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Abstract
Unsupervised domain adaptation (UDA) focuses on transferring knowledge from a labeled source do-
main to an unlabeled target domain. However, existing domain adaptation methods try to handle var-
ious DA scenarios that are subject to imbalanced labels or large domain discrepancy datasets. In this
paper, we propose a weighted pseudo labeling refinement model (WPLR) to balance the dataset using
a weighted cross-entropy loss. We also utilize the CORAL loss to further reduce the domain difference.
To improve the generalizability of the model, we develop an easy-to-hard pseudo labeling refinement
process by probabilistic soft selection to suppress noisy predicted target labels. Experimental results
demonstrate our WPLR model yields promising results on the PlantCLEF 2021 Challenge.
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1. Introduction

Automatic plant identification is helpful for the general audience in recognizing plant species
without the expertise of botanists. Deep neural networks can improve recognition performance
when a large number of labeled data are used for training but suffer from significant performance
degradation when deployed in a new domain due to the problem of domain shift. However,
the domain shift or domain mismatch problem exists for the plant identification problem in
PlantCLEF. Due to the significant difference between herbarium and real photos, classification
models often do not generalize well to the novel field photo domain.

To circumvent the domain shift issue, the unsupervised domain adaptation (UDA) method
has been proposed, which can transfer the model trained on the labeled source domain to
an unlabeled target domain. Existing deep learning methods can be categorized into two
major tracks: discrepancy-based methods [1, 2, 3] and adversarial learning methods [4, 5,
6]. The former aligns the distributions of source and target domains by directly minimizing
the difference metric between feature distributions of the two domains, such as Maximum
Mean Discrepancy (MMD) [1], CORrelation ALignment [2], Kullback-Leibler divergence [3],
Jensen–Shannon divergence [7], and Wasserstein distance [8]. The latter category methods are
inspired by GANs [9], and adversarial learning has shown its power in learning domain invariant
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representations. It consists of a domain discriminator and a feature extractor. The domain
discriminator aims to distinguish the source domain from the target domain, while the feature
extractor aims to learn domain-invariant representations to fool the domain discriminator [4,
5, 6]. There is also much exploration of adversarial learning methods, such as DANN [10],
MCD [11], TADA [12], SymNets [13], and ACDA [14].

Although many methods are proposed for domain adaptation, most of them are tested on
small domain divergence datasets, which may have lower transferability to large-divergence
datasets, and the data imbalance problem is not well addressed. To address these challenges, we
offer two contributions:

1. We propose a weighted cross-entropy loss to balance the categorical data. To minimize
the domain divergence, we utilize the existing CORAL loss.

2. To remove noisy pseudo labels in the target domain, we also employ an easy-to-hard
pseudo labeling refinement process by probabilistic soft selection. We then form a high-
quality pseudo-labeled target domain to improve the generalizability of the model.

2. Dataset

PlantCLEF 2021 is a large-scale dataset of the PlantCLEF 2021 task[15, 16], organized in the
context of the LifeCLEF 2021 challenge. Fig. 1 shows some challenging images in this dataset.
Tab. 1 lists the statistics on PlantCLEF 2021 dataset. Due to the significant difference between
herbarium and real photos, it is extremely difficult to identify the correct class. All images are
the same as PlantCLEF 2020 dataset [17], but it also introduces five “traits" covering exhaustively
all species of the challenge.

Figure 1: Example images of the herbarium domain and photo domain. The large discrepancy between
the two domains causes difficulty in improving the performance of the model.



Table 1
Statistics of the PlantCLEF 2021 dataset

Domain Number of Samples Number of Classes
Herbarium (H) 320,750 997

Herbarium_photo_associations (A) 1,816 244
Photo (P) 4,482 375

Test (T) 3,186 -

3. Methods

In this section, we will first introduce the problem and notation for UDA, and then introduce
the different components of our Weighted Pseudo Labeling Refinement (WPLR) model.

3.1. Problem and notation

In this work, we consider the unsupervised domain adaptation (UDA) classification problem in
the following setting. There exists a labeled source domain 𝒟𝒮 = {𝒳 𝑖

𝒮 ,𝒴 𝑖
𝒮}

𝒩𝒮
𝑖=1 of 𝒩𝒮 labeled

samples in 𝐶 categories and a target domain 𝒟𝒯 = {𝒳 𝑗
𝒯 }

𝒩𝒯
𝑗=1 of 𝒩𝒯 samples without any

labels (i.e., 𝒴𝒯 is unknown). The samples 𝒳𝒮 and 𝒳𝒯 obey the marginal distributions of 𝑃𝒮
and 𝑃𝒯 . The conditional distributions of the two domains are denoted as 𝑄𝒮 and 𝑄𝒯 . Due to
the discrepancy between the two domains, the distributions are assumed to be different, i.e.,
𝑃𝒮 ̸= 𝑃𝒯 and 𝑄𝒮 ̸= 𝑄𝒯 . Our ultimate goal is to learn a classifier 𝐹 under a feature extractor
𝐺, which reduces domain discrepancy and improves the generalization ability of the classifier
to the target domain.

Figure 2: The weight of each class.



Figure 3: Architecture of the WPLR model. We first utilize NASNetLarge as the feature extractor 𝐺
to extract features from the two domains (𝐺(𝒳𝒮) and 𝐺(𝒳𝒯 )). The shared classifier 𝐹 is then trained
using the extracted features. ℒ𝒲𝒮 is the weighted source classification loss, ℒ𝐶𝑂𝑅𝐴𝐿 is the CORAL
loss, andℒ𝒯 is the pseudo-labeled target domain classification loss. {𝑄(𝒳 𝑗

𝒯 ), 𝑄(𝒴𝑗
𝒯 )}

𝑛𝑝𝑡

𝑗=1 is the pseudo-
labeled target domain after 𝑇 times pseudo labeling refinement processes. Best viewed in color.

3.2. Weighted source classifier

The task in the source domain is trained using the typical cross-entropy loss. However, there are
imbalanced numbers of samples of each category. To handle this issue, we develop a weighted
source classifier to balance the weight of each category based on the source samples. We define
the weight of each class in the following equation.

𝑊 =
𝑚𝑒𝑑𝑖𝑎𝑛({𝒩 𝑐

𝒮
𝒩𝒮

}𝐶𝑐=1)

{𝒩 𝑐
𝒮

𝒩𝒮
}𝐶𝑐=1

, (1)

where 𝒩 𝑐
𝒮 is the number of samples in each class, {𝒩 𝑐

𝒮
𝒩𝒮

}𝐶𝑐=1 ∈ R997×1 is the frequency of images
in each class, 𝑚𝑒𝑑𝑖𝑎𝑛(·) takes the median value of the frequency. The frequency value varies;
the median represents the middle frequency better than mean would. Fig. 2 shows the weight
of each class (997 classes in total). Therefore, we develop the weighted cross-entropy loss for
the labeled source domain in Eq. 2.

ℒ𝒲𝒮 =
1

𝒩𝒮

𝒩𝒮∑︁
𝑖=1

𝑊𝑖 × ℒ𝑐𝑒(𝐹 (𝐺(𝒳 𝑖
𝒮)),𝒴 𝑖

𝒮), (2)

where ℒ𝑐𝑒 is the typical cross-entropy loss, 𝐹 is the classifier in Fig. 3, and 𝐹 (𝐺(𝒳 𝑖
𝒮)) is the

predicted label.

3.3. CORAL loss

CORrelation ALignment loss (CORAL) [2] is one frequently used distance-based loss function
to minimize the difference between source and target domain. We also integrate CORAL loss



during the training as follows,

ℒ𝐶𝑂𝑅𝐴𝐿 =
1

4𝑑2
||𝐶𝑂𝑉 (𝐹 (𝐺(𝒳𝒮)))− 𝐶𝑂𝑉 (𝐹 (𝐺(𝒳𝒯 )))||2𝐹 , (3)

where 𝑑 is the feature dimensionality, 𝐶𝑂𝑉 (·) is the covariance matrices of the source and
target features, and || · ||2𝐹 denotes the squared matrix Frobenius norm. Therefore, our model
is able to minimize the domain divergence between the source domain and the target domain
during the training.

3.4. Pseudo labeling refinement

To further reduce the domain difference, we also generate pseudo labels for the target domain.
However, the detrimental effects of bad pseudo-labels are still significant. To mitigate this issue,
we employ a 𝑇 times recurrent easy-to-hard pseudo-label refinement process to improve the
quality of the pseudo-labels in the target domain via imposing a probabilistic soft selection [18,
19].

The initial shared classifier 𝐹 is optimized by ℒ𝒲𝒮 . For the inference, we can directly
get predicted results for one target domain sample 𝐹 (𝐺(𝒳 𝑗

𝒯 )). Let Softmax(𝐹 (𝐺(𝒳 𝑗
𝒯 ))) be

the predicted probability for each class, and 𝒴𝑗
𝒫𝒯 = 𝑚𝑎𝑥(Softmax(𝐹 (𝐺(𝒳 𝑗

𝒯 ))))𝑖𝑛𝑑𝑒𝑥 be its
dominant class label, where 𝑚𝑎𝑥(·)𝑖𝑛𝑑𝑒𝑥 return the index of the maximum probability value.
Therefore, for the probabilistic soft selection, a higher quality pseudo label is defined as
𝑚𝑎𝑥(Softmax(𝐹 (𝐺(𝒳 𝑗

𝒯 )))) > 𝑝𝑡, where 𝑝𝑡 is a threshold probability in number of 𝑡 train-
ing. For 𝑇 times recurrent easy-to-hard pseudo-label refinement, for easy examples, 𝑝𝑡 has a
higher value and for hard examples, 𝑝𝑡 has a lower value, hence 𝑝1 > 𝑝2 > · · · > 𝑝𝑇 .

In pseudo labeling refinement, we form a robust new pseudo-labeled domain in the following
equation,

{𝑄(𝒳 𝑗
𝒯 ), 𝑄(𝒴𝑗

𝒯 )}
𝑛𝑝𝑡

𝑗=1 if and only if 𝑚𝑎𝑥(Softmax(𝐹 (𝐺(𝒳 𝑗
𝒯 )))) > 𝑝𝑡 (4)

where 𝑄(·) represents the high quality, 𝑛𝑝𝑡 is the number of higher quality pseudo labels for
the target domain. We hence can mitigate detrimental effects of bad pseudo-labels using Eq. 4.
Similar to Eq. 2, we define the pseudo-labeled target domain loss as:

ℒ𝒯 =
1

𝑛𝑝𝑡

𝑛𝑝𝑡∑︁
𝑗=1

𝑊𝑗 × ℒ𝑐𝑒(𝐹 (𝐺(𝑄(𝒳 𝑗
𝒯 ))), 𝑄(𝒴𝑗

𝒯 )), (5)

where 𝑊 is the weight of each class and ℒ𝑐𝑒 is the cross-entropy loss.

3.5. WPLR model

Fig. 3 depicts the overall framework of our proposed WPLR model. Taken together, our model
minimizes the following objective function:

argmin (ℒ𝒲𝒮 + ℒ𝐶𝑂𝑅𝐴𝐿 +

𝑇∑︁
𝑡=1

ℒ𝑡
𝒯 ) (6)

where ℒ𝒲𝒮 is the weighted source classification loss, ℒ𝐶𝑂𝑅𝐴𝐿 is the CORAL loss, and ℒ𝒯 is
the pseudo-labeled target domain classification loss.



4. Experiments

4.1. Implementation details

We first extract features from the last fully connected layer [20, 21, 22] of a retrained NASNet-
Large [23] model. One image can be denoted by a feature vector with the size of 1 × 1000.
Therefore, the feature representation of domain herbarium (H) has the size of 320, 750× 1000,
domain herbarium_photo_associations (A) has the size of 1, 816× 1000, domain photo (P) has
the size of 4, 482× 1000, and domain test (T) has the size of 3, 186× 1000. Domain H + A has
the size of 322, 566× 1000. In Tab. 2, H � P represents learning knowledge from domain H,
which is applied to domain P [24].

We implement our approach using PyTorch. The outputs of the three Linear layers are
1000, 1000 and |𝐶|, respectively. Parameters in recurrent pseudo labeling are 𝑇 = 5 and
{𝑝𝑡}5𝑡=1 = [0.9, 0.8, 0.7, 0.6, 0.5]. Learning rate (0.001), batch size (64), optimizer (Adam) and
number of epochs (𝒩𝒮/64) are determined by performance on the source domain. Experiments
are performed with a GeForce 1080 Ti. We also compare our results with four domain adaptation
methods: DANN [10], ADDA [5], NASNetLarge-𝐴𝐶𝐿 [24] and BA3US [25].

4.2. Results

Table 2
Accuracy (%) on PlantCLEF 2021 dataset for photo domain

Task A � P H � P H+A � P
DANN [10] 1.07 1.85 2.01

ADDA [5] 2.95 3.05 3.43
BA3US [25] 3.56 4.65 5.31

NASNetLarge-𝐴𝐶𝐿 [24] 5.98 8.64 9.67

WPLR- ℒ𝐶𝑂𝑅𝐴𝐿 − ℒ𝒯 6.03 9.12 10.03
WPLR- ℒ𝒯 6.12 9.23 11.46

WPLR- ℒ𝐶𝑂𝑅𝐴𝐿 6.22 9.47 12.51

WPLR 6.38 9.645 13.44

Tab. 2 shows the results of our WPLR model of the photo domain. We report the accuracy of
the whole photo domain (𝐴𝑐𝑐 =

∑︀𝒩𝒯
𝑗=1(𝒴𝒯 𝑗

^ == 𝒴𝒯 𝑗)/𝒩𝒯 × 100), where 𝒴�̂� is the predicted
label for the target domain. Compared with all other four methods, our WPLR model achieves
the highest accuracy in all three tasks, and especially in H+A � P task.

We also carefully conduct an ablation study to demonstrate the effects of different loss
functions on final classification accuracy. Notice that weighted source classification loss ℒ𝒲𝒮 is
required for UDA. “WPLR- ℒ𝐶𝑂𝑅𝐴𝐿 − ℒ𝒯 ” is implemented without ℒ𝐶𝑂𝑅𝐴𝐿 and ℒ𝒯 . It is a
simple model, which only reduces the source risk without minimizing the domain discrepancy
using ℒ𝒲𝒮 . “WPLR- ℒ𝐶𝑂𝑅𝐴𝐿” reports results without performing CORAL loss. “WPLR- ℒ𝒯 ”
reports results without performing the 𝑇 time pseudo labeling refinement process. We can find
that with the increasing number of loss functions, the accuracy of our model keeps improving.



Table 3
MRR on PlantCLEF 2021 challenge for test domain

Team Full test set Sub-set of the test set
Organizer’s submission [15] 0.198 0.093

Neuon AI 0.181 0.158

LU (ours) 0.065 0.037

Domain_run 0.065 0.037
To_be 0.056 0.038

The effectiveness of loss functions on classification accuracy is ordered as ℒ𝒯 > ℒ𝐶𝑂𝑅𝐴𝐿.
Therefore, the proposed weighted classification loss, CORAL loss, and easy-to-hard target
domain pseudo labeling refinement approaches are effective in minimizing target domain risk
and improving the accuracy.

We also list the final performance of our model in the test domain in Tab. 3. Our model earns
the second position in the PlantCLEF 2021 challenge. We provided a total of nine submissions;
the MRR of the full test set ranged from 0.034 to 0.065, as a result of varying hyperparameters
(different number of iterations, 𝑇 and 𝑝𝑡).

5. Discussion

There are two compelling advantages of our WPLR model. First, we propose a weighted cross-
entropy loss to mitigate the imbalanced data issue in the source domain. Secondly, we develop
an easy-to-hard refinement process to improve the quality of pseudo labels in the target domain.
This strategy considers probabilistic soft selection, and it hence can push the shared classifier 𝐹
towards the target domain. Compared with other baselines in Tab. 2, the 𝑇 times easy-to-hard
refinement process is effective in improving the classification accuracy and further reduces
the domain discrepancy. However, our model only earns the second position in the challenge,
and the results are a little bit lower than the Organizer’s submission. One underlying reason
is that our model cannot extract very robust invariant features. Therefore, we will consider
designing a better feature extractor method and distill the domain invariant features across the
two domains for future work. In addition, we would like to include more external data during
the training (e.g., GBIF [26]).

6. Conclusion

In this paper, we propose a novel weighted pseudo labeling refinement (WPLR) method for
domain adaptation to solve the plant identification problem. We develop a weighted cross-
entropy loss to balance the categorical data and utilize the CORAL loss to minimize the domain
divergence. We also employ an easy-to-hard pseudo labeling refinement process by probabilistic
soft selection. It can improve the quality of pseudo labels and remove the detrimental effects of
bad labels. Experimental results demonstrate our proposed WPLR model is better than several
baselines.
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