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Abstract. In this paper, we present a way of how to handle incomplete 
knowledge concerning moving objects. Our approach is based on the basic 
Qualitative Trajectory Calculus (QTCB), which is a calculus for handling 
interactions between moving point objects (MPO’s). Without elaborating on the 
domain of linguistics, we show that QTC

B

BB is well-fitted to represent spatio-
temporal natural language. Illustrative examples on how to deal with 
incomplete knowledge are presented. 

 
1. Introduction 
 
In the last two decades, qualitative formalisms suited to express qualitative temporal 
(e.g.: Freksa, C., 1992a) and spatial relationships (e.g.: Randell, D., Cui, Z., and 
Cohn, A.G., 1992) between entities have gained wide acceptance as a useful way of 
abstracting from the real world. Only in recent years, attention has been extended to 
applications that involve spatio-temporal data. Nevertheless, a variety of research 
communities have been studying movements of objects, e.g.: Wolfson, O., Xu, B., 
Chamberlain, S., and Jiang, L., 1998; Erwig, M., Güting, R.H., Schneider, M., and 
Vazirgiannis, M., 1999; Fernyhough, J.H., Cohn, A.G., and Hogg, D.C., 2000; Nabil, 
M., Ngu A., and Shepherd A.J., 2001; Pfoser, D., 2002. Until now, the spatio-
temporal community has paid little attention to the qualitative aspects.  
 
Apart from some limiting cases, such as a car accident and a predator catching a prey, 
where moving objects meet, mobile objects are represented by the relation disjoint in 
calculi defining topological relations, such as RCC (Randell, D., Cui, Z., and Cohn, 
A.G., 1992). This approach ignores some important aspects of reasoning about 
continuously moving physical objects. For example, given two trains on a railroad, it 
is of the utmost importance to know their movement with respect to each other, in 
order to detect whether or not they could crash in the near future. Thus, the inherent 
property with topological theories is that they put all disjoint relations into one 
undifferentiated set. Therefore, a challenging question remained largely unaddressed: 
‘How do we handle changes in movement between moving objects, if there is no 
change in their topological relationship?’ With this in mind, and starting from the idea 
that the enormous complexity of interacting real world objects can be described by the 
relations between pairs of interacting point objects being constantly disjoint, the 
Qualitative Trajectory Calculus (QTC) was introduced by Van de Weghe Van de 
Weghe, N., 2004). QTC is a theory for representing and reasoning about movements 
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of objects in a qualitative framework, able to differentiate between groups of 
disconnected objects. Depending on the level of detail and the number of spatial 
dimensions, different types of QTC were defined all belonging to QTC-Basic (QTCB) 
( ) or QTC-
Double Cross (QTC

B

Van de Weghe, N.,  Cohn, A.G., De Tré, B., and De Maeyer, Ph., 2006
C) (

). The reasoning power of QTC has been worked out, applying important 
reasoning techniques, such as conceptual neighbourhood diagrams (

) and composition tables (
). In this paper, the focus is on the 

feasibility of QTC

Van de Weghe, N., Cohn, A.G., De Maeyer, Ph., and Witlox, 
F., 2005

Van de Weghe, 
N. and De Maeyer, Ph., 2005 Van de Weghe, N., Kuijpers, 
B., Bogaert, P., and De Maeyer, Ph., 2005

BB to handle incomplete knowledge1. Without elaborating on the 
domain of linguistics, we show that QTCB is well-fitted to represent spatio-temporal 
natural language. 

B

 
After an explanation of incomplete knowledge and how it is related to qualitative 
reasoning, a brief overview of QTCB is presented.  Section 4 presents illustrative 
examples on how to handle incomplete knowledge within the different types of 
QTC

B

BB

                                                          

. Section 5 concludes the paper and gives some directions for further research. 
 
2. Qualitative Reasoning and Incomplete Knowledge  
 
Reasoning can be performed on quantitative as well as on qualitative information. 
According to Goyal (Goyal, R.K., 2000), a predefined unit of a quantity is used, 
typically when working with quantitative information. In the qualitative approach, 
continuous information is discretised by landmarks separating neighbouring open 
intervals, resulting in discrete quantity spaces (Weld, D.S. and de Kleer, J., 1990). 
The major idea in the qualitative approach is that only relevant distinctions are made 
(Clementini, E., Di Felice, P., and D. Hernandez, 1997). Thus, qualitative reasoning 
only studies the essence of information, represented as a small set of symbols such as 
the quantity space {–, 0, +} consisting of the landmark value 0 and its neighbouring 
open intervals ]-∞,0[ and ]0,∞[ represented respectively by the symbol – and  + 
(Cohn, A.G. and Hazarika, S.M., 2001). 
  
Not always everything has to be known about a situation to make inferences which 
are important for the specific study (Frank, A.U., 1996). Obviously in such situations 
sometimes information lacks for giving complete answers to queries. However, like 
Freksa (Freksa, C., 1992a, p.203) states, ‘a partial answer may be better than no 
answer at all.’ By abstracting away from metrical details, qualitative representations 
are much more appropriate for handling such incomplete knowledge than quantitative 
methods (Cristani, M., Cohn, A.G., and Bennett, B., 2000). 
  
The development of the Qualitative Trajectory Calculus (QTC) has been inspired by 
some important qualitative calculi in temporal and spatial reasoning, especially the 
temporal Semi-Interval Calculus (Freksa, C., 1992) and the spatial Double-Cross 

 
 
1 Knowledge only containing one relation in a specific calculus is called complete or fine 

knowledge. A union of fine relations results in incomplete knowledge. 
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Calculus (Freksa, C., 1992b; Zimmermann, K. and Freksa, C., 1996). Central in these 
theories is the specific attention to incomplete knowledge, for example produced by 
natural language expressions. In combination with the inherent capability of the 
qualitative calculi lying at the basis of QTC, one might expect that QTC ought to be 
able to handle incomplete knowledge. 
 
3. The Qualitative Trajectory Calculus – Basic (QTCB) B

 
In this section, an informal account of the Qualitative Trajectory Calculus – Basic 
(QTCB) is presented. For a formal axiomatisation, we refer to (

). Continuous time for QTC
B Van de Weghe, N., 

2004 BB is assumed. In general, QTCB compares positions 
of two objects at different moments in time. The movement of the first object (called 
k) with respect to the second object (called l) is studied by comparing the distance 
between l at the current time point (denoted t) and k during the period immediately 
before the current time point (denoted t ), with the distance between l at t and k during 
the period immediately after the current time point (denoted t ). In addition, the 
movement of l with respect to k is studied by comparing the distance between k at t 
and l at t , with the distance between k at t and l at t . QTC

B

−

+

− +
B1D handles the qualitative 

movement of two constantly disjoint point objects restricted to 1D. Because the 
movement is restricted to 1D, the velocity vector of an object only has two possible 
directions, with the intermediate case where the object stands still. Hence, the 
direction of the movement of each object can be described by one single qualitative 
variable. Both degrees of freedom can be further subdivided according to the relative 
speed of the objects. This subdivision results in redundant information because the 
relative speed of k with respect to l is the inverse of the relative speed of l with respect 
to k. By reducing the continuum to the qualitative values –, 0 and +, the underlying 
continuous system can be described discretely. We introduce the following notation 
for QTCB1D: 
 x|t denotes the position of an object x at time t,  
 d(u,v) denotes the distance between two positions u and v,  
 vx|t denotes the speed of x at time t, 
 t1 < t2 denotes that t1 is temporally before t2. 
 
A movement is presented in QTCB1D using the following four conditions (C): 
 
C1. Movement of k with respect to the position of l at t (distance constraint): 
−: k is moving towards l: 
 ∃t1 (t1 < t ∧ ∀ t − (t1 < t − < t  →  d(k|t −, l|t) > d(k|t, l|t)))  ∧ 
 ∃t2 (t < t2 ∧ ∀ t + (t < t + < t2  →  d(k|t, l|t) > d(k|t+, l|t))) 
+: k is moving away from l: 
 ∃t1 (t1 < t ∧ ∀ t − (t1 < t − < t  →  d(k|t −, l|t) < d(k|t, l|t))) ∧  
 ∃t2 (t < t2 ∧ ∀ t + (t < t + < t2  →  d(k|t, l|t) < d(k|t+, l|t))) 
0: k is stable with respect to l (all other cases): 
 all other cases 
 
C2. The movement of l with respect to the position of k at t (distance constraint) can 
be described as in C1 with k and l interchanged. 

93



 

 
 
C3. Relative speed of k at t with respect to l at t (which dually represents the relative 
speed of l at t with respect to k at t) (speed constraint): 
−: vk|t < vl|t   +: vk|t > vl|t   0: vk|t = vl|t 
 
Accordingly, a qualitative trajectory pair can be represented by a label consisting of 
two or three characters, for respectively QTCBL1 (QTCB of level one) only handling 
the changing distance between two objects and QTC

B

BL2 (QTCBB of level two) also 
taking into account the third label representing the relative speed of both object with 
respect to each other. In theory, there should be 27 (3³) B12-relations (QTC relations 
of level two in 1D). As illustrated in Fig. 1A, 10 relations are impossible (e.g. relation 
2b: if object k moves towards object l and object l stands still, then vk < vl is 
impossible). Therefore, we get only 17 B12-relations. Each icon in Fig. 1A represents 
one single relation, and therefore is called a relation icon, in this particular case a 
B12-relation icon. The left and the right dot of the B12-relation icon respectively 
represent the positions of k and l. The line segments represent whether each object can 
be moving towards or away from the other. A dot is filled if the object can be 
stationary, and open if an object cannot be stationary. The representations are no more 
than icons, in which we assume that k is on the left side of l. 
 
The approach for 1D can be successfully used for higher dimensions by denoting the 
Euclidean distance between a pair of point objects as being the only dimension. This 
way 2D and even 3D movements can be reduced to 1D movements. To emphasise 
that we are working on 2D movements, the theory is called QTCB2D. The definitions 
for the 2D movement are the same as the definitions for the 1D movement. In contrast 
with QTCB12, there are 27 potential B22-relations, represented as 27 B22-relation 
icons in Fig. 1B. If, for example, the first character of the B22-relation is 0, then the 
first object stands still or can move tangentially with the second object. The icons 
contain line segments with the point object in the middle of it. The line segment 
stands for the opportunity to move to both sides of the point object. A filled dot 
represents the case when the object can be stationary. An open dot means that the 
object cannot be stationary. The icons also contain crescents with the point object in 
the middle of its straight border. If a crescent is used, then the movement starts in the 
dot and ends somewhere on the curved side of the crescent. It is important that the 
crescent is an open polygon: the straight boundary of a crescent is an element of 
another relation. Of major importance is that, in contrast to QTCB1D, all 27 relations 
are possible. The reason for this is quite straightforward. In 1D, an object can only 
move along a straight line. On the other hand, in 2D an object can move throughout 
the complete 2D space, being a higher dimension than the 1D distance. Therefore, 
there is a higher degree of freedom in B2D-movements compared to 
B1D-movements, resulting in the different number of possible relations. 
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Fig. 1: (A) B12-relation icons, (B) B22-relation icons 
 
4   Incomplete Knowledge about Moving Objects Handled Naturally 
 
In common with qualitative spatial and temporal calculi, we need to consider that we 
do not always have complete knowledge about which relation holds between a pair of 
moving objects. In this section, illustrative examples on how to handle incomplete 
knowledge within QTCB are presented. Expressions in natural language (Ex), about 
the movement of two objects (k and l) with respect to each other, are considered. We 
determine which QTC

B

BB relations hold for each particular expression. We use the 
standard notation for implication and equivalence: 
 a → b: if a, then b        
  a ↔ b: if and only if a, then b 
as well as the standard notations for the following set operations: 

a \ b : a minus b         
a ∩ b : intersection of a and b 
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4.1. From Fine to Incomplete Knowledge and Vice Versa 
 
This example starts from Ex1 forming fine knowledge concerning moving objects, 
and relaxes the constraints in order to get incomplete knowledge (Ex2, Ex3 and Ex4a). 
Thereafter, the inverse approach is discussed. Starting from several incomplete 
constraints (Ex4a, Ex4b, Ex4c, and Ex4d), fine knowledge will be generated by the 
intersection of the incomplete solutions. The example is worked out for 1D and 2D.  
 
4.1.1. From Fine to Incomplete Knowledge 
 
Ex1: k is moving towards l, which in turn is moving away from k, both objects 

moving along the same straight line and having the same speed. 
 

Ex1 → (– +)B11 and Ex1 ↔ (– + 0)B12 
 
QTCB11 does not give full detail, because (– +)B11 also contains situations where k and 
l have a different speed. Therefore, it is more appropriate to work at level two, which 
incorporates the speed variable.  
 

Ex1 → (– +)B21 and Ex1 → (– + 0)B22 
 

At first sight, QTCB2D and QTCB1D give the same result. However, there is only an 
implication (→) between Ex1 and (– + 0)B22, because (– + 0)B22 does not consider the 
restriction in Ex1 that both objects are moving along the same straight line, which was 
an implicit restriction for movements in 1D.  
 
Ex2: k is moving towards l, which in turn is moving away from k, both objects 

moving along the same straight line. 
 
        Ex2 ↔ (– +)B11 and Ex2 ↔ (– + A2)B12 

 
The only difference between Ex1 and Ex2 is the speed constraint, which is not given 
in Ex2. In contradiction to Ex1, we have in Ex2: if (– +)B11 is true, then Ex2 must be 
true. Ex2 is thus totally covered by QTCB11. The difference between Ex1 and Ex2 has 
perhaps more implications for QTCB12, since (– + A)B12 consists of a disjunction of 
solutions:  
 The following statement is false: Ex2 → a (with a ∈ (– + A)B12) 
 The following statement is true: a → Ex2 (with a ∈ (– + A)B12) 
 

Ex2 → (– +)B21 and Ex2 → (– + A)B22 
 

 
 
2 A qualitative variable A (B, C, …) stands for the set {–, 0, +} 

96



Ex2 represented in QTCB22 gives no extra information compared to Ex2 represented in 
QTCB21 since the third character of QTCB22, differentiating QTCB22 from QTCB21, can 
have all qualitative values. Note that there is only an implication (→) between Ex2 
and (– +)B21, because (– +)B21 does not consider the restriction in Ex2 that both objects 
are moving along the same straight line, which was an implicit restriction for 
movements in 1D. The same applies to the implication between Ex2 and (– + A)B22. 
 
Ex3: k is moving towards l, which in turn is moving away from k. 
 

Ex3 ↔ (– +)B11 and Ex3 ↔ (– + A)B12 
 

Compared to Ex2, the objects do not need to move along a straight line. However, this 
constraint is straightforward, since we are working in 1D. 
 

Ex3 ↔ (– +)B21 and Ex3 ↔ (– + A)B22 
 

In contrast to the 1D movement, the constraint that both objects have to move on the 
same straight line (or in 1D) is important in 2D. In Ex3, this constraint is deleted, 
which results in an important extension of the solution set. This extension can be seen 
in the formulae; on the one hand one gets an implication between Ex2 and the B2D 
relations, on the other hand one gets an equivalence between Ex3 and the B2D 
relations. This extension can be easily seen by comparing the relation icons for (– + 
A)B21 in Fig. 1A with those for (– + A)B22 in Fig. 1B. 
 
Ex4a: k is moving towards l. 
 
       Ex4a ↔ (– A)B11 and Ex4a ↔ (– A B)B12 

 
This expression does not state whether l is moving. Because this expression is less 
complete than Ex3, it is obvious that we cannot distinguish QTCB11 from QTCB12. 
However, note in QTCB12 that when l is not moving, only (– 0 +)B12 holds, because (– 
0 –)B12 and (– 0 0)B12 are impossible in 1D. 
 
       Ex4a ↔ (– A)B21and Ex4a ↔ (– A B)B22 

 
As could be expected, there is no difference between for QTCB11 and QTCB21.  
 
4.1.2. From Incomplete to Fine Knowledge 
 
Now, let us start from four expressions (Ex4a, Ex4b, Ex4c, and Ex4d), which together 
form the fine compound expression Ex1: 
 
Ex4a: k is moving towards l. 
 
         Ex4a ↔ (– A)B11     
        Ex4a ↔ (– A B)B12     
        Ex4a ↔ (– A)B21     
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        Ex4a ↔ (– A B)B22
 
Ex4b: l is moving away from k. 
 
        Ex4b ↔ (A +)B11  
        Ex4b ↔ (A + B)B12

        Ex4b ↔ (A +)B21

        Ex4b ↔ (A + B)B22 
 
Again, there is no difference between the representations of QTCB11 and QTCB21, and 
those of QTCB12 and QTCB22. 
 
Ex4c: k and l are moving along the same straight line. 
 
        Ex4c ↔ (A*3 B*)B11 

        Ex4c ↔ (A* B* C)B12

        Ex4c → (A* B*)B21  
        Ex4c → (A* B* C)B22 

 
Because it is specified that both objects are moving, neither of the two objects may 
stand still. 
 
Ex4d: k and l have the same speed. 
 
        Ex4d → (A* B*, 0 0)B11

        Ex4d ↔ (A* B* 0, 0 0 0)B12 
 
It is not specified whether the speed has to be higher than zero. Therefore, (0 0)B11 and 
(0 0 0)B12 are possibilities. However, since the speed of both objects has to be the 
same, it is impossible to have a pair of objects where only one object is moving. 
 
        Ex4d → (A B)B21 and Ex4d ↔ (A B 0)B22 

 
In contrast to QTCB11, every relation is possible in QTCB21, which is a direct result of 
specifications concerning the exclusive B22-relations. 
 
4.1.3. Overall Result 
 
The intersection of the four solution sets of the expressions Ex4a, Ex4b, Ex4c, and 
Ex4d, gives (– +)B11 and (– + 0)B12. One can state that the intersection of the solution 
sets of the components of a compound expression is the same as the solution set of the 
compound expression. 
 

 
 
3 A qualitative variable A* (B*, C*, ...) stands for the set {−, +} 
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   (– A)B11 ∩ (A +)B11 ∩ (A* B*)B11 ∩ (A* B*, 0 0)B11 = (– +)B11 

   (– A B)B12 ∩ (A + B)B12 ∩ (A* B* C)B21 ∩ (A* B* 0, 0 0 0)B12 =  (– + 0)B12
 
The intersection of the four solution sets for QTCB2D of each expression is 
respectively (– +)B21 and (– + 0)B22. Again (cf. QTCB1D), the intersection of the 
solution sets of the components of a compound expression is the same as the solution 
set of the compound expression. 
 
   (– A)B21 ∩ (A +)B21 ∩ (A* B*)B21 ∩ (A B)B21 = (– +)B21

    (– A B)B22 ∩ (A + B)B22 ∩ (A* B* C)B22 ∩ (A B 0)B22 = (– + 0)B22
 
4.2. How Many Objects Are Moving? 
 
If we say that an object is moving, we can have interpretation problems; do we mean 
that at least one of the objects is moving, or do we mean that exactly one object is 
moving? This ambiguity can be overcome by QTCB. B

 
Ex5: At least one of the objects is moving. 
 

Ex5 ↔ (A B) \ (0 0)B11

Ex5 ↔ (A B C) \ (0 0 0)B12

Ex5 → (A B)B21

Ex5 → (A B C)B22 
 

Due to this expression, it is possible that only one object is moving or it could be that 
both objects are moving. Note that for QTCB21 and QTCB22, the relations where the 
first and the second character are zero do not need to be excluded since objects can 
move tangentially when both the first and the second are 0 in 2D. 
 
Ex6: Exactly one of the objects is moving. 
 

Ex6 ↔ (A* 0,0 B*)B11  
Ex6 ↔ (A* 0 B, 0 A* B)B12  
Ex6 → (A 0, 0 A)B21  
Ex6 → (A 0 B, 0 A B)B22  
 

Note again the subtle difference between QTCB1D and QTCB2D. In QTCB1D, an object 
can only move when a character is different from 0. In QTCB2D, an object can move if 
a character is 0. Note that (A*B*)B21 is impossible since here both objects are moving. 
 
5. Conclusion 
 
Based on several illustrative examples, the ability of handling incomplete knowledge 
and natural language expressions within QTCB is studied. In further research, the 
possibilities of QTC-Double Cross (QTC

B

C) to handle incomplete knowledge will be 
discussed. Since QTCC considers additionally the direction in which an object is 
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moving with respect to the line segment between the two objects, this calculus is more 
expressive and will involve more complex reasoning. Note for example that, in 
contrast with QTCC2D, it is not possible in QTCB2D to denote whether two objects are 
moving along the same straight line. This will be possible. In the future, we will 
continue to explore the bridge between natural language, perception and formal 
ontologies of moving objects. 
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