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Abstract. This short paper overviews 20 years of work done in logic-
based Machine Learning and Data Mining along three different directions
of research. The aim is to discuss the achievements and the open issues
with reference to some challenging applications which involve represen-
tation and reasoning.
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1 Introduction

The current hype about AI is mainly due to a number of successful applications
of Machine Learning (ML) and Data Mining (DM) algorithms in challenging
domains such as vision. Most of these algorithms belong to the new generation
of neural networks known under the name of “deep learning”. Deep learning fol-
lows a function-based approach, i.e., it formulates ML tasks as function-fitting
problems. Neural networks are therefore considered as examples of model-free AI
according to the definition given by Hector Geffner in his keynote talk at IJCAI
2018 [12]. While analyzing the limitations of this approach, several works (see,
e.g., [4]) have placed the emphasis on the need to construct and use models, as
required by model-based AI, for the sake of interpretability and explainability.
The model-based approach - a distinguishing feature of what is currently referred
to as “good old-fashioned AI” - requires one to represent knowledge about enti-
ties of a domain of interest and involves reasoning with such knowledge. Logics
and probability are among the main tools of this approach today.

As a drawback of the popularity of deep learning, the emerging trend is to
have ML streamlined into neural network research. Yet, the variety of ML and
DM algorithms is wide enough to have a significant overlap with model-based AI.
Inductive Logic Programming (ILP) [35] is considered as the major logic-based
(thus, model-based) approach to learning and mining rules from structured data.
Originally focused on the induction of logic programs, due to the common roots
with Logic Programming (LP) [32], ILP has significantly widened its scope over
the years to cover all aspects of learning and mining in logic [34]. Notable is



the exploration of the intersections to statistical learning and other probabilistic
approaches (see, e.g., [38] for a survey).

In the following section I will overview the work done in ILP over the past
20 years along three different directions of research. The aim is to discuss the
achievements and the open issues with reference to some challenging applications
which involve representation and reasoning. In Section 3 I will conclude the paper
with final remarks.

2 Three Cases for Logics in ML and DM

2.1 Combining rules and ontologies

Rules are widely used in Knowledge Engineering (KE) as a powerful way of
modeling knowledge. However, the acquisition of rules for very large Knowledge
Bases (KBs) still remains a very demanding KE activity. A partial automation of
the rule authoring task can be of help even though the automatically produced
rules are not guaranteed to be correct. A viable solution to this KE bottleneck is
just applying ILP algorithms. ILP has been historically concerned with learning
rules from examples and background knowledge with the aim of prediction (see,
e.g., the system Foil [37]). However, ILP has also been applied to tasks - such as
association rule mining - other than classification where the scope of induction
is description rathen than prediction. A notable example of this kind of ILP
systems is Warmr [7] which mines frequent Datalog queries.

With the advent of the Semantic Web new challenges and opportunities have
been presented to ILP. In particular, ontologies and their logical foundations in
the family of Description Logics (DLs) [2] raised several issues for the direct
application of existing ILP systems, thus urging the extension and/or adapta-
tion of the ILP methodological apparatus to the novel context. The reason for
this is the following: LP and DLs are both based on fragments of First Order
Logic (FOL), yet characterized by different semantic assumptions [33]. Though
a partial overlap exists between LP and DLs, even more interesting is a com-
bination of the two via several integration schemes that are aimed at designing
very expressive FOL languages and ultimately overcoming the aforementioned
semantic mismatch (see, e.g., [9] for a survey). A representative example of this
class of hybrid KR formalisms is AL-log [8] which tightly integrates Datalog
and the DL ALC.

Starting from the seminal work by Rouveirol and Ventos [39], several propos-
als in ILP testify the great potential of these formalisms also from the ML&DM
perspective [15,25,19,20,21,23]. Originally motivated by a spatial data mining
application [1] and inspired by Warmr, AL-QuIn [25,21] is an ILP system for
mining association rules at multiple levels of granularity within the KR frame-
work of AL-log. Here, reasoning in AL-log allows for the actual exploitation
of taxonomies possibly made available as background knowledge, such as the
classification of spatial objects in geographic information systems (see [1,25] for
examples of application in this context).



2.2 Dealing with imprecision and granularity

Imprecision is a weak form of vagueness, not to be mistaken for uncertainty,
which is often formalized with fuzzy set theory. For instance, spatial notions
such as the distance between two sites can be naturally represented with fuzzy
sets (modeling the degrees of distance, e.g., high, medium and low) if one is
interested in their human perception rather than in precise measurements. In
order to deal with imprecision in Ontology Reasoning several fuzzy extensions
of DLs have been proposed (see, e.g., [40] for an overview).

The problem of automatically managing the evolution of fuzzy DL ontolo-
gies has attracted some interest in the ILP community [16,14,27,28]. Iglesias
and Lehmann [14] extend DL-Learner [18] (the state-of-the-art ILP system for
learning in DLs) with some of the most up-to-date fuzzy ontology tools. No-
tably, the resulting system can learn fuzzy OWL DL equivalence axioms from
FuzzyOWL 2 1 ontologies by interfacing the fuzzyDL 2 reasoner. Lisi and Strac-
cia [27] propose SoftFoil, a FOIL-like method for learning fuzzy EL GCI axioms
from fuzzy DL assertions. In [31], the same authors present Foil-DL, another
FOIL-like method which, conversely, is designed for learning fuzzy EL(D) GCI
axioms from crisp DL assertions. As opposite to SoftFoil, Foil-DL has been
implemented and tested [28], notably in a real-world tourism application where
fuzzy DLs come into play for modeling imprecise knowledge such as the hotel
price ranges.

Imprecision dealt with fuzzy sets is strongly related to the notion of infor-
mation granule. In [26], Lisi and Mencar propose a granular computing method
for OWL 2 ontologies with the ultimate goal of optimizing the learning pro-
cess when dealing with a huge number of relations, e.g., those concerning the
distance between places in the abovementioned tourism application. Here, infor-
mation granulation encompasses the use of fuzzy quantifiers such as “most” and
“a few” in OWL 2 ontologies as detailed in [30]. Soft quantification has been
also explored in statistical relational learning [10].

2.3 Modeling and metamodeling

Research in ML and DM has traditionally focussed on designing effective al-
gorithms for solving particular tasks, most of which can be seen as Constraint
Satisfaction Problems (CSPs) or Optimization Problems (OPs). However, there
is an increasing interest in providing the user with a means for specifying what
the ML/DM problem in hand actually is, rather than letting him struggle to out-
line how the solution to that problem needs to be computed (see the recent note
by De Raedt [6]). This corresponds to a model+solver approach to ML and DM,
in which the user specifies the problem in a declarative modeling language and
the system automatically transforms such models into a format that can be used
by a solver to efficiently generate a solution. For instance, constraint program-
ming has been successfully applied to itemset mining problems (see, e.g., [13]

1 http://www.straccia.info/software/FuzzyOWL/
2 http://www.straccia.info/software/fuzzyDL/intro.html



for a comprehensive account). The model+solver approach is also at the basis of
Meta-Interpretive Learning (MIL) [36], a novel and promising ILP framework.
MIL uses descriptions in the form of meta-rules (expressed in a higher-order
dyadic Datalog fragment) with procedural constraints incorporated within a
meta-interpreter, which could be eventually implemented by relying on Answer
Set Programming (ASP) solvers (see [11] for an updated overview).

The importance of metamodeling in several applications has been recently
recognized in the KR community, with an increasing interest in higher-order
DLs. In particular, De Giacomo et al. [5] augment a DL with variables that may
be interpreted - in a Henkin semantics - as individuals, concepts, and roles at the
same time, obtaining a new logic Hi(DL). Colucci et al. [3] introduce second-
order features in DLs under Henkin semantics for modeling several forms of non-
standard reasoning. Lisi [22] extends [3] to some variants of Concept Learning,
thus being the first to propose higher-order DLs as a means for metamodeling in
ML and DM. In [29], the proposed model+solver approach combines the efficacy
of higher-order DLs in metamodeling (as shown in [22]) with the efficiency of
ASP solvers in dealing with CSPs and OPs. More recently, higher-order DLs
have been considered as a starting point for the definition of a metaquerying
language for mining the Web of Data [24].

3 Final remarks

Initiatives such as the workshop series promoted by the Association for Neuro-
Symbolic Integration (NeSy)3 since 2005 testify the need to address a funda-
mental open issue in AI: How to come up with a computational model capable
of learning and reasoning both at the symbolic and the sub-symbolic level?

One such issue is also addressed by the Angry Birds AI4 competition, built
around what is currently considered a challenging problem for AI: to build an
intelligent agent that can play new levels of the Angry Birds game better than
the best human players. This is a very difficult problem as it requires agents
to predict the outcome of physical actions without having complete knowledge
of the world, and then to select a good action out of infinitely many possible
actions. A distinguishing feature of future AI systems is just this capability of
interacting with the physical world. The Angry Birds AI competition provides a
simplified and controlled environment for developing and testing this capability.

The ILP works overviewed in this short paper testify an effort towards the
integration between learning and reasoning, mostly at the symbolic level. How-
ever, the use of fuzzy logic could be considered as an attempt at dealing with
the sub-symbolic level. Also, as opposed to neural networks, fuzzy systems have
the potential of being interpretable and explainable.

A notorious drawback for ILP is the cost of computation. One of the advan-
tages of the model+solver approach should be just to choose the most efficient
solver to improve the performance of the learning process while preserving the

3 http://www.neural-symbolic.org/
4 https://aibirds.org/



declarativity of the model. In this respect, Geffner’s vision [12] of true AI based
on the integration between model-free learners and model-based solvers is a great
source of inspiration.
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