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ABSTRACT
The rise of big data has revolutionized data exploitation prac-
tices and led to the emergence of new concepts. Among them,
data lakes have emerged as large heterogeneous data reposi-
tories that can be analyzed by various methods. An efficient
data lake requires a metadata system that addresses the many
problems arising when dealing with big data. In consequence,
the study of data lake metadata models is currently an active
research topic and many proposals have been made in this re-
gard. However, existing metadata models are either tailored for
a specific use case or insufficiently generic to manage different
types of data lakes, including our previous model MEDAL. In
this paper, we generalize MEDAL’s concepts in a new metadata
model called goldMEDAL. Moreover, we compare goldMEDAL
with the most recent state-of-the-art metadata models aiming
at genericity and show that we can reproduce these metadata
models with goldMEDAL’s concepts. As a proof of concept, we
also illustrate that goldMEDAL allows the design of various data
lakes by presenting three different use cases.

1 INTRODUCTION
While the big data revolution has shaken up the entire field of data
management and analytics, new concepts have emerged to meet
these new challenges. Data lakes belong to such new concepts.
First introduced by James Dixon, a data lake is a vast repository of
raw and heterogeneous data from which various analyses can be
performed [4]. Data lakes quickly gained popularity and several
teams started to address research issues [13, 15]. A key one is
efficient metadata management for avoiding data lakes to turn
into unexploitable data swamps [10, 11, 16, 19, 22].

However, most metadata management proposals in the liter-
ature [1, 8, 14], and their associated implementations, give few
details on the way data are conceptually organized and are thence
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hardly reusable. Thus, other researchers proposed more theoreti-
cal approaches named metadata models. Such approaches aim
to provide detailed guidelines to metadata system design, while
being generic, i.e., flexible and adaptable to many use cases. Yet,
data lake generic metadata modeling is still an open research
issue. A feature-based assessment indeed shows that none of the
existing metadata models is generic enough, including our own
MEtadata model for DAta Lakes (MEDAL) [20].

To address this genericity issue, we introduce goldMEDAL, a
revision of our MEDAL model. We define goldMEDAL through
a classical three-level modeling process (i.e., conceptual, logical
and physical). We choose a formal representation to avoid ambi-
guity but also provide a UML representation for readability. The
logical level is a translation of the concepts using graph theory.
Eventually, we describe three different physical models as proofs
of concept. Furthermore, to highlight goldMEDAL’s genericity,
we show that the concepts of our metadata model help model
state-of-the-art metadata models from the literature.

The remainder of this paper is organised as follows. Section 2
reviews and discusses existing data lake metadata models. Sec-
tion 3 presents goldMEDAL’s conceptual and logical models.
Section 4 illustrates how goldMEDAL generalises other data lake
metadata models and how it can be used to implement different
data lakes. Finally, Section 5 concludes this paper and hints at
future research.

2 RELATEDWORKS
Metadata management plays a vital role in data lakes. Indeed,
in the absence of a fixed schema, data querying and analyses
depend on an efficient metadata system. Several approaches help
manage metadata in data lakes. However, only a few of them
provide enough detail to ensure reusability. We refer to them
as metadata models. In this section, we review state-of-the-art
metadata models (Section 2.1) and compare them with respect to
genericity (Section 2.2).



2.1 Metadata Models for Data Lakes
GEMMS (Generic and Extensible Metadata Management System)
is a pioneer generic metadata model for data lakes [17]. GEMMS
features two abstract entities: data file and data unit. A data
file represents a generic data source. A data unit represents an
identifiable data element inside a data source. Each data file is
composed of a set of data units (e.g., a spreadsheet file is com-
posed of a set of sheets). Data files and data units can be enriched
with atomic or complex metadata values. However, GEMMS re-
quires information on data structure to operate. Thus, making it
unsuitable for working with unstructured data.

Ground is another generic metadata model [9] that can be used
for modeling metadata in data lakes (although not specifically
designed for that). Ground tracks data context (metadata) at three
levels: 1) metadata properties, 2) data usage history and 3) data
versioning. Although more extensive than GEMMS, Ground (as
well as GEMMS) does not take in charge data linkage even though
this type of metadata has been identified as relevant in data
lakes [6, 20].

Based on GEMMS’ data file and data units concepts, The model
of Diamantini et al. adds similarity links between data units to in-
directly link data files [3]. However, their model does not include
important metadata such as data versioning and usage tracking
as compared to Ground.

Similar to Diamantini et al., Ravat and Zhao propose a model
where each data file can be associated with atomic and complex
metadata [18], including metadata properties, data history and
links with other data files. The main contribution of this model
is the notion of zone metadata. Many data lake architectures
consider the existence of zones (e.g., raw data zone, processed
data zone) [7, 18]. Zonemetadata specifies the zones where data is
located. However, Ravat and Zhao’s model cannot simultaneously
represent different data granularity levels as previous models
do [3, 17].

MEDAL represents data through three main concepts: data
objects, representations and versions [20]. Data objects correspond
to GEMMS’ data files. Representations correspond to the result
of transformed objects. Versions represent objects updates. Both,
representations and versions, are materialized in the data lake.
Thus, MEDAL gives alternative ways to track data linkage and
zone metadata through the concepts of versions and represen-
tations, respectively. MEDAL also supports linkage metadata
through categorizations and similarity links. However, MEDAL
does not support multiple data granularity levels either.

Finally, HANDLE (Handling metAdata maNagement in Data
LakEs), uses the generic concept of data entity to represent both,
data files and parts of data files, which helps HANDLE support
any granularity level [5]. In HANDLE, each data entity is as-
sociated with tags that represent zones, granularity levels or
categorizations. HANDLE can also connect data entities together
through containment links (e.g., between a table and a tuple).
HANDLE provides concepts that subsume most of the concepts
of the previous metadata models.

2.2 Genericity of Metadata Models
A generic metadata model should adapt to any data lake use case.
As each use case requires specific metadata management features,
we consider that the most abundant features a metadata model
supports, the most generic it is. Therefore, features are a suitable
way to compare metadata models.

To the best of our knowledge, there exist two feature-based
comparisons of data lake metadata models in the literature. We
introduced six relevant features: semantic enrichment, data in-
dexing, data polymorphism, data versioning, link generation and
usage tracking [20]; while Eichler et al. identified three other
features: metadata properties, zone metadata and the support of
multiple granularity levels [5].

Considering that both the above sets of features are relevant,
we propose to combine them for comparing the genericity of
metadata models. Beyond simply unioning features, we merge
data polymorphism with zone metadata, as these features both
refer to the same concept. We also split link generation in two
new features, namely similarity links and categorization, because
some metadata models support only one of them. Eventually, we
omit data indexing in this comparison, considering that indexing
does not actually induce metadata modeling issues. Although
indexing is definitely relevant to assess metadata systems [20],
this feature seems less suited to metadata models.

All in all, we obtain a list of eight features that can serve to
compare data lake metadata models and evaluate their genericity.

(1) Semantic enrichment
(2) Data polymorphism/multiple zones
(3) Data versioning
(4) Usage tracking
(5) Categorization
(6) Similarity links
(7) Metadata properties
(8) Multiple granularity levels
Table 1 highlights the features supported by all the models

reviewed in Section 2.1. It shows that none of them support all
the features we identify.

3 GOLDMEDAL METADATA MODEL
Section 2.1 establishes that, of the eight criteria used to compare
data lake metadata models, none ticked all the boxes. In this sec-
tion, we thoroughly describe goldMEDAL, a substantial evolution
of MEDAL that generalizes its concepts while addressing all the
features identified in Section 2.2.

A metadata model can be expressed “in the form of an explicit
schema, a formal definition, or a textual description” [5]. In this
paper, we choose a formal approach for the sake of precision.
Yet, for the sake of readability and communication with possibly
non-computer scientists, we also provide a semi-formal UML
model. Moreover, we use a conventional data modeling approach
that leverages a conceptual, a logical and a physical model, to
demonstrate the actual implementation process of our metadata
model.

Section 3.1 presents goldMEDAL’s formal and semi-formal con-
ceptualmodels. Section 3.2 details the translation of goldMEDAL’s
concepts into a logical, graph-based model. For the sake of clarity,
the examples we use are the same examples in both sections, i.e.,
examples at the conceptual level are translated at the logical level.
Eventually, example physical models, i.e., metadata models actu-
ally implemented in data lakes with goldMEDAL, are presented
in Section 4.2.

3.1 Conceptual Model
In MEDAL, data items were considered either as raw data, or as
versions or representations derived from raw data. The concepts
of version and representation were used to express updated and
transformed data, respectively. While modeling metadata for



Table 1: Features supported by data lake metadata models

Features ↓ \Models→ GEMMS Ground Diamantini et al. Ravat & Zhao MEDAL HANDLE goldMEDAL

Semantic enrichment ✓ ✓ ✓ ✓ ✓ ✓ ✓

Polymorphism/multiple zones ✓ ✓ ✓ ✓ ✓

Data versioning ✓ ✓ ✓ ✓

Usage tracking ✓ ✓ ✓ ✓ ✓

Categorization ✓ ✓ ✓ ✓ ✓ ✓

Similarity links ✓ ✓ ✓ ✓ ✓

Metadata properties ✓ ✓ ✓ ✓ ✓ ✓

Multiple granularity levels ✓ ✓ ✓ ✓

Total 4/8 5/8 4/8 7/8 7/8 7/8 8/8

various data lakes, we found that more data items were possible,
e.g., temporal representations. Thus, we decided to generalize
any such concepts into a global concept named data entity in
goldMEDAL.

Accordingly, we also generalized in goldMEDAL:
• update and transformation operations that served to track
the lineage of representations and versions, respectively,
as well as parenthood relationships that express fusion
operations, into the concept of process;
• similarity links into the global concept of link.

Eventually, we retained in goldMEDAL the MEDAL concept of
grouping, which notably allows multiple data granularity levels.

All the main goldMEDAL concepts (data entity, grouping, link
and process) are characterized by attributes or properties that
constitute their internal metadata.

3.1.1 Data Entity. Data entities are the basic units of our
metadata model. They are flexible in terms of data granularity. For
example, a data entity can represent a spreadsheet file, a textual
or semi-structured document, an image, a database table, a tuple
or an entire database. The introduction of any new element in
the data lake leads to the creation of a new data entity.

Definition 3.1. The set of data entities is denoted E = {𝑒𝑖 }𝑖∈N∗ .

3.1.2 Grouping. A grouping is a set of groups; a group brings
together data entities based on common properties. For example,
the raw and preprocessed data zones common in data lake archi-
tectures are the groups of a zone grouping. Another example is
a grouping of textual documents according to the language of
writing.

Definition 3.2. The set of groupings is denoted G = {𝐺 𝑗 } 𝑗 ∈N∗ ,
with 𝐺 𝑗 = {Γ𝑗𝑘 }𝑘∈N∗ and Γ𝑗𝑘 ⊆ E is a group.

Example 3.3. To get back to our previous examples, G =

{𝐺1,𝐺2}. 𝐺1 = {Γ11, Γ12} is the zone grouping, with Γ11 and
Γ12 being the raw data and processed data zones, respectively.
𝐺2 = {Γ21, Γ22} is the language grouping, with Γ21 and Γ22 the
groups corresponding to French and English languages, respec-
tively. Note that the groupings 𝐺 𝑗 are deliberately not partitions
of E. Thus, a bilingual French-English document can belong to
both groups Γ21 and Γ22.

3.1.3 Link. Links are used to associate either data entities
with each other or groups of data entities with each other. They
can be oriented or not. They allow the expression of, e.g., simple

similarity links between data entities or hierarchies between
groups. For example, a temporal hierarchy month → quarter
would have the months of January, February and March linked
to the first quarter of a given year.

Definition 3.4. The set of links is denoted L = {𝑙𝑚}𝑚∈N∗ , with
either:
• 𝑙𝑚 : E → E,
• 𝑙𝑚 : 𝐺 𝑗 → 𝐺 𝑗 ′ and 𝑗 ≠ 𝑗 ′.

Example 3.5. Let us elaborate the sample hierarchy month
→ quarter. Let 𝐺3 = {𝐽𝑎𝑛, 𝐹𝑒𝑏, ..., 𝐷𝑒𝑐} a grouping of data en-
tities per month and 𝐺4 = {𝑄1, 𝑄2, 𝑄3, 𝑄4} be a grouping of
quarters in a year. Now, let us make explicit some data enti-
ties and their groups: 𝐽𝑎𝑛 = {𝑒1, 𝑒2}, 𝐹𝑒𝑣 = {𝑒3}, 𝑀𝑎𝑟 = {𝑒4};
𝑄1 = {𝑒1, 𝑒2, 𝑒3, 𝑒4}. Link 𝑙1 materializes the hierarchical link be-
tween groups 𝐺3 and 𝐺4: 𝐽𝑎𝑛 −→

𝑙1
𝑄1, 𝐹𝑒𝑏 −→

𝑙1
𝑄1, 𝑀𝑎𝑟 −→

𝑙1
𝑄1.

Inversely, 𝑄1 −−→
𝑙−11

{𝐽𝑎𝑛, 𝐹𝑒𝑏,𝑀𝑎𝑟 }.

A functional notationmay also be used: 𝑙1 (𝐽𝑎𝑛) = 𝑄1, 𝑙1 (𝐹𝑒𝑏) =
𝑄1, 𝑙1 (𝑀𝑎𝑟 ) = 𝑄1, 𝑙−11 (𝑄1) = {𝐽𝑎𝑛, 𝐹𝑒𝑏,𝑀𝑎𝑟 }. Also note that
𝑄1 = 𝐽𝑎𝑛 ∪ 𝐹𝑒𝑏 ∪𝑀𝑎𝑟 .

3.1.4 Process. A process refers to any transformation applied
to a set of data entities that produces a new set of data entities.

Definition 3.6. The set of processes is denoted P = {𝑃𝑛}𝑛∈N∗ ,
with 𝑃𝑛 = {𝐼𝑛,𝑂𝑛}, 𝐼𝑛 ⊆ E the set of input data entities of 𝑃𝑛
and 𝑂𝑛 the set of output data entities that is integrated into E
(E ← E ∪𝑂𝑛).

Example 3.7. Process 𝑃1 splits a set of textual documents 𝐷 ⊆
E into a set of text fragments 𝐹 ⊆ E. Here, 𝐼1 = 𝐷 and 𝑂1 = 𝐹 .

3.1.5 UMLmodel. Figure 1 features goldMEDAL’s conceptual
model as a UML class diagram. All the concepts of goldMEDAL,
including group, are modeled as classes (data entity, grouping,
group and process) or association classes (entity link and group
link, which are labeled E-Link and G-Link in Figure 1, respec-
tively).

Eventually, although they are not depicted in Figure 1, all
classes and association classes bear attributes that model meta-
data properties. These attributes may be of any type, including
lists, and of course vary with respect to use cases.

3.2 Logical Model
As MEDAL and HANDLE did, though at the physical level, we
choose to design goldMEDAL’s logical model as a graph, which is



Figure 1: UML class diagram of goldMEDAL

particularly well-suited to depict relationships between different
concepts.

Thus, in this section, we translate the concepts defined in
Section 3.1 into graph nodes, edges and hyperedges, using the
same indices, e.g., 𝑖, 𝑗, 𝑘 ... Moreover, we illustrate the translation
with the examples used at the conceptual level. Finally, we also
propose a graphic illustration of goldMEDAL’s logical model.

3.2.1 Translation of Data Entity. Data entities are modeled by
nodes that carry attributes.

Definition 3.8. The set of nodes is denotedN = {𝑛𝑖 }𝑖∈N∗ . Each
node 𝑛𝑖 ∈ N carries attributes.

Example 3.9. A PDF file stored in the data lake can be repre-
sented by a node 𝑛1.

3.2.2 Translation of Grouping. A group is represented by a
non-oriented hyperedge, i.e., an edge that can link more than
two nodes. A grouping is modeled by a set of hyperedges.

Definition 3.10. A hyperedge (a group) is denoted 𝜃 𝑗𝑘 ⊆ N ,
with 𝑗, 𝑘 ∈ N∗. Any 𝜃 𝑗𝑘 carries attributes.

Definition 3.11. The set of hyperedges of grouping 𝑗 is denoted
𝐻 𝑗 = {𝜃 𝑗𝑘 } and carries attributes. The set of hyperedge sets (set
of groupings) is denotedH .

Example 3.12. Let us translate Example 3.3. H = {𝐻1, 𝐻2}.
𝐻1 = {𝜃11, 𝜃12} is the set of hyperedges representing the zone
grouping, with 𝜃11 and 𝜃12 the hyperedges representing the raw
data and processed data zones, respectively.𝐻2 = {𝜃21, 𝜃22} is the
set of hyperedges representing the language grouping, with 𝜃21
and 𝜃22 the hyperedges representing the groups corresponding
to French and English languages, respectively.

3.2.3 Translation of Link. Links may model relationships be-
tween either data entities (nodes) or groups (hyperedges). They
are modeled by edges.

Definition 3.13. The set of edges is denoted A = {𝑎𝑚}𝑚∈N∗ ,
with any 𝑎𝑚 being either:
• an edge, oriented or not, connecting two nodes. Then,
𝑎𝑚 = (𝑛𝑖 , 𝑛𝑖′) ∈ N2;
• an oriented edge connecting two hyperedges. Then, 𝑎𝑚 =

(𝜃 𝑗𝑘 , 𝜃 𝑗 ′𝑘′) ∈ 𝐻 𝑗 × 𝐻 𝑗 ′ .
In both cases, the edge carries attributes.

Example 3.14. To get back to the sample hierarchy month→
quarters from Example 3.5, 𝐻3 = {𝜃 𝐽 𝑎𝑛, 𝜃𝐹𝑒𝑏 , ..., 𝜃𝐷𝑒𝑐 } is a set of

hyperedges representing a grouping of data entities per month.
𝐻4 = {𝜃𝑄1, 𝜃𝑄2, 𝜃𝑄3, 𝜃𝑄4} is a set of hyperedges representing
the grouping of quarters in a year. Let us make this explicit
with instances. 𝜃 𝐽 𝑎𝑛 = {𝑛1, 𝑛2}, 𝜃𝐹𝑒𝑣 = {𝑛3}, 𝜃𝑀𝑎𝑟 = {𝑛4}; 𝜃𝑇 1 =
{𝑛1, 𝑛2, 𝑛3, 𝑛4}. Edge𝑎1 materializes the hierarchical link between
𝐻3 and 𝐻4: 𝜃 𝐽 𝑎𝑛 −−→

𝑎1
𝜃𝑄1, 𝜃𝐹𝑒𝑏 −−→

𝑎1
𝜃𝑄1, 𝜃𝑀𝑎𝑟 −−→

𝑎1
𝜃𝑄1. Inversely,

𝜃𝑄1 −−−→
𝑎−11

{𝜃 𝐽 𝑎𝑛, 𝜃𝐹𝑒𝑏 , 𝜃𝑀𝑎𝑟 }.

3.2.4 Translation of Process. A process is modeled by an ori-
ented hyperedge.

Definition 3.15. The set of oriented hyperedges modeling pro-
cesses is denoted Q = {Π𝑛}𝑛∈N∗ , with Π𝑛 = {Υ𝑛,Ω𝑛}, Υ𝑛 ⊆ N
being the set of input nodes of Π𝑛 and Ω𝑛 the a set of output
nodes integrated toN (N ← N ∪Ω𝑛). Any Π𝑛 carries attributes.

Example 3.16. Π1 = {Υ1,Ω1} is an oriented hyperedge rep-
resenting the process of splitting a set of textual documents
(Example 3.7) represented by the set of nodes 𝑁𝐷 ⊆ N , into a
set of text fragments represented by the set of nodes 𝑁𝐹 ⊆ N .
Then, Υ1 = 𝑁𝐷 and Ω1 = 𝑁𝐹 .

3.2.5 Sample Graph Representation. Figure 2 provides a sche-
matic representation of the examples above. Let us introduce
eight data entity nodes {𝑛𝑖 }𝑖∈[1,8] colored in orange.

Example 3.12 is depicted on the left-hand side of Figure 2.
Groups of 𝐻1 are colored in purple, while 𝐻2’s are blue. We can
see that 𝑛1 and 𝑛3 belong to the raw data group 𝜃11, while 𝑛2 and
𝑛4 are in the processed data group 𝜃12. Moreover, 𝑛1, 𝑛2 and 𝑛3
are in the French language group 𝜃21, and 𝑛4 is in the English
language group 𝜃22.

Example 3.14 is represented at the center of Figure 2. Groups
of𝐻3, namely 𝜃 𝐽 𝑎𝑛 , ..., 𝜃𝐷𝑒𝑐 are colored in green and groups of𝐻4
(𝜃𝑄1, ..., 𝜃𝑄4) are colored in grey. Hyperedge 𝑎1 connects groups
of 𝐻3 to 𝐻4’s.

Finally, Example 3.16 is depicted on the right-hand side of
Figure 2. 𝑛5 is a textual document split in fragments 𝑛6, 𝑛7 and
𝑛8. Π1’s input and output Υ1 and Ω1, respectively, are colored in
yellow.

4 GOLDMEDAL ASSESSMENT
In this section, we discuss goldMEDAL’s genericity. To this end,
we show in Section 4.1 that all three most complete metadata
models can be modeled with goldMEDAL. In Section 4.2, we
present our ongoing implementation work of goldMEDAL on
distinct use cases.

4.1 Comparison of State-of-the-Art Metadata
Models with goldMEDAL

To evaluate goldMEDAL’s genericity, we compare it with the
three metadata models that are both the most recent and the
most complete among metadata models, i.e., MEDAL, Ravat and
Zhao’s and HANDLE (Section 2.2).

For each comparison, we use a two-column table. The first
column lists goldMEDAL’s concepts, and the second column
the corresponding concepts of the compared model. When any
concept does not have an equivalent, it is marked with “—”.

4.1.1 MEDAL vs. goldMEDAL. goldMEDAL’s four main con-
cepts help generalize all of MEDAL’s concepts (Table 2). Data
entity generalizes the concepts of version and representation.
Grouping generalizes the concepts of object and grouping (in



Figure 2: Sample goldMEDAL graph logical model

the sense of MEDAL). Link generalizes the concepts of similar-
ity link. Finally, process generalizes transformation, update and
parenthood relationship.

Table 2: goldMEDAL and MEDAL concepts

goldMEDAL MEDAL

Data entity Version, Representation

Grouping Object, Grouping

Link Similarity link

Process Update, Transformation,
Parenthood relationship

Note that we do not mention in this comparison global meta-
data existing in MEDAL. We indeed consider that elements such
as logs or indexes mostly induce implementation rather than
metadata modeling issues.

Yet, other forms of global metadata, namely semantic resources
such as thesauruses and ontologies, can definitely be modeled
with goldMEDAL using the node, grouping and link concepts.

4.1.2 Ravat and Zhao’s Metadata Model vs. goldMEDAL. gold-
MEDAL can handle nearly all concepts of Ravat and Zhao’s meta-
data model [18] (Table 3). Data entity generalizes the concept
of dataset and all its subclasses, such as Datalake_Datasets or
Source _Datasets. Grouping generalizes the concepts of keyword.
Finally, link and process directly correspond to relationship and
process, respectively.

Table 3: goldMEDAL and Ravat & Zhao concepts

goldMEDAL Ravat & Zhao

Data entity Dataset, Subclass

Grouping Keyword

Link Relationship

Process Process

— User, Access

However, two concepts of Ravat and Zhao’s metadata model,
namely user and access, have no explicit equivalent in goldMEDAL,

though they could be classified as global metadata. Users and
accesses can indeed be modeled as data entities and processes,
respectively.

4.1.3 HANDLE vs. goldMEDAL. goldMEDAL can also gener-
alize HANDLE’s concepts (Table 4). Data entity generalizes both
data and metadata, since a data entity is a representation of data
that also contains metadata properties. Grouping generalizes
three concepts: Categorization, ZoneIndicator, and Granulari-
tyIndicator. Finally, process has no direct match in HANDLE,
although its authors show processes can be modeled through
Action metadata instances of HANDLE’s categorization exten-
sion [5].

Table 4: goldMEDAL and HANDLE concepts

goldMEDAL HANDLE

Data entity Data, Metadata

Grouping Categorization, ZoneIndicator
GranularityIndicator

Link Link

Process —

Handling multiple granularity levels as in HANDLE was not
supported byMEDAL, so it was a design objective for goldMEDAL.
Although there is no explicit granularity indicator in goldMEDAL,
any data entity could have a granularity property. However, there
is more efficient way by defining data entities on the finest possi-
ble granularity level. Then, coarser granularity levels are obtained
with groupings. For example, if each data entity corresponds to
a tuple in a relational database, then a grouping represent a set
of tables.

4.2 goldMEDAL Physical Models
To show that goldMEDAL can model different business issues
and manage various functionalities while remaining as simple as
possible, we apply ourmetadatamodel to three different use cases.
We also exemplify how goldMEDAL’s logical model (Section 3.2)
can be translated into different physical models.

4.2.1 Public Housing Data Lake. For social landlords (agents
or agencies providing social housing), the use of data is noth-
ing new, whether through business intelligence for patrimony



management or with data science methods for non-payment fore-
casting. However, landlords are facing two main problems. On
the one hand, their analyses are conducted separately: in different
environments, by different individuals and with different tools.
This implies that collaborative work on the same data is impossi-
ble. On the other hand, landlords know how to use their data, but
have much more difficulty capturing and exploiting “external”
data. Yet their dwellings are located in environments with their
own characteristics (transportation, climate, employment rate,
education, etc.), which affect the attractiveness of the dwellings.
Being able to combine this external information with landlords’
data would be a real asset for understanding their patrimony.

A data lake can store both “internal” data from social landlords
as well as “external” data gathered on the Internet. In addition,
all types of analyses can be carried out from the data lake.

HOUDAL (public HOUsing DAta Lake). The data lake imple-
mented for social landlords [21] is based on a Web application,
and thus is composed of two major parts: the front-end (or client
part) is the user interface for depositing new data, for creating
new metadata and for consulting existing metadata; the back-
end (or server part) features various services such as an API, the
metadata system, data storage, and a user management service.

HOUDALMetadata System. goldMEDAL’s metadatamodel has
been implemented into the Neo4J graph database management
system1. Since Neo4J does not allow to have hyperedges, we
create a node for each concept. Thus, entities, groups, groupings,
links and processes translate as nodes, each bearing a label and
attributes.

Data entities. The different data files that populate the data
lake are data entities. They can be either raw data files sent by
landlords (often in comma separated value files) or reworked
data, sometimes stored in various formats such as .pkl or .RData,
for Python and R analyses, respectively. Each data entity has its
node labeled :ENTITY and the entity’s properties, such as file
name or description, are stored in the node’s attributes.

Groupings for Categorizing Data Entities. WithHOUDAL, users
can create as many groupings as necessary, and several groups
for each grouping. Data entities can be linked to zero, one or sev-
eral groups for each grouping. In Neo4J, groupings are modeled
by nodes carrying a :GROUPING label. Groups are also nodes,
carrying both a :GROUP label and the grouping’s name as a sec-
ond label, in order to facilitate querying. A data entity node (resp.
group node) is linked to a group node (resp. grouping node) with
an edge labeled with the grouping’s name (resp. :GROUPING).
With groups and groupings, users can, for example, determine
whether it is internal or external data, or the data refinement
level (zones), and so on.

Processes for Tracking Data Lineage. Like other goldMEDAL
concepts, a process is also modeled by a node in Neo4J, bearing
the :PROCESS label. A process can be a script for transforming
or cleaning a data file, i.e., a data entity. If a data entity is the
input of a process, there is an edge labeled :PROCESS_IN from
the entity node to the process node. Inversely, an edge labeled
:PROCESS_OUT from the process node to the entity node is
created if a new data entity is generated by the process.

Example. Figure 3 presents a sample of metadata stored in
Neo4J. Data entity nodes are colored in red. On both sides of the

1https://neo4j.com

figure, a data entity node is highlighted: some of its attributes
are depicted at the bottom in grey.

The left-hand side of Figure 3 gives an example of groupings.
There are three groupings: a zone grouping, a format grouping
and a granularity grouping. Each grouping has its group nodes,
colored in green, purple and blue, respectively. Data entity nodes
are connected to group nodes with an edge. For example, we can
see that the highlighted data entity node (on the left) is a raw
.csv file, and the granularity level is “Tenant”, meaning that each
line corresponds to a tenant. Note that in Neo4J, groupings are
also modeled as nodes, but are not represented in this Figure.

An example of process is depicted on the right-hand side of
Figure 3. The process node is colored in yellow. We can see
that three data entity nodes are the process’ input, and three
data entity nodes are the process’ output, meaning that they are
generated by the process.

HOUDAL is operational and is currently being tested by social
landlords. Nevertheless, we have many areas for improvement
to work on, to make the application more robust and more user-
friendly. In addition, we continue to discuss with social landlords
to identify new needs, which could be the subject of future work
to add a new feature to our data lake.

4.2.2 Textual and Tabular Data Lake. The AUDAL data lake
is motivated by researchers in management science who want
to analyze the effect of servicization (i.e., the transition from
supplying products to supplying services) and digitization on
small and medium sized companies’ economic performance [2].
Source data are various textual documents (annual reports, press
releases, websites, social media posts) and spreadsheet files fea-
turing qualitative (e.g., stocks) and qualitative (e.g., degree of
servicization) characteristics.

Metadata Management in AUDAL. AUDAL’s metadata sys-
tem is architectured in three levels. The first level manages data
entities. Data entities, i.e., textual documents and spreadsheet
tables, are categorized as raw and refined. Raw tables or docu-
ments are actually pointers to the corresponding files in their
original format. Raw data entities store metadata properties, in
the form of Neo4J node attributes, e.g., file author(s), date of cre-
ation, etc. Refined data entities are automatically generated from
raw data entities. They are transformed so as to be exploited in
analyses. More concretely, raw textual documents are refined
into bag-of-word vectors or document embedding vectors stored
in the MongoDB document-oriented database management sys-
tem2, and referenced from Neo4J nodes (Figure 4). Similarly, raw
spreadsheet tables are refined in relational tables to benefit from
SQL querying.

The second level in AUDAL’s metadata system handles rela-
tionships between data items. We use two kinds of relationships
in accordance with goldMEDAL concepts: groupings and (sim-
ilarity) links. Some of the groupings relate to both tabular and
textual data, e.g., groupings on the MIME type or data source.
Conversely, others are relevant for only one type of data, e.g., the
grouping on the language of documents. We materialize group-
ings in Neo4J through a set of nodes. Each grouping is a simple
node with which all associated groups are linked. Then, groups
are in turn linked to the corresponding data entities.

We define two types of links with respect to the type of
data they relate to. Document similarity links express how much

2https://www.mongodb.com

https://neo4j.com
https://www.mongodb.com


Figure 3: HOUDAL sample Neo4J metadata

two documents are similar. These links are materialized by non-
oriented edges between data entity nodes in Neo4J. Similarly, we
express links between tabular data with Table joinability links.
Such links (labeled PK_FK_LINK in Figure 4) actually represent
some automatically detected functional dependencies between
columns from different tables. In Neo4J, table joinability edges
are oriented.

Eventually, our model’s third level is constituted of metadata
used to speed up or enhance analyses. It includes indexes that
allow and speed up keyword-based search on textual documents
as well as spreadsheet files. These indexes are managed by Elas-
ticSearch3. Moreover, AUDAL’s metadata system also includes se-
mantic resources, i.e., dictionaries and thesaurus. Such resources,
stored in MongoDB, allow amongst other automatic query exten-
sion.

Analyses with AUDAL. AUDAL allows both data retrieval and
content analyses. Data retrieval works in three different ways.
The first way exploits indexes to allow term-based queries. It is
effective for both textual documents and tabular data. AUDAL
also provides navigation as a solution to discover data of interest.
This is done by intersecting groups from different groupings. For
example, such queries allow finding data from a specific source
and created on a specified year. Finally, data can be retrieved using
relatedness, starting from a specified data object and then finding
the most related data, namely similar documents or joinable
tables.

Content analyses are actually a way to aggregate data. In
the case of textual documents, such analyses include document
clustering or scoring with respect to a set of keywords and text
concordance. Tabular data are exploited through SQL queries,
the clustering of table rows and correlation analyses between
columns.

4.2.3 Archaeological Data Lake. This data lake was designed
during the course of the multidisciplinary project “Hyper the-
saurus and data lakes:Mine the city and its archaeological archives”
(HyperThesau) [2, 12]. Let us name it ArchaeoDAL, in echo to
HOUDAL and AUDAL, though it was actually never called so.

3https://www.elastic.co

Archaeological data may bear many different types, e.g., tex-
tual documents (excavation reports), images (photographs, draw-
ings, plans...), sensor data, chemical analysis results, etc. Even
structured data are often produced by various devices that are
not compatible with each other. Moreover, the description of an
archaeological object also differs with respect to users, usages
and time. Thus, archaeologists use semantic resources such as
thesauruses to interoperate data from various origins.

Physical Model of Data Entities. The implementation of Ar-
chaeoDAL heavily relies on the Apache ecosystem. In particular,
its metadata system rests on the Atlas4 data governance andmeta-
data framework. Atlas’ objects match with goldMEDAL’s data
entities. In addition to metadata properties (in the form of key-
value pairs), objects may also relate to terms from thesauruses, i.e.,
goldMEDAL links, and classifications, i.e., goldMEDAL groupings
(Figure 5).

Moreover, we exploit Atlas’ object types to fulfill domain-
specific requirements regarding metadata properties. For exam-
ple, in the HyperThesau project, users need not only semantic
metadata to understand data contents, but also geographical
metadata to know where archaeological objects were discovered.
The benefits of having an object type system include:
• consistency: a universal definition of metadata can avoid
terminological variations that may cause data retrieval
problems;
• flexibility: a domain-specific type system helps define spe-
cific metadata for requirements in each use case;
• efficiency: with a given metadata type system, it is easy
to write and implement search queries. Because names
and types of all metadata properties are known in ad-
vance, we can filter data with metadata predicates such as
𝑢𝑝𝑙𝑜𝑎𝑑_𝑑𝑎𝑡𝑒 > ‘10/02/2016’.

Physical Model of Processes. Atlas also includes a nice lineage
feature that helps visualize chains of processes. For instance,
Figure 6 represents a simple ingestion process of raw data stored
in HDFS into a Hive table, where objects are symbolized by blue
hexagons and the process by a green hexagon.

4https://atlas.apache.org

https://www.elastic.co
https://atlas.apache.org


Figure 4: AUDAL sample Neo4J metadata

Figure 5: Sample Atlas object

Thesauruses and Links. TheHyperThesau project heavily relies
on thesauruses to organize data. A thesaurus consists of a set of
categories and terms that help regroup data. In Atlas’ glossary,

a category may have only one parent. A category without a
parent is called the root category. Conversely, a category may
have several subcategories or terms. A term must have a parent



Figure 6: Sample Atlas lineage

category but no subcategory. A term may have relationships
(i.e., goldMEDAL links) with other terms, e.g., related words,
synonyms, antonyms, etc. Note that it would be easy to represent
ontologies or taxonomies, too.

Eventually, we add specific links between data nodes associ-
ated with term nodes from the thesaurus. The left-hand side of
Figure 7 displays an excerpt of the thesaurus. Figure 7 also shows
how a term (arme défensive, i.e., defensive weapon) points to the
corresponding metadata (short and long descriptions) and related
terms.

5 CONCLUSION
In this paper, we introduced goldMEDAL, a generic data lake
metadata model. goldMEDAL is based on four main concepts:
data entity, grouping, link and process, which are defined at
the conceptual and logical levels. These concepts interact alto-
gether to support data lake metadata management requirements
and they generalize almost all the concepts proposed in state-
of-the-art metadata models : the concept of grouping supports
the organization of data lakes in zones [18]; groupings allow
managing multiple data granularity levels as in HANDLE [5].

Moreover, goldMEDAL supports all the features identified to
compare data lake metadata models (Section 2.2), making it the
most generic metadata model to the best of our knowledge.

Another particularity of goldMEDAL is the explicit possibility
of data lineage tracing with the concept of process. goldMEDAL
thus manages the dynamics of data, while the most recent meta-
data model from the literature, HANDLE [5], does not natively
support it.

Eventually, we show as a proof of concept how goldMEDAL
can be translated from conceptual and logical models to actual
physical models with three different implementations ofmetadata
models from distinct data lakes that feature both structured and
unstructured data.

Future research and open issues include the “industrialization”
of data lakes, i.e., providing a software layer, connected to the

metadata system, which allows non-data or non-computer scien-
tists to transform and analyze their own data in autonomy, just
as dynamic reports are prepared on top of data warehouses for
the use of business (i.e, non technical) users. However, such a
software layer must not become yet another black box. In conse-
quence, we must take great care of accompanying users in their
appropriation of our analysis tools, not only by training, but also
by interweaving research methodologies from computer science
with business practices by design, in close collaboration with the
partners.

Moreover, exploiting a data lake and its metadata system may
contribute to open data and open science. A well-designed data
lake should indeed readily enforce the four FAIR principles5,
i.e., findability, accessibility, interoperability and reusability. By
adding an industrialization layer that allows non-data or non-
computer scientist exploit the data lake, we can further improve
accessibility in a non-technical way, i.e., not only through suitable
communication protocols. FAIR principles are very appealing to
researchers in humanities and social sciences, as illustrated by
AUDAL (management sciences; Section 4.2.2) and ArchaeoDAL
(archaeology; Section 4.2.3).

Finally, to the best of our knowledge, the maintenance of data
lake metadata is a completely open issue. For instance, how to
manage a new categorization of metadata? How to change or
transform the metadata system when it hits some limits, whether
technical or functional?What if metadata become big in the sense
of voluminous big data? Should obsolete data be deleted, which
is contrary to the principle of data lakes, and how to ensure that
the metadata accessibility FAIR principle remains enforced when
source data are no longer available?
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Figure 7: Sample Atlas thesaurus
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