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ABSTRACT

Our long-term research goal is to develop intelligent sys-
tems that can support human learning. We are particularly
interested in developing an approach to apprenticeship learn-
ing which occurs during the physical context of task execu-
tion and is known to be very effective in learning procedural
tasks such as equipment maintenance or artifact assembly.
We describe our initial progress in building such system -
JARvVIs - that leverages real-time computer vision, high-level
inference, and augmented reality technology to monitor and
support human task learning through apprenticeship.
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1 INTRODUCTION

Conversational systems are becoming pervasive in our world;
they support us in accessing information, performing tasks,
and communicating with other people. As strides are made
in Al, ML, and NLP algorithms, it is reasonable to expect
that intelligent conversational systems will become more so-
phisticated and will integrate seamlessly with our physical
and online worlds, assisting us in a variety of tasks. We are
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motivated to develop conversational systems that can sup-
port human task learning in physical worlds. Tasks include
maintaining and repairing a complex machine such as an
industrial printer or building an artifact such as Ikea furni-
ture. To be effective trainers, conversational systems have
to be aware of and adaptive to two types of contexts: physi-
cal context of task performance and cognitive context of the
human learner. In this paper, we explore how a conversa-
tional system can reason about and adapt to these contexts.
To do this, we bring together deep learning approaches for
computer vision and planning approaches for adaptive in-
struction reasoning.

Training by Apprenticeship

Learning from social interactions is one of the most funda-
mental forms of learning in the human society [1, 20, 21].
Parents contribute to early learning by helping children to
segment, categorize, and classify their perceptions through
language. Teachers train students in arithmetic, problem solv-
ing, and conceptual learning. A master guides skill develop-
ment in apprentices through coaching. During such inter-
actions, the facilitator instructor and the primary learner
form a system of joint learning, with the former helping
the latter in achieving critical conditions of learning. The
instructor may provide examples through demonstrations,
restrict exploration through supervision, provide feedback
and encouragement, and scaffold learner’s performance. In-
teractive learning critically distributes the onus of learning
between the interacting participants. The instructor takes
initiative in identifying the relevant objects and relation-
ships in the shared environment, structuring and decompos-
ing tasks, and providing relevant explanations. The learner
takes initiative in actively interpreting the instructions, ap-
plying them to the current situation, analyzing successes
and failures, posing relevant queries that elicit useful infor-
mation from their instructors, and assimilating information
with their world knowledge.

Our research aims at developing intelligent conversational
systems that can support human learning via apprenticeship.
Apprenticeship learning is process of acquiring knowledge
within the actual, physical context of practice. When com-
pared to classrooms where learning is more theoretical and
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focuses on the why, apprenticeship learning focuses on the
how. Consequently, such training is shown to be very effec-
tive for learning physical, procedural tasks such as equip-
ment maintenance or furniture assembly. This paper intro-
duces JARVIS - Just an Augmented Reality/Virtual Instruc-
tion System - that can guide people as they are performing
new, physical tasks. Through an augmented reality headset,
such as the HOLOLENS, JARVIs has a shared view of the hu-
man trainee’s world. It can observe the trainee’s workspace
through the egocentric camera on HoloLens and follow hu-
man task execution. If the trainee struggles to make progress
towards their task goal, JaArVIs provides instructions on how
to proceed further through instructional dialog. The dialog
may incorporate mixed-reality visual elements such as high-
lighting relevant objects, overlaying expected motion, etc.

Challenges for Conversational Trainers

There are several challenges that must be addressed in or-
der to build adaptive conversational training systems that
can guide human task performance and learning in physi-
cal worlds. There is significant perceptual reasoning com-
plexity. First, JARvIs must inspect its video stream in real-
time to identify relevant objects, their parts, their relation-
ships with other objects, and their functional state. Then,
it must adapt to partial observability of the domain due to
the ego-centric camera. As the human trainee looks through
HoloLens at the workspace, only a portion of the workspace
is visible. The perceptual information changes rapidly as the
trainee human moves about their workspace. JARVIS must
integrate partial perceptual information it receives into a
stable state representation of the environment so that it is
able to reason about task execution meaningfully. To adapt
instructions to be most relevant, JARvis must model the task
the trainee is attempting to perform. The task model cru-
cially includes relevant objects, relationships, actions, and
goals so that Jarvis can dynamically generate plans to help
the trainee achieve task goals based on the current problem
state. Human trainees cannot be guaranteed to follow the
instruction script exactly, i.e., human trainees may divert
from a specific script and explore their environment. There-
fore, Jarvis must be adapt to such non-determinism in its
reasoning. Further, JARvis must model the specific trainee,
their needs and knowledge, to provide instructions relevant
to them. Finally, these instructions should be provided nat-
urally with minimum interference with the trainee’s task
performance. The conversational training system should be
mixed-initiative, providing opportunities to the trainee to
ask for information relevant to their knowledge and perfor-
mance.

These challenges are tremendous and require integration
of algorithms from several diverse Al disciplines including
computer vision, knowledge representation and reasoning,
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conversational systems, and human modeling among oth-
ers. In this paper, we describe the preliminary steps taken
towards building this adaptive conversational system. We
focus on two problems:

e Perceptual state integration: The conversational sys-
tem should maintain a stable environmental state in
presence of partial vision from ego-centric camera for
instruction generation, and

e Contextual instruction generation: The conversa-
tional should adapt its instruction to be most relevant
given real-time environmental state.

To do this, we bring to bear deep learning vision algorithms
[6, 8] and the Soar cognitive architecture [7]. The main con-
tribution of this paper is integrating deep learning archi-
tectures that operate with numeric, continuous representa-
tions with rule-based inference architectures that rely on
relational representations for intelligent adaptive behavior
in a conversational system.

2 PRELIMINARIES

We begin by a brief overview of deep learning architectures
for computer vision and that of the Soar cognitive architec-
ture. Later we describe how both of these are brought to-
gether in a system that can reliably perform real-time per-
ceptual reasoning and provide contextual instructions.

Deep Learning Architectures for Vision

Modern computer vision techniques are based on an old
idea called convolutional neural networks (CNNs) [8]. In
this model, patterns are captured in terms of real-valued
weight patterns. These patterns are repeated across various
locations with identical weights in order to enable the abil-
ity to recognize the same pattern in different locations in an
image.

In combination with larger datasets and GPU based com-
putation accelerators, deep versions of convolutional neural
networks that have many layers of convolutions now domi-
nate the field [6]. These deep networks allow patterns to be
composed hierarchically. Low-level patterns identify edges
or color textures. Higher level patterns identify relevant fea-
tures such as the presence of eyes. The highest level layers
identify semantic entities such as a face.

Deep convolutional neural networks typically do well on
large datasets. However, the most popular networks such
as AlexNet [6], GoolgLeNet [18], VGGNet [17], and ResNet
[3] have not only shown promising results in large datasets,
but have also revolutionized the field of computer vision
through transfer learning, where pretrained weights from
these models, specifically those that can identify low-level
patterns can now be used as a starting point for several tasks
where the dataset size is modest.
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While specialized architectures have been developed for
each task such as image classification and pixel-wise seg-
mentation, we are particularly interested in object detection
that localize multiple instance of objects of various classes
in an image frame. One example method is the Single shot
multibox detector (SSD) [9], which has demonstrated to have
high throughput and achieve impressive accuracy. In the
SSD architecture, an output array is constructed with dis-
tinct dimensions which represent distinct discrete hypothe-
ses about the position, aspect ratio, and scale of an object in
each image frame. These dimensions are predicted using a
real valued regression function which fine tune the position
and dimensions as well as provide a confidence value about
the class of the object.

Soar Cognitive Architecture

The cognitive reasoning components of JARvis are imple-
mented in the Soar cognitive architecture [7]. Soar has been
used extensively to develop interactive intelligent systems
[4, 10, 12-14] as well as cognitive models of human task
learning [11]. Through its various long-term memories and
corresponding learning algorithms, a Soar agent can rep-
resent different kinds of knowledge that aid in reasoning
about perceptual state as well as instructions.

Working Memory: A Soar agent’s beliefs about the cur-
rent state are held in its working memory. These beliefs are
described using relational representations and are derived
from its current and recent sensory data of the world, cur-
rent goals, and its interpretation of the situation given its
goals. The data in working memory is represented as a sym-
bolic, labeled graph of working memory elements (WMEs).
Working memory input and output buffers provide inter-
faces to the perceptual and interactive interface. WM also
has interfaces to other long-term memories.

Procedural Memory: Soar’s how-to knowledge is encoded
as if-then rules called productions. A rule has two parts: con-
ditions and actions. The conditions part of the rule match
against the working memory graph and changes it by either
adding or removing nodes in it as per the actions part. The
rules fire in parallel. Soar does two kinds of inference:

(1) elaboration: Elaboration rules perform non-persistent
monotonic inference given a elements in the current
state. This means that the actions part of the rule is
only part of the working memory graph only until the
conditions part matches the working memory. When
conditions stop matching, the changes to the working
memory graph are reversed.

(2) operator-supported: Operator proposal, selection, and
application rules perform persistent inference. Based
on the current state,the proposal rules are similar to
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elaboration rules and suggest an operator to be ap-
plied, the selection rules evaluate all the operators that
have been proposed, and once a selection is made the
application rules make a persistent changes to the work-
ing memory graph. This change can only be reversed
through another operator-supported process. An op-
erator is the locus of decision making in Soar and this
process of proposing, selecting, and applying operator
is at the core of deliberative reasoning in Soar.

Soar has a meta-cognitive process built into it. Where there
are no further inferences to be made or there is not a set of
rules that can select one specific operator, Soar agent has an
impasse. The impasse results in a new sub-state with the pre-
vious state (in which reasoning became stagnant) becoming
a super-state. The sub-state persists until further reasoning
in the sub-state can determine the next inference step or op-
erator for the superstate. For example, if the next operator
cannot be determined for the super-state, the sub-state may
execute a one-step search to evaluate which available oper-
ator when applied directly to the superstate results into a
goal state. This impasse-driven resolution process is at the
center of all problem solving in Soar.

Long-term Declarative Memories: Apart from these
components, a Soar agent also has an episodic memory that
is a store of all past experiences of the agent. Episodic mem-
ory is a graph that efficiently encodes transitions in the work-
ing memory graph over the lifetime of the agent. The Soar
agent also has a semantic memory that is a store of declara-
tive facts about the world. The agent can access the contents
of these memories by executing a query against them. The
information is retrieved in a working memory buffer and is
available for problem solving.

3 ENVIRONMENT OVERVIEW

To study apprenticeship training, we are exploring the do-
main of equipment operation and maintenance. A printer
is a common piece of equipment found in office. While the
typical use of printers is fairly straightforward, complicated
tasks such as printing a booklet are not trivial and can ben-
efit from contextual assistance. As printers become more
complex in what they can do, maintenance tasks such as
replacing various toner cartridges are becoming more chal-
lenging for a typical user. Repairing a complex, electronic
machine is challenging for most users of the machine. Fur-
ther, manufactures have a large variety of offerings that dif-
fer along several dimensions. As a domain, equipment op-
eration and maintenance provides a wide array of tasks of
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Figure 1: VERSALINK B405 and its outer components. Repro-
duced from the manual that accompanies the printer.

varying difficulty that can be used to study training effi-
cacy of intelligent systems. From a usability perspective, au-
tonomous instruction systems can allow the users to per-
form maintenance tasks, fix problems and use advanced fea-
tures without waiting for a service call or trainer to come out
to their site. Such systems also reduce the cost of service by
eliminating the need to fly out technicians to remote sites.
For this paper, we greatly simplify the range of tasks that
JARvis provides instructions on and focus on maintenance
operations on a specific Xerox printer - VERSALINK B405 (in
Figure 1). Our task environment consists of the following:

e Components: The printer components relevant for the
discussion in this paper are:
(1) door-type components: bypass-tray(2), front-door(3),
document-feeder, paper-tray,

1. Tray1 6. Card Reader Bay

2. Bypass Tray 7. Duplex Automatic Document Feeder
3. Front Door 8. Output Tray

4. USB Memory Port 9. Output Tray Paper Stop

5. Control Panel 10. Optional 550 Sheet Feeder, maximum
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human trainee can set a task to a goal they are inter-
ested in or ask what’s next? JARvIs responds via text
as well. This interaction interface is preliminary in de-
sign and we expect JARVIS to interact with the human
in a audio-visual conversation in which the next ac-
tion is described through speech and the relevant com-
ponents are highlighted in augmented reality. This pa-
per focuses on the knowledge representations and al-
gorithms behind instructional reasoning.

4 AGENT DESIGN
Generating Perceptual Events

JARvVIS’ vision system uses the single shot detector (SSD)
model described previously to generate candidate detections
of parts and their current states. The detector model is trained
in a separate process, using ego-centric video collected us-
ing the HoLoLENs as well. During the data collection pro-
cess, bounding boxes are constructed around the objects,
and ego-centric videos are recorded through a custom-made
HoroireNs application called ARLabeler [16]. There are two
significant advantages of this approach compared to the tra-
ditional labeler used on 2D images: (a) HOLOLENS can record
ego-centric views as opposed to third-person view of the
objects, and consequently, the model can be directly incor-
porated in Jarvis for detection; (b) the markers are placed
on a mesh that follows the object’s curvature, therefore, the
bounding box coordinates do not shift their positions when
viewed from different angles. The videos recorded from the
HoroLENSs are saved for pre-processing (each frame is saved
as an image). These images along with their bounding box
coordinates are then converted to a training dataset in PAS-

(2) movable components: drum-cartridge, and toner-cartridge CAL format [2] for developing a detection model.

(3) locks: drum-cartridge-lock

The door-type components remain attached to the printer

and can be in states open or closed. The movable ob-
jects can be removed from the printer and they can
be in states in or out. Some movable components can
be in the locked state in which they are fastened to
the assembly via a locking mechanism and have to be
unlocked before being moved.

o Actions: The actions a human trainee can perform are
targeted towards changing the state of various compo-
nents. This state change can expose other components
of the printer. For example, the trainee may open the
front-door changing the state of the component to open.
This will expose the components drum-cartridge and
toner-cartridge.

e Human-Agent Interaction: The instructional interac-
tion occurs through a visual interface using which the

The SSD model we implemented uses pretrained weights
from reduced VGG-16 network [9] and fine-tunes the final
detection layers on the training images collected for the printer.
The trained weights are saved and used in real-time detec-
tion. As part of the detector, overlapping detections of the
same class are suppressed; we used a modest non-maximum
suppression (NMS) value of 0.45, so that it suppresses weak
object detections to avoid multiple detection of the same ob-
jectbut at the same time allows strong detections of multiple
objects that may overlap in the real-world.

The model is intended to detect objects in each frame of
the video feed. Because the user operates the system with
a hand-held or head-mounted device, the image frame can
jump around dramatically, and motion blur can be intro-
duced into the frame. This can result in spurious detections
or false positives. In order to make the detections more ro-
bust, we pass the real-time detections through a temporal
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smoothing filter which consists of an appearance thresh-
old and a sliding window across the frames. The appear-
ance threshold is defined as the ratio of the number of times
the object is detected in each frame to the total number of
frames in the sliding window. For example, if the appear-
ance threshold is 0.8, and sliding window length is 20 frames,
then the objects should have been detected at least in 16
frames to make to the final detection list. Larger sliding win-
dow length leads to more robust predictions, but the final de-
tection list output is slower, so there is a trade-off between
latency of detection and stability that must be tuned empir-
ically.

Figure 2 shows the perceptual events generated by the vi-
sion system. Detected component states such as document
feeder open, drum cartridge in etc. along with their bound-
ing boxes and detection confidence are included in the event
stream. This event stream is fed into the state integrator de-
scribed below.

Maintaining Task State

As we discussed earlier, the HOLOLENS camera is ego-centric
and at a time point only has partial perceptual information
of the task. For example, Figure 2 shows various images col-
lected while the trainee attempts to remove the drum car-
tridge (visible in the right most image). However, to rea-
son about and provide assistance for the task, JARvIS must
maintain a holistic representation of the current task state.
To maintain a stable state representation of the task, we
propose a novel approach of bringing together long-term
knowledge of a world model with current perceptions. This
approach is implemented in the Soar cognitive architecture
and relies on its memories and inference mechanisms.

State Representation. JARV1S’s beliefs about the current state
of the task environment as a set of unary predicates defined
over the set of relevant components. These predicates are of
following three types:

e Real perceptual predicates: JARVIS uses predicates such

as exists(front-door), closed(front-door), or in(drum-cartridge)

(describing that the component drum cartridge is in
the printer) to represent its world. While these pred-
icates are symbolically represented in the cognitive
system, they eventually ground out to sub-symbolic
information in the deep learning vision system. This
connection is unidirectional, i.e. the vision system can
inform the cognitive system about existence of certain
predicates however, the cognitive system has no influ-
ence over the perceptual system’s reasoning & infer-
ence.

e Assumed perceptual predicates: When Jarvis doesn’t
have a complete representation of the task state, it as-
sumes a set of perceptual predicates to be true in order
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to reason about the task. These predicates are resolved
when there is more information available as the cam-
era moves during task performance. For example, in
Figure 2 left, the component drum cartridge is not vis-
ible. However, if Jarvis was asked to provide assis-
tance for removing the drum cartridge task, it would
assume a the predicate closed(front_door) and gener-
ate an instruction plan. Previous theoretical research
[15] suggests using such representation for environ-
ments with incomplete information.

Task predicates: JARvVIS maintains a set of task pred-
icates that are inferred using the current perceptual
information and its long-term model of the world (de-
scribed in the next section). Examples include visible(c)
when the component c is in view, accessible(c) when
component ¢ can be acted upon, and restricted(c) when
a component c is restricted due to some property of
the state.

World Model. JarRv1s has long-term beliefs about the its task
environment that are stored in its semantic memory indexed
by the printer model name. They pertain to the structure of
the printer and relationships between different components.
In particular, we are interested in modeling three aspects of
the task environment:

e Structure: This part of the model contains a list of all
the components (such as front-door) and their percep-
tual states([open,close]). As we will see later, knowing
what components exists in the environment is helpful
in maintaining a holistic task state.

Default state predicates: This part of the model en-
codes which state predicates can be assumed to be
true about which components when no information
is available from the vision system. For example, front
door is assumed to be closed.

Occlusion: This part of the model encodes which com-
ponents what state occlude which others. For exam-
ple, front door when closed occludes drum-cartridge
and toner-cartridge.

Restriction: This part of the model encodes which com-
ponents in what state restrict which others. For ex-
ample, when locked, drum cartridge lock restricts the
movement of drum cartridge.

State Inference. JARVIS’ state inference system is encoded in
a set of productions in Soar’s procedural memory and occurs
as follows:

(1) Initialize current task state (CTS): For initializing task
state corresponding to a printer, JARvIs queries for a
relevant world model in its semantic memory. Then,
it creates a working memory representation of all the
components represented in the world model by adding
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Figure 2: Scene capture from the camera and perceptual events detected by vision classifiers

the existence predicate for all of them. It marks the
visibility of each component to be not be true. Let
this working memory representation be the CTS. CTS
represents the beliefs of Jarvis about the state of its
task environment. Initializing the CTS is an operator-
supported persistent inference and it changes only when
there is deliberate decision to update it. Persistent CTS
ensures that even when perceptual events flicker in
the vision system, JARvIS’s beliefs about the task are
stable.

(2) Compare with perceptions: As the perceptual stream
begin coming in, JARVIS compares its CTS with the
perceptual stream. If a component in the CTS is not
visible but the perceptual system is detecting a state
event for the component, it marks the component vis-
ible. Similarly, if a component in visible in the CTS,
but the perception system is not detecting any state
event for the component, that component is marked
to be not visible. This is an elaboration inference.

(3) Update current model: If a component is visible, JARvVIs
starts tracking any perceptual event detected related
to the component and adds or removes relevant pred-
icates from the current model. For example, if front
door is visible, JARV1S, upon opening it the CTS will in-
clude open(front-door). This is an operator-supported
inference and is persistent. Consequently, if a com-
ponent is not visible, JaArRvis maintains the predicates
from the last time it was visible. These changes are
supported by operators and are persistent.

(4) Infer accessibility: If a component is visible, an elabo-
ration rule also creates a predicate indicating that the
component is also accessible to be acted upon. This in-
ference encodes the assumption that that if a printer
component is in the human’s field of view (correlated
with JARrvis’), they can manipulate it. If something
is not in the field of view either because the human
is looking somewhere else or that they are occluded
by another component (front door occludes toner car-
tridge in the domain), the occluding component has

to be removed (by opening the front door). This is an
elaboration inference.

(5) Infer restrictability: If for a component ¢, the world
model encodes that there exists another component
¢’ which in a specific state restricts ¢ and the current
model has a predicate indicating ¢’ in the specific state,
c is considered restricted. JArRVIs adds a restricted pred-
icate for ¢ in its CTS. This is an elaboration inference
as well.

Every decision cycle, JArRvIs’ reads on input from the vision
system and performs the outlined inference. A typical deci-
sion cycle is Soar runs in about 50ms.

Planning Task Actions

In the previous section, we described how JARvIs maintains
a stable, cohesive state representation of the task (CTS) in a
partially observable environments. Maintaining a cohesive
state is critical for reasoning about the task. Currently, the
assistance JARVIS provides is limited to what action to do
next given a task that the trainee is performing and is deter-
mined using a planning formulation.

Background planning knowledge. In addition to the state rep-
resentation, a planning formulation requires a goal that is
defined in the terms of the state representation and a set of
actions defined in terms of their pre-conditions and effects.
In the current variation, JARVIS knows of two tasks: remov-
ing a drum cartridge and removing a toner cartridge. These
goals are represented as a composition of perceptual predi-
cates that perceptual system can detect individually in the
scene. Through an elaboration inference, JARVIs can also de-
tect when the goal composition is true in the scene.
Actions are represented using the operator-supported in-
ference in Soar. Operator proposal rules test for the pre-
conditions of actions against the current working memory
(containing CTS) and propose the action if there is a match.

For example, if the CTS encodes that front door is open, close(front-

door) will be proposed. Selection of a specific action opera-
tor is determined through planning and is described in the
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following text. Once an operator is selected, the operator
application rules will change the CTS in accordance with
action part of the rule. Jarvis has two different types of oper-
ator application rules that are used contextually. These con-
texts are called problem spaces in Soar. When JArvis is plan-
ning (described in detail in the next section), the application
rules encode how the world will change when the particu-
lar action operator is applied. Le, for the action close(front-
door), the operator application rules encode that the result-
ing world will contain the predicate front door is closed and
not contain the predicate front door is open. When JARvIs
moves into the real-world interactive context, the operator
application rules encode a communicative act. For exam-
ple, for operator close(front-door), the application rule will
encode inform(close, front-door). This communicative act is
then passed to the human-agent interaction system which
may use speech or visual modality for conveying this to the
human trainee.

Interactive, Contextual Planning.

(1) Set a planning goal: The human trainee can use the
set-task interaction to set a goal for the planner. Upon
receiving this instruction, JARVIs instantiates the def-
inition of this goal in its working memory and begins
actively tracking if this composition is true in the en-
vironment. Upon asking, whats’ next? after setting a
goal, JARVIs can begin planning.

(2) Switch problem space (context): Upon being asked what’s

next?, JARVIs switches to the planning context and cre-
ates a copy of the CTS in this context.

(3) Complete the world: As we discussed earlier, JARvVIS
operates under partial-observability. Consequently, it
could be the case that when it is asked to plan, it does
not know the complete task state. If this is the case,
JAarvis applies its world model to include certain pred-
icates in CTS about objects that are not visible to as-
sume a certain state about the world. This process re-
sults in an augmented CTS which is based on some in-
formation from the perception system and some from
the world model encoded in JARVIS.

(4) Search for the plan: Once the CTS is augmented, JARVIS
begins planning. The planning process in Soar is build
on its impasse structure. In the initial CTS, several ac-
tions can be taken and consequently, several action
operators are proposed. As JArRvIs does not have any
rules to select between the proposed operators, an im-
passe occurs. Due to this impasse, a sub-state is cre-
ated which will persist until the impasse in the super-
state is resolved (i.e. a specific action operator can be
selected). In this sub-state, a copy of the CTS is created.
Then, JARvIs evaluates a randomly selected action op-
erator to see if applying that operator will result in
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the goal state. To do this, the selected action opera-
tor is applied. The application of the selected operator
makes changes in the copied CTS in accordance with
the application rules. If the resultant state does not in-
clude the goal, an impasse will result again causing
sub-state creation and action evaluation to occur re-
cursively. If the resultant CTS contains the goal, eval-
uation of the action operator will be marked as a suc-
cess causing the impasse in the super-state to resolve
as now the action evaluated a success can be applied.
The success evaluation will pass up in the recursion
chain eventually selecting an action in the initial CTS.
Various kinds of search strategies can be applied adding
heuristics about how actions are selected for evalu-
ation as well as constraining the depth of recursion.
The current implementation uses iterative-deepening
search. The output of the planning process is an action-
operator that when applied to the CTS will move the
task closer to the selected goal. Let this be result-operator.

(5) Deliver instruction contextually: When the planning
operator succeeds, JARVIS moves into the real-world
context. In this context, application of the result-operator
generates a communication act of informing the trainee
of the action. Currently, the next recommended ac-
tion is displayed in an interaction window. After com-
pleting the action in the world, the trainee can ask
what’s next? to trigger planning again. The planning
process can be triggered whenever the trainee needs
more assistance. A valid plan is generated for the CTS
in which assistance was requested. Contextual gener-
ation of plans results in mixed-initiative instruction
in which the trainee can choose to explore the task by
themselves but can ask for support if they aren’t sure
how to make progress.

5 SYSTEM DEMONSTRATION

We can demonstrate real-time contextual instructional sup-
port from JARVIs on tasks performed in four scenarios char-
acterized by varying trainee behavior.

Regular. In this scenario, the trainee accurately follows JArRvVIS’
instruction. As shown in Figure 3 (left), the task begins in the
initial state S1 and the trainee selects a task - replace-toner-
cartridge. When prompted for the next action, JARVIs begins
planning for state S1 and recommends the action open front
door to the trainee. The trainee applies this action in the task
environment and the task transitions to 52. The trainee asks
for the next action. This interactive task execution continues
until the goal state is detected in the environment.

Exploratory. In this scenario, the trainee explores the envi-
ronment by taking actions beyond what was instructed. In
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Figure 3: Task states in execution of remove toner cartridge, trainee-JARVIS interaction, and JArvis’ beliefs about the states of

different components in the task environment.

S1 (Figure 3), after executing open front-door, the trainee un-
locks the toner-cartridge without any prompting from JARVISs,
consequently landing in s3. JaArv1s is able to handle this inde-
pendent action execution by the trainee and when prompted
for the next action responds correctly by suggesting take
toner cartridge out.

Interruptive. In this scenario, the trainee interrupts JARVIS’
planning operation by executing an unprompted action. In
S1 (Figure 3), as JARvIs is planning, the trainee opens the
front-door transitioning the task to s2. JaArvis maintains the
context of its planning while it is executing the iterative-
deepening search. As the context changes due to the trainee’s
actions, JARVIS abandons its search and initiates a new search
with the current task state. This correctly produces the rele-
vant action open toner cartridge.

Incorrect. In this scenario, the trainee misinterprets the in-
struction. In S1 (Figure 3), upon being instructed to open
front-door, the trainee opens the document feeder instead. While
JARVIs is correctly able to reason that the task state still
is S1 and determine the next action open front-door, from
a training perspective this instruction is not very produc-
tive. A good trainer can recognize this as a learning oppor-
tunity and provide more information about the structure of
the printer. For example, the trainer can respond That is the
document feeder. The front-door is in the front, towards the
bottom. Currently, Jarvis lacks the representations and rea-
soning for such instruction.

These observations of Jarvis’ behavior directly follow from
the approach implemented and are arguably trivial. How-
ever, they are very encouraging because they demonstrate
that these two kinds of architectures can be brought together
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for reliable behavior in the real-world. The deep learning ar-
chitecture can robustly extract state information about vari-
ous components of the machine and Soar can integrate these
perceptual events for a stable state representation and in-
corporate structural knowledge of the world for planning.
Further, these observations illustrate the need for learner
models and relevant pedagogical strategies for reasonable
instructional behavior.

6 CONCLUSION

In this paper, we described the initial steps we have taken to
build Jarvis, an intelligent system that can help people learn
physical tasks via apprenticeship training. The use of aug-
mented reality provides an opportunity to provide instruc-
tional support within the context of task performance. For
learning procedural tasks in physical domains, this training
can be very effective in comparison to classroom teaching
in which the student must expend effort to translate theo-
retical knowledge to the performance context.

From an Al systems perspective, design of such instruc-
tion systems is a significant challenge. The requirement of
robust, flexible, real-time instructional behavior in face of
dynamic environment, necessitates computational formula-
tions that can reason online. We take an hybrid approach
towards this system design where we bring together deep
learning architectures for computer vision and high-level
reasoning architecture Soar for online, real-time, adaptive
instructional support in the real-world. We demonstrate the
robustness our approach by observing system behavior in
scenarios with different trainee behavior. There are several
challenges that have not been addressed in this preliminary
work; from maintaining object identities during replacement
tasks to modeling the state of the trainee to provide person-
alized training. Our future work will study these challenges
and propose hybrid approaches similar to the one described
in this paper.

Finally, this paper sets the stage for future research in
design of intelligent technology for apprenticeship training.
There is a long, rich history of using intelligent technology
when combined with cognitive modeling to support human
learning [5] that have achieved closed to human-level teach-
ing performance [19]. However, a significant majority of
research threads pursued have looked at augmenting aca-
demic learning in classroom environments, often focusing
onlearning coursework algebra, sciences, and programming.
Approaches such as ours will greatly enhance the impact of
intelligent tutoring technology by bringing it to the context
for workplace training as well as for end-users of complex
machines.
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