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Abstract
The Retrieval from Conversational Dialogues (RCD) track at FIRE 2020 focused on two objectives: to
contextualize the information in movie dialogues to identify the main topic of discussion, and to retrieve
relevant information to queries focused on these key topics extracted from a transcript of the movie
dialogues. We describe details of the ADAPT Centre’s participation in the RCD track. We used a
combination of techniques to identify the key topics of dialogues and the standard BM25 algorithm to
retrieve potentially relevant paragraphs from an indexed Wikipedia archive. In both of the tasks, we
used 5 different methods. In task one, our model, F8_4_model4 method performed better than other
models with weighted bleu score 0.1090. In task 2, F7_4_model3 model outperformed other models with
precision at 5 (P@5) score 0.0417 and Mean reciprocal rank (MRR) score 0.1086.
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1. Introduction

The full meaning of the contents of dialogues is not always apparent to listeners, particularly
those not familiar with information related to the details discussed in these conversations. The
Retrieval from Conversational Dialogues( RCD) track at FIRE 2020 seeks to develop methods to
identify topics within conversational spoken dialogues within movies and to retrieve relevant
information relating to these topics from a Wikipedia dataset [1].

This paper overviews existing benchmark tasks related to the RCD track, and describes details
of our participation in Task 1 and Task 2 of this track.

2. Related work

While the RCD task itself is new, it is related to a number of existing benchmark tasks. In this
section we review the details of these related activities.

2.1. TREC 2019 Conversational Assistance Track

Conversational search has been a topic growing research interest recent years, and in 2019
TREC introduced the Conversational Assistance Track (CAsT) which seeks to develop a stan-
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dard benchmark for the evaluation of conversational search methods. In this track, the main
objective is to satisfy the user’s information need by understanding a sequence of questions in a
conversational format and retrieving relevant documents associated with contextualized query
at each turn in a conversation [2, 3]. Participant submissions focused mainly on three aspects:

• Query Understanding: Appropriate interpretation of the queries across the conversations
is particularly challenging. The most popular query understanding technique was deep
learning, with 57 percent of runs using it. NLP toolkits were used in half of the submitted
runs, but there was no improvement in performance observed.

• Retrieval and Ranking: Using any training data led to improvements in the score. The
unsupervised learning approaches used in 43% of the runs were not effective.

• Conversational Context: Almost all runs utilized information of previous turns to interpret
their context and attempt to improve retrieval effectiveness. The title of the conversational
topic also played a crucial role in identifying context. Only a small number of runs involved
using all the turns and metadata, since the long descriptions that were created became
noisy and were hard to use effectively.

In the process of ranking, Bert-based neural models were found to perform the best for this
task. However, in some situations, these was outperformed by traditional information retrieval
systems. Neural re-ranking approaches were also shown to be effective.

2.2. CoQA: A Conversational Question Answering Challenge

In this challenge, a new dataset was introduced for building Conversational Question Answering
(CoQA) systems [4]. This dataset was built for the evaluation of systems that have to understand
a series of conversations and answer questions about this conversation. The key features of
this data set were: firstly, answers were text-free; and secondly, follow-up questions were more
human conversation. In the end, it was given a rational, which acted as a evidence or support
to answer the questions. This data had 8,000 conversations from which 127k questions with
answers were extracted from seven different domains. After experimentation, it was observed
that increasing the size of the history used in answering the questions decreased the models’
performance. However, when previous turn data was considered, there was an increase in
the model’s performance. This was observed to reach higher performance when two previous
turn conversations are shown, implying that most questions in a conversation have limited
dependency within a bound of two turns. The Combination of Document Reader (DrQA) model
[5] and PG-net model performed best [6].

2.3. QuAC : Question Answering in Context

This challenge was inspired by the student and teacher relationship, where a student poses a
series of highly contextual questions, and the teacher answers these questions. The Question
Answering in Context dataset contained 14k QA, which were crowdsourced (100k QA pairs
in total). The questions used in this dataset were highly contextual, open-ended, and in some
cases even unanswerable from the text [7]. While creating the dataset, the developers of the
task simulated a teacher and student interaction where the student was shown the title of the



topic and first paragraph of the topic. In contrast, the teacher had full access to the section text.
There could be situations where the teacher did not have an answer to the question, which
was marked as no answer. Taking into account context is very important in this challenge.
BiDAF++ [8] performed best in this task. Adding more context information increased the
model’s performance. In this case, up to 3 previous question contexts were provided. The main
takeaway from this challenge is that the model performs better when considering the previous
turns or history of conversation to a certain degree.

2.4. TREC 2019 Deep Learning Track

This track focused on ad-hoc ranking in large datasets. It consisted of two tasks: document
retrieval and passage retrieval. This track had the goal of studying ad-hoc ranking in a large
data setting [9]. The end to end retrieval task involves ‘phrase1’ which involves a ranking task
(by using BM25) and then in ‘phrase2’ re-ranking it by using the ML model. In many cases, a
combination of traditional IR methods and deep learning techniques performed well.
The document retrieval task had two sub-tasks: Full retrieval and top 100 re-ranking. The

same applied for the passage retrieval sub-task except that it had to re-rank 1000 passages.
Both the tasks were judged on four criteria: perfectly relevant, highly relevant, related, and
irrelevant.

The metric used for evaluation was Normalized Discounted Cumulative Gain (NDCG), espe-
cially NDGC@10, which was used since it uses 4-level judgment. In both of the tasks, a model
employing large scale pre-trained models such as BERT or XLNET, outperformed other models
that used word embeddings or traditional information retrieval methods. We can infer that
using a neural network model or a pre-trained model and other NLP techniques can increase a
model’s effectiveness. The submissions to this task helped us in task 2 of the FIRE 2020 RCD
track challenge.

2.5. KnowWhat You Don’t Know: Unanswerable Questions for SQuAD

The Stanford Question Answering Dataset (SQuAD) is a reading comprehension dataset. This
consists of questions posed by crowdworkers using a set of Wikipedia articles. The answer
to the question is either a segment or span of text from a document or the question may be
unanswerable from the available document set. The complexity of the SQuAD tasks have been
gradually increased to the point where the current SQuAD 2.0 combines questions freely created
by crowdworkers from the earlier SQuAD1.1 with unanswerable questions written deliberately
to look similar to answerable ones [10]. To be able to work well with SQuAD 2.0, a question
answering system must not only be able to answer questions, but also be determine when the
answer is not available within the document set.

3. Task Description

In this section we give brief summaries of the details of the FIRE 2020 RCD tasks.



NO2: guilty. I thought it was obvious. I mean nobody proved otherwise.

NO8: is on the prosecution. The defendant doesn’t have to open his mouth.
That’s in the Constitution. The Fifth Amendment. You’ve heard of it.

NO2: I... what I meant... well, anyway, I think he was guilty.

Figure 1: Conversation sample from training data

3.1. Task 1

The objective of the FIRE 2020 RCD Task 1 is to automatically contextualize two-party or
multi-party dialogue systems, and then to use information retrieval methods to retrieve more
information about the key-phrases identified as the most important in the conversation, which
can be two-party or multi-party dialogues in nature.

Specifically this task focuses on conversations in movie dialogues. The conversations selected
for the task are extended long exchanges between one or more actors. For example, from the
movie “12 Angry Men”: shown in Figure 11, the discussion topic is the “fifth amendment”. Task
1 focuses on identifying these discussion topics of this type.

3.2. Task 2

Task 2 focuses on using the key topics identified from analysis of the conversations as the basis
for queries to search for more information about these topics. Specifically, the task requires an
indexed Wikipedia dump to be searched for documents in response to an automatically formed
query and returned in ranked order.

4. Methodology

In this section we describe details of our methods for tackling these tasks.

4.1. Task 1

4.1.1. Approaches

For Task 1, we adopted two approaches. We examined the use of 5 different methods with
parameter tuning. The details of the approaches are given below:

1https://rcd2020firetask.github.io/RCD2020FIRETASK/



Figure 2: Flow chat of First Approach in Task 1

1. First Approach: As shown in Figure 2, the conversation was directly passed through
summarization components which extracted important sentences from the conversa-
tion. These sentences were then passed through key-phrase extractor components. The
summarization and key-phrase extractor can be tuned by using different parameters,
described in detail in Section 1. The final output was taken to be the information need.

2. Second Approach: As shown in Figure 3, the conversation was directly passed through
key phrase extractor components. The key-phrases were then filtered based on parameter
tuning, which were taken to be the information need.

4.1.2. Parameter Tuning

We divided the parameter tuning methods into two categories: External parameters and Internal
parameters. The best five configurations were selected after evaluation based on Jaccard distance
on train (comparing the gold query and predicted query).

1. External Parameters: These parameters (as shown in Table 1) effect the output generated
by the algorithms. For example, changing the ratio of summary in any summarizing
methods to extracted important sentence from complete conversation about a particular
information need. The external parameters are as follows:



Figure 3: Flow chat of Second Approach in Task 1

a) Word Length: This signifies the word count of the key-phrases extracted. In this
study, the investigation observed that key-phrases which contained 3-5 words were
best match key-words as per the information need. For an example, the extracted
keyphrase is ”the fifth amendment” and the word length is 3. We observed that
using queries of word length more than five words had increased Jaccard distance
[11] from the extracted information need to the gold information need. The python
tool kit was used to calculate the Jaccard distance 2.

b) Summary Percentage: This defines the ratio of the output (summary) produced
by the summarizer in comparison to the input paragraph (conversation). This
extracted output was passed through the key-phrase extractor as shown in Figure
2. We also varied the summary ratio between 50% to 80% to understand its effect
on the key-phrase extractor. We observed that the performance of the key-phrase
extractor in extracting the information need varies as per the summary ratio. In our
investigation, it was found that a summary ratio of 70% gave the best result for the
key-phrase extractor.

c) Phrase Frequency: This signifies howmany times this particular phrase was repeated
in a particular conversation. It was found that phrases which are repeated between
1-3 times in conversation are potential key-phrases of an information need. In
the current study, we found that the key-phrases were not repeated more than 3
times in a conversation. Sometimes key-phrases are indicated by a pronoun which
makes the process more complex and lengthy. In our similar previous work [3], we
manually replaced all the pronouns with the corresponding key-word assuming that
this would enable us to extract better statements of information need. However,
this approach did not prove to be beneficial for extracting statements of information

2https://pypi.org/project/textdistance/



Figure 4: Code snippet example of summary extraction by Luhn method using sumy
toolkit

Figure 5: Code snippet example of key-phrase extraction by TextRank method using pytextrank
toolkit

need and model performance was not improved.
d) Summary Extraction: This signifies the summary extraction methods used to extract

important sentences from the conversation. In this study, we used four different
summary extraction approaches: Bert (Bidirectional Encoder Representations from
Transformers) [12], Custom (lab based) [13], Luhn [14] and Kullback-liber [15].
Details are discussed in the following Sections 4.1.3, 4.1.4, 4.1.5 and 4.1.6.

e) Phrase Extraction: In the current investigation, we used two important methods for
phrase extraction: TextRank [16] used in methods 4.1.4, 4.1.5, 4.1.6, 4.1.7 and the
Yake method [17, 18] used in method 4.1.3. Details are given in Sections 4.1.3 and
4.1.4.

2. Internal Parameters: These parameters affect the behaviour of the algorithms. For
example, varying the configuration of the Yake method [17, 19] by changing its window
size and threshold. Yake is a lightweight unsupervised automatic key-word extraction
method which is based on statistical text features extraction from a document to select
the most important key-phrases of a document.

a) Window size (Yake): The size of the words used for computing co-occurrence counts.
b) Threshold (Yake): Levenshtein distance, which helps in measuring the difference

between key-words. A key-phrase is considered redundant if its distance from other
key-phrases which ranked higher in the list is greater than a threshold. The default
value is 0.8.

c) N top scoring word (Yake): Top N key-phrases of the document (summary conver-
sation) to be displayed based on the score.

d) Rank Score (TextRank): We can use this as a threshold value to consider key-words
with rank score higher than certain value.



Figure 6: Code snippet example of key-phrase extraction by Yake method using Pke toolkit

e) K1 and B value (BM25): K1 controls non-linear term frequency normalization and B
controls to what degree document length normalizes tf values.

f) EPS and Minimum Samples in Density-based spatial clustering of applications with
noise (DBSCAN): EPS is the minimum distance for two points to be considered
neighbours and min_samples is the minimum number of samples required for a
point to be considered a core point.

In this section, we described in outline of the five methods used to extract the information need
and based on the parameter tuning as shown in the Table 1. The following are the details of our
models:

4.1.3. Method 1

Y7_2_Model5_2: This model used the first approach discussed in section 4.1.1 and workflow
shown in Figure 2. The detailed parameter configuration for this specific method is shown
in Table 4.1.2. In this approach, we utilized a tool powered by the Hugging Face Pytorch
transformers library to run extractive summarizations [12] which is available as a Python API3,

3https://pypi.org/project/bert-extractive-summarizer/



Run Word Summary (%) phrase phrase Summary
Length Frequency Extraction Extraction

Y7_2_Model5_2 3-5 50 NA Yake Bert Based
F8_4_model4 3-5 70 1-3 Text rank Custom
F7_4_model3 3-5 80 1-3 Text rank Kullback-Lieber
F6_4_model2 3-5 80 1 -3 Text rank Luhn
F5_0_Model1 3-4 NA 1-3 Text rank NA

Table 1
Parameter Tuning in Models

running a k-means clustering algorithm and finding sentences that are closest to the cluster’s
centroids. After obtaining a summary from each paragraph, we extracted the essential phrases
by using an unsupervised method known as Yake4 [17]. This approach is based on a statistical
text feature extraction method to select the most relevant Key phrases. In this setting, we used
different parameter tuning for the Yake version of PKE [18]. The best results for this model were
obtaining by setting a window size of 7, which is used for capturing the context of he phrases,
and threshold to 0.8, this helps to eliminate redundant queries using the concept of Levenshtein
distance. As shown in figure 6, yake python code of key-phrase extraction from extracted
summary. In this method, we extracted the top scoring (based on Yake top ten key-phrases)
unique phrases whose word length varies between 3-5 words. Pke python tool kit provided
an option to select a key-phrase candidate based on its word length with the hyper parameter
n in the extractor.candidate_selection function. In this method, we have extracted 3 lists of
top 10 key-words based on n = 3,4,5. These top 10 key-phrases were extracted using the pke
function extractor.get_n_best. From all 3 extracted lists, the top scoring key-phrase in the list
was considered to be information need for the conversation.

4.1.4. Method 2

F8_4_model4: This model used the first approach discussed in section 4.1.1 and workflow shown
in Figure 2. The detailed parameter configuration for this specific method is shown in Table 4.1.2.
In this approach, we extracted important segments by using an algorithm (shown in pseudo code
1) based on the normalized TF-IDF score of each sentence. The best scoring 50% of the sentences
were selected. These sentences were divided into clusters using a DB SCAN algorithm with eps
(distance parameter) set to 0.1, min_sample (number of samples to be considered closest to core
point) set to 2. A cosine similarity score was calculated between clusters and movie names, and
the top-scoring 70% (summary percentage) of the clusters were selected to extract key-phrases
using the textRank algorithm [20]. All extracted clusters were combined together to form a
summary. We utilized the Pytext rank tool powered by the Spacy and TextRank 5 algorithms
to extract the essential phrases by constructing a lemma graph to represent links among the
candidate phrases [16] from the summary. As shown in Figure 5, the extracted summary was
passed through the TextRank algorithm, by setting up the filters. As per the filters, only those key-

4https://github.com/boudinfl/pke
5https://pypi.org/project/pytextrank/



Figure 7: Code snippet example of summary extraction by Kullback-Lieber (KL) divergence method
method using sumy toolkit

phrases were considered whose word count lay between 3-5 words. The key-phrase frequency
should not exceedmore than 3 times. The key-phrases were selectedwhose p.rank score is greater
than 0.2. Only key-phrases which met these conditions were considered as the information
need. This model was the top scorer in the Task 1 with the weighted Bleu Score 0.1090.

Algorithm 1: Pseudo code Custom Summarization Method
Result: Custom Summarization Algorithm

1. Split the whole Paragraph into sentences
2. Each sentence is consider as individual document
3. Calculation of Term frequency of each word of document
4. Calculation of Inverse Document frequency of each word
5. Calculation of TF-IDF score of each word
6. Calculate the normalized TF-IDF score of each sentence
7. Top 50% Top scoring sentence extracted
8. DBScan clustering algorithm is applied on extracted sentence with parameters eps = 0.1

and minimum sample =2
9. DBScan divided the sentences into n cluster
10. Cosine similarity score has been calculated between the n number of clusters and movie

name
11. Based on the cosine similarity score top 70% out of n cluster has been extracted for key

phrase extraction

4.1.5. Method 3

F7_4_model3: This model used the first approach discussed in section 4.1.1 and workflow shown
in Figure 2. The detailed parameter configuration for this specific method is shown in Table
4.1.2. In this approach, we utilized the Sumy tool 6 to generate an extractive summary using a
Kullback-Lieber (KL) divergence method for summarization [15]. The KL method greedily adds
sentences to a summary so long as it decreases the KL Divergence. As discussed earlier, each
conversation was treated as a document.
Similarly to method 2, we used the Pytext rank method [16] to extract the essential key-

phrases from the summary. In this approach, we used 80% of the summary setting, in which
the summarizer retains 80% of the original content using KL divergence method as shown in

6https://pypi.org/project/sumy/



Figure 7.. The extracted summary passed through the TextRank algorithm as shown in Figure
5, by setting up the filters. As per the filters, only those key-phrases were considered whose
word count lay between 3-5 words. The key-phrase frequency should not exceed more than 3
times.The key-phrases were selected whose p.rank score was greater than 0.2. Only key-phrases
which met these conditions were considered as the information need.

4.1.6. Method 4

F6_4_model2: This model used the first approach discussed in section 4.1.1 and workflow shown
in Figure 2. In this approach, we extracted a summary using a method based on the work of
Luhn [21] as shown in Figure 4. Similar to method 3, we used the Pytext rank method [16] to
extract the essential key-phrases from the summary. To extract the summary by Luhn method,
we used open source python tool kit 7 by following the parameters shown in Table 1. Then
the extracted summary was used as input to pytext key phrase extractor which extracted the
important keywords phrase. Three important parameters of PageRank were considered to select
the key-phrases: RageRank score, word length and phrase frequency as shown in Table 4.1.2.
Key-phrases whose p.rank score greater than 0.2, word length was between 3-5, and considered
key-phrase whose frequency lies between 1-3.

4.1.7. Method 5

F5_0_Model1: This model used the second approach discussed in section 4.1.1 and workflow
shown in Figure 3. In this approach, we utilized the Pytext toolkit [16] to extract critical key-
phrases as shown in Figure 5. In this model, different approach has been adapted to investigate
the potential of text rank algorithm in extracting the important key-phrases. Without using any
summarizations, we directly pass the complete conversation paragraph into the pytext toolkit
and extracted the key-phrase and later on these key-phrases were filtered out based on the
parameter tuning as shown in Table 4.1.2. The key-phrases were selected whose p.rank score
was greater than 0.2. The selected key-phrases were further filtered by the phrase frequency
which should not exceed than 3 times. The filtered key-phrases were then further netted were
selected based on word length in the key-phrase. Key-phrases were finally only selected as the
information need if their word length lay between 3-4 words in the key-phrase. This model is
among the top models in Task 2 with the MAP (Mean Average Precision) 0.0021.

4.2. Task 2

In this section our approach to tackle Task 2. Task 2 is to retrieve relevant information to
queries focused on these key topics extracted from a transcript of the movie dialogues.
For this task, we used python open source tool kit for the Pyterrier [22] to index the Wikipedia
dataset to be searched. The Wikipedia dump consists of approximately 73 GB data. This was
first cleaned before extracting pairs of paragraph ids and their associated text.
These paragraphs (document units) were then indexed into Terrier 8 [22]. For ranking in

our experiments, we used the standard BM25 algorithm, with k1 set to default value (1.2) and
7https://pypi.org/project/sumy/
8https://github.com/terrier-org/pyterrier



the b also set to default value (0.75) in the Terrier system. The queries extracted from the
conversations in Task 1 were then entered into Terrier to search the indexed dataset.

5. Results

In this section, we present the results of our experiments performed in the training and test
phase.

5.1. Training Task

1. Task 1 Results: Tables 2 and 3 present training and test results of Task 1 respectively
calculated for the Jaccard Coefficient for keyword similarity [20] and Weighted Bleu score
[23] to calculate the similarity score between the predicted and gold query. In this track,
we choose the best models based on our training data performance.

a) Train: From Table 1, we can see that model F5_0_Model1 performs the best, and the
next best performing model is Y7_2_Model5_2 for the training data.

b) Test: From Table 3, we can see that the F8_4_model4 model performs best, and
F5_0_Model1 is the next best performing for the test data. We can conclude that the
weighted score for test data is better than for the training data, which can also be
seen in Figure 11.

Run Weighted Bleu score Word-level Jaccard Overlap
Y7_2_Model5_2 0.1660 0.1333
F8_4_model4 0.1362 0.0958
F7_4_model3 0.1502 0.1333
F6_4_model2 0.1502 0.1333
F5_0_Model1 0.2122 0.1625

Table 2
Results of Task 1 for train data

Run Name Weighted BLEU Score Word-level Jaccard Overlap
F6_4_model2 0.0636 0.0487
F7_4_model3 0.0989 0.0727
F5_0_model1 0.0984 0.0487
Y7_2_model5_2 0.0020 0.0000
F8_4_model4 0.1090 0.0636

Table 3
Results of Task 1 for test data



Somewhere in there. Somewhere. I know it’s right in front of me. The pattern.
They say it’s chaos, it can’t be understood, too much complexity.

History it’s there. Lurking, shaping. structuring, hiding, right beneath the
surface.

The cycling of disease epidemics, the wax and wane of Caribou populations in
the Arctic, sunspot cycles, the rise and fall of the Nile and yes! the New York
Stock Exchange, they are all the same.

I’ll find this structure, this order, this perfection.

Figure 8: Conversation sample from test data

5.1.1. Analysis of the F8_4_model4 best performing model for the test data

The conversation shown in Figure 8 is part of a dialogue within the test data. When trying
to extract a potential query from the conversation, F8_4_model4 (our best performing model)
predicts “the New York Stock Exchange” as the output, which matches with the expected result.

The conversation shown in Figure 9 is taken from the test data, in this case the F8_4_model4
model predicted “the second year” as the output, whereas the actual expected output is “southern
colonies.” We can tell from examining the conversation that our approaches fail when there
are multiple discussion topics in a single turn. It is a challenge to identify a single topic of
discussion when we have numerous. Transforming information need into the right query to
retrieve the most relevant results is a highly complex process which includes a huge amount
of cognitive efforts for the users [24]. Generally, human conversation is unstructured which
makes it difficult to extract the right key-phrase which can represent itself as a perfect query
to retrieve to relevant document. In our approach, we consider a set of conversation as text
document and pass through the summarizer to get the most important sentence which further
used to extract important key-phrase using some statistical methods. This approach may loss
some important information which could be vital to form the right query. To minimize the
loss, we extracted up to 80% of the total sentence by passing through summarizer functions and
also keep the strict the knob on the key phrase repetition in conversation and the length of the
key-phrase including internal parameters of summarizer and key-phrase extractor.

1. Task 2 Results: For this task, we use three metrics to evaluate the effectiveness of our
retrieval system based on our extracted queries.

a) MAP: Mean Average Precision (MAP)
b) P@5: Precision at 5.
c) MRR: Mean Reciprocal Rank (MRR).



All right, are we gonna have a problem?

There’s no problem. I was just hoping you could give me some insight into
the evolution of the market economy in the early colonies. My contention is
that prior to the Revolutionary War the economic modalities especially of the
southern colonies could most aptly be characterized as agrarian precapitalist
and...

Of course that’s your contention. You’re a first year grad student. You just
finished some Marxian historian, Pete Garrison prob’ly, and so naturally that’s
what you believe until next month when you get to James Lemon and get
convinced that Virginia and Pennsylvania were strongly entrepreneurial and
capitalist back in 1740. That’ll last until sometime in your second year, then
you’ll be in here regurgitating Gordon Wood about the Pre-revolutionary
utopia and the capital-forming effects of military mobilization.

Figure 9: Conversation sample from test data

Run Name MAP P@5 MRR
F5_0_Model1 0.0021 0.0400 0.0922
Y7_2_Model5_2 0.0001 0.0160 0.0023
F7_4_model3 0.0016 0.0417 0.1086
F6_4_model2 0.0013 0.0160 0.0518
F8_4_model4 0.0003 0.0400 0.0704

Table 4
Results of Task 2 test data

From Table 3, we can see that retrieved results for the F5_0_Model1 are the best in terms
of MAP score and the F7_4_model3 in terms of MRR and P@5 scores. Looking at Figure
10, we can conclude that the F7_4_model3 performs best and Y7_2_model5_2 performs
the worst.

6. Discussion

While it is difficult to contextualize a long conversation, we can broadly look into the techniques
used to identify the topic of discussion. The target contextual word feature, such as the length,
differs from dialogue to dialogue. There are situations where there is more than one important
topic of discussion, where it is will be extremely hard to choose any one among them as the most
important. We had to take into consideration, the key phrase word length and frequency of key
phrase in overall conversation. In our investigation, we have found that the Key-phrase seems



Figure 10: Task 2 score comparison

to be important whose frequency lies between 1-3 and the word length lies between 3-5 words.
Both the factors are crucial to extract information need. The dataset used for the task is too
small to train a neural network model, which would potentially have increased the prediction
capabilities for Task 1. Instead, we examined the use a pre-trained model, an unsupervised
learning approach, and summarization techniques. In additions, we also participated in the
study discussed in section 2 [3] where we extracted the entities and POS (Part of speech) from
the conversation to extract the information need. Here in contrast, we used pre-trained model
with a machine learning approach to extract the information need. Both the studies concluded
that it is the complex process to extract the information need from conversation process and
may require huge amount of data to verify the use of current state of art such as deep learning.
Certain studies in task [2] showed the potential of using deep learning depending upon the size
of data available.

7. Conclusions and Further Work

In this report, we described the methods used for our participation in the FIRE 2020 RCD tasks.
Our results show that our approches WERE among the average of submissions. In further
work we plan to investigate the behaviour of our approaches and identify how they might be
improved. If more data becomes available, we plan to explore the use of deep learning techniques
to understand the conversation’s context better. FOR Task 2, we would like to examine the



Figure 11: Task 1 bleu score comparison

application OF query re-formulation or query expansion techniques to improve information
retrieval effectiveness [25, 26] or the use of neural network approaches to information retrieval
[27].
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