, 34]. Fur-
ther, regions of pixels across the two image representations are
compared so that a larger region is carried over from one image
to another during the matching, hence explaining its inexact na-
ture, as opposed to more traditional exact (Cosine-similarity) based
matching techniques, as the one introduced in [6]. This strategy is
expected to be more robust to wide viewpoint and illumination con-
dition variations. Another property of normalized cross correlation
matching is symmetry, making results independent from the or-
dering of images withing each couple the architecture is presented
with and, thus, reducing the number of parameters needed in the
subsequent layers. In addition to classic Siamese Networks, after
similarity is computed as Normalized-X-Correlation, the output is
further manipulated. Normalized-X-Corr tensors are in fact fed to
two successive convolutional layers followed by Maxpooling, for
dimensionality reduction and to summarize information gained on
the neighbourhood of each pixel into a more dense representation
[31]. Tensors are then fed to a fully-connected layer preceeding the
final softmax layer to generate probabilities for the "similar" and
"dissimilar" classes. In our Keras-based implementation, to achieve
the desired dimensionality to feed to the softmax layer, we applied
a dense layer and a flattening operation on cascade.
Further, the input RGB images were resized to 60x160x3 and the
described model compiled using categorical crossentropy as loss
function and Adam optimiser.
We used ShapeNetSet2 as baseline to form a training set, compris-
ing of 9,450 RGB image pairs, with 52% being examples of similar
images and the remainder 48% being labelled as dissimilar pairs.
At training time, the learning rate was initialised to 0.0001 and its
decay set to 1e−7. Training samples were fed in batches of size
16 to run over up to 100 epochs. An early stopping condition was
defined so that training would stop if the ϵ of loss decrease was
lower than 1e−6 for more than 10 subsequent epochs. As a result,
training completed after 41 epochs, running on a NVIDIA Tesla
P100 GPU.
Two different image sets were utilised on test: (i) 3,321 derived
from image pairs in ShapeNetSet1, and (ii) 8,200 paired examples,
obtained after matching 100 images from the NYUset (where 10
where randomly-picked from each of the 10 classes) with all views
in ShapeNetSet1. The first experiment was conceived for checking
on whether the Neural Network had learned to discriminate similar
ShapeNet models, whereas the second one was meant to provide
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better insights on the results obtained in 3.2 and 3.3. Experimental
results on both configurations, summed up in Table 4, are discussed
in the following Section.

4 RESULTS AND DISCUSSION
Table 2 outlines how, with respect to cross-class, cumulative accu-
racy, all configurations outperformed random label assignment.
Interestingly enough, the weighted sum of shape and colour based
scores were equal to the first-best results obtained with RGB his-
togram comparison alone. This could be due to a need to fine tune
the α and β parameters, or it could also indicate that colour-based
features are more prominent, when concluding about the recog-
nised object. The latter hypothesis would align with another ob-
servation: shape-only trials led to the lowest cumulative accuracy
values, among all tested setups. These observations hold also when
controlling for the input data and comparing SNS2 against SNS1
instead of NYUset.
When taking a more careful look into class-wise results (as shown
in Appendix A), one can notice how different approaches favoured
different subsets of classes, when keeping the input data and bound-
ary conditions constant, with only partial overlap across different
pipelines and without any method completely outperforming the
others in terms of cross-class consistency and robustness. On av-
erage, chairs were more highly recognised than other classes and
most configurations led to unbalanced recognition, favouring cer-
tain classes at the expense of others. This applies also for the best
case scenario, when matching SNS2 against SNS1, indicating that
the inadequacy of the explored methods in robustly identifying all
classes is not to be ascribed solely to the quality and characteristics
of segmented areas within the NYU set. For instance, by looking
at Table 8, it can be noted how the Paper and Window classes are
not recognised in most of cases, even though, overall, the obtained
performance was higher than in Table 7, due to the fact that all
compared models belonged to ShapeNet.
Based on these initial results, when representing the input image in
terms of SURF, SIFT or ORB based feature descriptors, we started
from matching SNS2 against SNS1, to evaluate whether further
application to the NYUset was worthwhile. As shown in Table 9,
results obtained for the latter configurations were not sufficient
and lower than the ones obtained with the hybrid strategies (Table
8), leading to cumulative accuracies in the range of 22% and 25%
(Table 3).

Besides the feature engineering trials, we re-framed similarity
learning also with respect to the Siamese-like architecture intro-
duced in [31]. Our Keras implementation of the Normalized-X-Corr
model was trained to learn an optimised representation from com-
paring pairs of images from SNS2, i.e., 9,450 pairs quite equally
balanced between positive and negative examples, as introduced
in Section 3.4. To achieve a more abstract and compact representa-
tion, where contributing features are not as clearly designed and
discriminated as in the first set of experiments, the classification
task was framed in binary terms at this stage. However, the tested
setups led to unsatisfactory results that clearly indicate overfitting
of the model (see Table 4). The even lower results obtained on
the SNS1-derived test set can be further explained by looking at
the unbalance between positive and negative examples, leading

Table 4: Class-wise Evaluation of our Keras implementation
of Normalized-X-Corr, on the two labeled test sets.

Dataset Measure Similar Dissimilar

ShapeNetSet1 pairs
Precision 0.09 0.00
Recall 1.00 0.00
F1-score 0.16 0.00

Support 295 3026

NYU+ShapeNetSet1 pairs
Precision 0.51 0.00
Recall 1.00 0.00
F1-score 0.67 0.00

Support 4160 4040

to a larger impact of false positives on the overall performance.
The incidence of false positives is also partially caused by how the
Normalized-X-Corr architecture was originally conceived [31], i.e.,
to match wider areas accommodating for varying viewpoint and
luminance condition. However, the results obtained suggest that
the chosen training set, feeding all possible permutations of couples
in SNS2 to also minimise the number of required input labels, was
not introducing sufficient variability, resulting in representations
that did not generalise, even on unseen ShapeNet models. Further,
the original use case of the exploited architecture was person re-
identification, hinting towards further tweaking of the framework
and hyperparamenter tuning to scale to multiple - and more diverse
- object classes than simply human silhouettes.

5 CONCLUSION
In this work, we tested for the relative importance of shape and
colour based features in light of both cross-class and class-wise
evaluation, and in experimental settings where we could control
for the introduction of segmentation faults that would normally
propagate from pre-processing steps. For this reason, we relied on
a combination of a pre-segmented data set, i.e., RGB images from
the large NYUDepth V2 set [21], and based similarity matching
on a subset 2D models derived from the ShapeNet dataset [8]. Al-
though features derived from comparing RGB histograms of the
input images led, on average, to more consistent performances,
none of the experimented pipelines ensured satisfactory results, in
terms of robustness to class variation. Further, when adopting more
general, scale, shift and rotation-invariant image representations,
accuracy of classification by similarity matching was not sufficient,
even when evaluating against alternative models all belonging to
ShapeNet, hence controlling for other boundary conditions. Fi-
nally, the application of the Normalized-X-Architecture for inexact
matching [31], formerly introduced in the context of person re-
identification, led to overfitting and did not allow for subsequent
application on unseen data sets and real-life settings.
All these findings confirmed the need for more scalable methods,
capable of leveraging labelled and unlabelled data points, when
learning object similarities with respect to diverse categories and
taxonomies that imply high within-class heterogeneity. We there-
fore intend tomodify the tested architecture accordingly, to improve
its flexibility, while also increasing the heterogeneity of our datasets
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(e.g., by representing a higher number of classes, and by augment-
ing the cardinality of each class), for further application on RGB
frames captured by a mobile robot in a real-life scenario.
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A TABLES OF RESULTS
The results enclosed in Tables 5, 6, and 7 refer to all exploratory
tests run when images from the NYUset were matched against
ShapeNetSet1 (SNS1) and evaluated class by class. Table 8 summa-
rizes results obtained when combining shape-only and color-only
scores computed on images from ShapeNetSet2 (SNS2) and per-
forming the matching against instances of ShapeNetSet1 (SNS1).
Similarly, class-wise results in Table 9 refer to matching feature
descriptors of views in SNS1 against descriptors of models in SNS2.

6



Table 5: Class-wise results obtained when matching only based on shape.

Approach Measure Chair Bottle Paper Book Table Box Window Door Sofa Lamp

Baseline

Accuracy 0.15600 0.10543 0.11899 0.10132 0.11846 0.08948 0.08104 0.07241 0.09899 0.09414
Precision 0.02250 0.01399 0.01356 0.01110 0.01240 0.00822 0.00721 0.00534 0.00707 0.00649
Recall 0.15600 0.10543 0.11899 0.10132 0.11846 0.08948 0.08104 0.07241 0.09899 0.09414
F1-score 0.03932 0.02470 0.02434 0.02002 0.02245 0.01506 0.01324 0.00994 0.01319 0.01214

L1

Accuracy 0.25900 0.39565 0.04810 0.00132 0.15702 0.00471 0.00000 0.00783 0.36768 0.06276
Precision 0.03735 0.05249 0.00548 0.00014 0.01644 0.00043 0.00000 0.00058 0.02625 0.00433
Recall 0.25900 0.39565 0.04810 0.00132 0.15702 0.00471 0.00000 0.00783 0.36768 0.06276
F1 0.06529 0.09269 0.00984 0.00026 0.02977 0.00079 0.00000 0.00107 0.04900 0.00809

L2

Accuracy 0.08500 0.81413 0.00759 0.00132 0.03581 0.00157 0.00000 0.00978 0.24444 0.02929
Precision 0.01226 0.10802 0.00087 0.00014 0.00375 0.00014 0.00000 0.00072 0.01745 0.00202
Recall 0.08500 0.81413 0.00759 0.00132 0.03581 0.00157 0.00000 0.00978 0.24444 0.02929
F1 0.02143 0.19073 0.00155 0.00026 0.00679 0.00026 0.00000 0.00134 0.03258 0.00378

L3

Accuracy 0.32700 0.46413 0.04557 0.00395 0.07989 0.01099 0.00162 0.00978 0.32121 0.15690
Precision 0.04716 0.06158 0.00519 0.00043 0.00836 0.00101 0.00014 0.00072 0.02293 0.01082
Recall 0.32700 0.46413 0.04557 0.00395 0.07989 0.01099 0.00162 0.00978 0.32121 0.15690
F1 0.08243 0.10873 0.00932 0.00078 0.01514 0.00185 0.00026 0.00134 0.04281 0.02024

Table 6: Class-wise results obtained when comparing RGB histograms (baseline same as Table 5)

Matching metric Measure Chair Bottle Paper Book Table Box Window Door Sofa Lamp

Correlation

Accuracy 0.56500 0.04130 0.20506 0.09211 0.03581 0.06750 0.08104 0.03327 0.14949 0.12971
Precision 0.08148 0.00548 0.02336 0.01010 0.00375 0.00620 0.00721 0.00245 0.01067 0.00894
Recall 0.56500 0.04130 0.20506 0.09211 0.03581 0.06750 0.08104 0.03327 0.14949 0.12971
F1 0.14243 0.00968 0.04195 0.01820 0.00679 0.01136 0.01324 0.00457 0.01992 0.01673

Chi-square

Accuracy 0.48900 0.00000 0.00000 0.00921 0.13085 0.04710 0.44408 0.00196 0.00000 0.23431
Precision 0.07052 0.00000 0.00000 0.00101 0.01370 0.00433 0.03952 0.00014 0.00000 0.01615
Recall 0.48900 0.00000 0.00000 0.00921 0.13085 0.04710 0.44408 0.00196 0.00000 0.23431
F1 0.12327 0.00000 0.00000 0.00182 0.02480 0.00792 0.07257 0.00027 0.00000 0.03022

Intersection

Accuracy 0.57200 0.19565 0.30886 0.01447 0.03581 0.01884 0.01945 0.04892 0.38182 0.06485
Precision 0.08249 0.02596 0.03519 0.00159 0.00375 0.00173 0.00173 0.00361 0.02726 0.00447
Recall 0.57200 0.19565 0.30886 0.01447 0.03581 0.01884 0.01945 0.04892 0.38182 0.06485
F1 0.14419 0.04584 0.06318 0.00286 0.00679 0.00317 0.00318 0.00672 0.05088 0.00836

Hellinger

Accuracy 0.53800 0.08370 0.38228 0.01974 0.03168 0.03925 0.44895 0.05284 0.24242 0.05649
Precision 0.07759 0.01110 0.01110 0.00216 0.00332 0.00361 0.03995 0.00389 0.01731 0.00389
Recall 0.53800 0.08370 0.38228 0.01974 0.03168 0.03925 0.44895 0.05284 0.24242 0.05649
F1 0.13562 0.01961 0.02158 0.00390 0.00601 0.00660 0.07337 0.00725 0.03231 0.00729
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Table 7: Class-wise results obtainedwhen combining L3 norm-basedHumomentmatchingwithHellinger distance-basedRGB
histogram comparison, when class labels are determined based on minimizing: (i) the weighted sum of scores (ii) the micro-
average of scores and (iii) the macro-average of scores. We report the weight configuration that ensured the most consisted
results, among the tested ones, i.e., setting α = 0.3, β = 0.7. See Table 5 for reference baseline.

Argmin function Measure Chair Bottle Paper Book Table Box Window Door Sofa Lamp

Weighted Sum

Accuracy 0.65300 0.14891 0.12658 0.00526 0.10055 0.02512 0.29011 0.05871 0.28081 0.20921
Precision 0.09417 0.01976 0.01442 0.00058 0.01053 0.00231 0.02581 0.00433 0.02005 0.01442
Recall 0.65300 0.14891 0.12658 0.00526 0.10055 0.02512 0.29011 0.05871 0.28081 0.20921
F1 0.16461 0.03489 0.02589 0.00104 0.01906 0.00423 0.04741 0.00806 0.03742 0.02698

Micro-average

Accuracy 0.37800 0.13587 0.18861 0.02105 0.04821 0.07064 0.37925 0.10568 0.22626 0.07741
Precision 0.05451 0.01803 0.02149 0.00231 0.00505 0.00649 0.03375 0.00779 0.01615 0.00534
Recall 0.37800 0.13587 0.18861 0.02105 0.04821 0.07064 0.37925 0.10568 0.22626 0.07741
F1 0.09529 0.03183 0.03858 0.00416 0.00914 0.01189 0.06198 0.01451 0.03015 0.00998

Macro-average

Accuracy 0.39000 0.15543 0.39241 0.00000 0.11846 0.06750 0.00000 0.00000 0.29495 0.05649
Precision 0.05624 0.02062 0.04471 0.00000 0.01240 0.00620 0.00000 0.00000 0.02106 0.00389
Recall 0.39000 0.15543 0.39241 0.00000 0.11846 0.06750 0.00000 0.00000 0.29495 0.05649
F1 0.09831 0.03641 0.08027 0.00000 0.02245 0.01136 0.00000 0.00000 0.03931 0.00729

Table 8: Similarly to Table 7, but matching SNS2 against SNS1.

Argmin function Measure Chair Bottle Paper Book Table Box Window Door Sofa Lamp

Weighted Sum

Accuracy 0.90 0.10 0.00 0.20 0.30 0.10 0.00 0.50 0.40 0.70
Precision 0.09 0.01 0.00 0.02 0.03 0.01 0.00 0.05 0.04 0.07
Recall 0.90 0.10 0.00 0.20 0.30 0.10 0.00 0.50 0.40 0.70
F1 0.16 0.02 0.00 0.04 0.05 0.02 0.00 0.09 0.07 0.13

Micro-average

Accuracy 0.80 0.10 0.00 0.30 0.20 0.20 0.10 0.60 0.30 0.20
Precision 0.08 0.01 0.00 0.03 0.02 0.02 0.01 0.06 0.03 0.02
Recall 0.80 0.10 0.00 0.30 0.20 0.20 0.10 0.60 0.30 0.20
F1 0.15 0.02 0.00 0.05 0.04 0.04 0.02 0.11 0.05 0.04

Macro-average

Accuracy 0.70 0.60 0.00 0.00 0.10 0.10 0.00 0.00 0.60 0.10
Precision 0.07 0.06 0.00 0.00 0.01 0.01 0.00 0.00 0.06 0.01
Recall 0.70 0.60 0.00 0.00 0.10 0.10 0.00 0.00 0.60 0.10
F1 0.13 0.11 0.00 0.00 0.02 0.02 0.00 0.00 0.11 0.02

Table 9: Class-wise results obtained when matching feature descriptors derived from SIFT, SURF and ORB. We report the
configurations that ensured the most consistent results, among the tested ones, i.e., for a ratio test threshold set to 0.5.

Approach Measure Chair Bottle Paper Book Table Box Window Door Sofa Lamp

SIFT

Accuracy 0.30 0.30 0.00 0.40 0.00 0.40 0.30 0.20 0.30 0.30
Precision 0.03 0.03 0.00 0.04 0.00 0.04 0.03 0.02 0.03 0.03
Recall 0.30 0.30 0.00 0.40 0.00 0.40 0.30 0.20 0.30 0.30
F1 0.05 0.05 0.00 0.07 0.00 0.07 0.05 0.04 0.05 0.05

SURF

Accuracy 0.70 0.10 0.00 0.10 0.10 0.00 0.30 0.30 0.30 0.30
Precision 0.07 0.01 0.00 0.01 0.01 0.00 0.03 0.03 0.03 0.03
Recall 0.70 0.10 0.00 0.10 0.10 0.00 0.30 0.30 0.30 0.30
F1 0.13 0.02 0.00 0.02 0.02 0.00 0.05 0.05 0.05 0.05

ORB

Accuracy 0.10 0.70 0.00 0.20 0.10 0.00 0.30 0.20 0.40 0.50
Precision 0.01 0.07 0.00 0.02 0.01 0.00 0.03 0.02 0.04 0.05
Recall 0.10 0.70 0.00 0.20 0.10 0.00 0.30 0.20 0.40 0.50
F1 0.02 0.13 0.00 0.04 0.02 0.00 0.05 0.04 0.07 0.09
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