
Importing from Functional Knowledge Bases
– A Preview –

Alex Borgida Fausto Giunchiglia
Dept. of Computer Science DIT
Rutgers University, USA University of Trento, Italy
borgidacs.rutgers.edu fausto@dit.unitn.it

Abstract: We review several proposals for reusing knowledge from existing
ontologies by importing concepts and related axioms, which start from a set
Ω of “identifiers of interest”. In order to compare these and other potential
proposals, we offer a formal definition of the notion of “importing knowledge”
based on Levesque’s functional characterization of knowledge bases using a
Tell/Ask interface. This definition is parameterized by a set A of Ask operators.
In this preliminary work we consider ways in which this definition can be used
to capture aspects of prior proposals, and therefore provide a framework for
comparison between them.

1 Introduction

Motivated in part by the need to re-use ontologies, and to organize them/make
them more understandable, there have been numerous proposals for approaches
to modularize ontologies, especially ones using Description Logics, including [1,
5–7, 11, 14]. The techniques proposed are based on a variety of intuitions of
what are reasonable properties for “self-standing” collections of identifiers and
axioms, including the idea that modules should partition the knowledge base
into disjoint groups of identifiers and axioms, and that if concept name appears
in some module, then so should all its subsuming concepts in the ontology.

While the above proposals start from basic principles of what a module should
be, there are a number of examples of actual re-use of knowledge from existing
ontologies, several of which are reviewed below. In these cases, rather than im-
porting pre-defined modules, one starts from a set Ω of concepts of interest,
and then extracts a portion of an existing ontology that is deemed relevant
to it. Though the details of how this is to be done vary, we abstract certain
shared desiderata, and discuss to what extent two proposals for defining knowl-
edge import for Description Logics [8, 2] meet them. We then offer a definition
of importing knowledge that is based on general Tell/Ask interfaces for knowl-
edge bases, and show how this can be used to capture aspects of the proposals
reviewed earlier, thereby providing a framework for comparison.

2 Examples of Importing Terms

The following are examples from the literature of cases where ontology reuse is
not by importing modules that have been computed a priori, but instead the
material imported is determined by the set of terms that is desired.

2.1 Trimming WordNet

Navigli [12] and Swartout et al [15] are interested in situations where several
small terminologies with domain-specific terms have been extracted (possibly
semi-automatically, using text processing techniques). These need to be inte-
grated, and one way to do so is by tying them together through a general
ontology, such as WordNet, where terms are already organized in an IsA (hy-
peronym/hyponym) hierarchy. In particular, the idea is to link the roots of the
various domain-specific terminology trees to the closest synsets in WordNet. (Let
this be the set Ω in this case.) One is left with the problem that there are many
irrelevant terms in the resulting joint terminology. Instead, what is wanted is
a small subset of terms in WordNet that subsume and tie together the domain
specific terms. This subset can then be viewed as the part of WordNet that is
to be imported.

Swartout et al [15] use for this purpose all the nodes in WordNet that subsume
Ω, plus children of these that have many siblings already included. We focus here
on Navigli’s more complex algorithm [12]. It starts from the nodes for Ω, and
constructs the final set of imported nodes Ω? in several steps:

S1 := IsA∗(Ω); /* Nodes in WordNet that subsume Ω.1 */

S2 := {Nodes in S1 that have 2 or more children (hyponyms) in S1}
S3 := {Immediate children of nodes in S2 that belong to S1 and have siblings

in S1}
Stop := {Nodes in S1 that are at the very top of WordNet (top 2 levels)}

The final imported fragment of WordNet then consists of the concepts Ω ∪
Stop ∪ S2 ∪S3 together with all IsA edges between these entailed by the original
WordNet taxonomy.

The motivation for including S2 (or actually excluding the complement of
S2) is that “a node with only 1 hyponym gives no additional information and
provides no additional classification”. The reason for including elements in S3 is
less clear (“avoid collapsing the hierarchy”), since this over-rides the principle
enunciated for S2.

Note that both here, and below we have rephrased the original algorithms
to some extent, since (as the names indicate), they are originally couched in the
terminology of removing parts of the exporting ontology.

2.2 KnowledgeBus

Petersen et al [13] consider the problem of generating an Information System
from a large knowledge base such as Cyc, starting from a seed set of concepts.
Their ultimate goal is to generate a deductive database implemented in XSB,
and encapsulated in Java. Note that Cyc contains much more than just concept

1 We use IsA+ to refer to the transitive closure of the IsA relation, and IsA∗ to
the reflexive transitive closure. For binary relation ρ, we use ρ(x) to refer to the
set {y | ρ(x, y)} when x belongs to the domain of ρ, and generalize this to sets:
ρ(T) =

⋃
x∈T

ρ(x).

hierarchies: there are general predicates, and formulas in CycL (a variant of
FOL).

The idea of the approach in [13] is to first identify all axioms in Cyc which
might contribute to proofs about instances of concepts in the seed set of iden-
tifiers S0 (which correspond to our set Ω). It relies on Cyc predicates p being
typed (p : T1 × . . . × Tk indicates that the j-th argument of p must belong to
concept Tj); and the hypothesis that multiple occurrences of a variable, such as
y in the axiom p(x, y), q(y, z) → r(x, z), require the corresponding arguments of
the predicates to be IsA related, ensuring type-compatibility.

Starting from Ω, the algorithm computes by a fix-point iteration (using op-
erators Π and Γ below) a set of concepts of interest S∗, and associated predicate
names P∗. The final axioms retrieved are those involving only predicates in P∗.
– for a set of concepts S, Π(S) = {p | p : T1 × . . . × Tk ∧ ∃j.[Tj ∈ S ∧

¬dataType(Tj)]} /* Gather predicates that have some argument typed by a con-

cept in S. */

– for a set of predicates P , Γ (P) = {T | p ∈ P ∧ p : T1 × . . . × Tk ∧
∃j.genls(Tj, T)} /* Gather generalizations of concepts used to type arguments of

predicates in P. */

2.3 Pruning Ontologies to obtain Database Conceptual Schemas

Conesa and Olivé [4] start with a list of terms (entity, attribute, and relationship
names) that are of interest in a particular domain. This list may be developed
by analyzing software requirements, for example. (This is the set Ω in this case.)
They wish to enrich it with semantic integrity constraints derived from some
large existing general ontology, such as OpenCyc translated into UML – the
material to be imported.

In [3], the task is specified as finding a minimal sub-ontology OP of the
exporting ontology OX that contains Ω and all formulas/constraints in the set

Axioms1 := {formulas ψ in OX such that vocab(ψ) ⊆ IsA∗(Ω) }
and that preserves IsA+ relationships derivable in OX . Presumably, the formulas
in Axioms1 are of interest since, by inheritance, they also “talk about” instances
of terms in Ω.

The actual algorithm presented in [4, 3] is considerably more complex, and
can be rephrased as a sequence of set specifications:
– SSurelyNeeded := Ω ∪ vocab(Axioms1). /* These terms are the ones definitely

wanted. */

– S2 := { y | ∃x, z ∈ SSurelyNeeded . IsA
∗(x, y) ∧ IsA∗(y, z) } /* These are all

the terms in SSurelyNeeded or on inheritance paths between them. */

– S3 := remove from S2 concepts on so-called “redundant paths” G, consisting
of concepts belonging to S2 − SSurelyNeeded, but only as long as (i) the
existence of some subclass path between x and z in SSurelyNeeded is preserved,
(ii) the nodes in G have only single parents and children. /* These concepts

only provide redundant inheritance paths. */

The general intuition here appears to be that the set of original identifiers should
be enlarged to include entities/relationships from which relevant axioms can be
inherited, plus sufficient intermediate nodes to maintain the inheritance rela-
tionship. Note that condition (ii) above is suggestive of Navigli’s trimming.

3 Formalizing Knowledge Import

The examples examined above, and others, indicate that in these cases the in-
terest is in

1. obtaining a minimal set of additional concepts that need to be understood
in order to understand the original “terms of interest” Ω being imported;

2. but this set should usually not include concepts that have only one parent
and one child in the resulting IsA hierarchy, and no relevant axioms;

3. preserving all derivable IsA relationships between the imported concepts;
4. expecting that the result of reasoning with the imported knowledge is some-

what equivalent to including the full exporting knowledge base;
5. the logical language of the exporting ontology (e.g. CycL, UML) need not

be a description logic, and may be different from that of the importing
knowledge base.

Several papers have tried to formalize the notion of knowledge import, par-
ticularly in the context of Description Logics. In particular, Cuenca-Grau et al
[8] provide the following definition

Definition 1. [8] Let Q1 ⊆ Q be two ontologies, and S a set of identifiers. We
say that Q1 is an S-module in Q w.r.t. a language L, if for every ontology P and
every axiom α expressed in L, with vocab(P ∪ {α}) ∩ vocab(Q) ⊆ S, we have
P ∪Q |= α iff P ∪Q1 |= α. A minimal S-module contains no sub-S-modules.

The notion of “minimal Ω-module of KBexpt w.r.t. L” then corresponds to
our import, and deals directly with items 4 and 5 above. Item 1 in the desiderata
is handled elegantly, but indirectly, by requiring the imported axioms to be a
subset of the original ontology: this usually forces more axioms to be included
than those whose vocabulary is contained in S, because of item 4. The negative
aspect of this is that the material imported depends on the syntactic formulation
of Q. For example, having A v (B uC) in Q will behave differently from having
the logically equivalent {A v B , A v C}, and may force unnecessary concepts
to be included.

Borgida [2] also offers a formal definition (which we do not give here), and
argues that two other aspects of importing knowledge are relevant:

– in addition to the different logic used in the importing ontology, there may be
syntactic restrictions on the occurrence of imported concepts (for example,
in many cases the imported concepts are used only as super-concepts of local
concepts); /* This may further reduce the set of axioms that need to be imported

since they may not be useful even if they concern Ω. */

– there is a need to preserve explanations rather than exact syntactic form of
axioms in the exporting ontology. /* This is useful to handle in part item 2. */

For purposes of comparison, as well as a guideline for future proposals, it
would be desirable to have a general yet formal framework to cover the knowledge
import schemes described so far. We follow the observation that the descriptions
in Section 2 are often couched in terms of operators that are applied to (sets of)
concepts.

We therefore start from Levesque’s general functional approach to knowledge
representation [10], which provides for users to interact with a KB through a set
of Tell and Ask operators. The answering process relies on the use of a particular
language Lrep to represent internally the information told to the KB, and ideally
is specified in a logical manner, rather than just procedurally.

For a UML-based KB, typical Tell operations would be ones for building
a UML diagram, while there would be Ask operations to read off information,
such as getAttributes(<Class>) — returning the list of locally specified attribute
identifiers; and getMinAtSource(<Association>) — returning the minimum car-
dinality at the source end of the association link. In addition, there might be
Ask operators that provide derived information, such as subsumedBy?(<Class,
Class>) or disjointFrom?(<Class, Class>).

For a Description Logic-based KB, the Tell operations would introduce the
identifiers and build a TBox, while Ask operations might include the obvious
subsumedBy?(<Concept, Concept>) and isConsistent?(<Concept>), but also
getRange(<Role>,<Concept>) — returning the term describing the range of
values for Role when the domain is restricted to Concept, and getClassified-
Parents(<ConceptId>) — returning the identifiers of immediately subsuming
concepts in the classification hierarchy typically computed by DL reasoners.

Using the word “term” to refer to concepts, classes, properties, associations,
predicates, etc. let us distinguish term-returning operators — ones that return
either a term or an aggregate of terms (set,list, or tuple); getRange and getIm-
mediateParents are examples of such operators. By analogy with Abstract Data
Types, we will call observers the other operators, especially ones checking the
truth of some formula (such as subsumption).

We will say that a set of identifiers S is closed under term-returning operator
op for KB if, whenever op is invoked on KB with arguments from S, and it
returns an identifier B, this also belongs to S. (B might be an element of the
list or tuple returned by op.)

The material to be imported will then be specified in two steps: first, the set
of names Ω of interest will be enlarged, using term-returning operators; then, a
minimal set of formulas, over this extended vocabulary, is selected from those
entailed by or contained in the exporting knowledge base, so that it produces
the same answers for observer Ask operators.

Ignoring the issue of differing logics in the exporting and importing ontolo-
gies, we propose the following definition:

Definition 2. Let KBexpt be the exporting knowledge base represented in some
formalism Lexport; A a set of Ask operators; and Ω ⊆ vocab(KBexpt) a set of
term identifiers.

Let Ω? be the minimal set of identifiers from KBexpt that contains Ω and is
closed under term-returning operators in A. “import Ω from KBexpt” is then
a minimal set F of formulae having the properties that (i) vocab(F) ⊆ Ω?; (ii)
KBexpt |= F ; and (iii) for every KBimpt such that vocab(KBimpt)∩vocab(KBexpt) ⊆
Ω?, the answers to all observer operators in A are identical for KBimpt ∪F and
KBimpt ∪KBexpt as long as only symbols in Ω? are considered.

4 Reconstructing Some Previous Examples of Importing

Different import situations are described by the form of the contents of the
knowledge base (Lexport), the term-returning operators in A that generate Ω?,
and the observer operators in A that determine what formulas to import. Of
course, a premium is placed on using Ask operators that are independently
motivated!

In the case where KBexpt is a set of formulas, and we want to import its
logical consequences concerning the symbols in Ω, we get the notion of uniform
interpolant of (KBimpt ∪ KBexpt) w.r.t. Ω [9]. Such uniform interpolants are
guaranteed to exist for less expressive formalisms such as propositional logic and
the µ-calculus, though not for FOL. To get a uniform interpolant, it is sufficient
to have A be the obviously useful observer operator isEntailed?(<Formula>).
In some sense, this is the “gold standard” sought by all of the other proposals,
though it is usually only approximated.

On the other hand, if one seeks only the formulas syntactically involving the
identifiers in Ω, then a simple listToldFormulas() operator would do the job, since
the above definition minimizes the material imported from KBexpt.

When importing information about Ω from standard taxonomies, such as
WordNet, the simplest proposal is to import all subsuming concepts and their
IsA-relationships, as in [15]. Assuming that WordNet is represented as the collec-
tion of assertions isa(B,C), representing direct super/sub-concept relationships
in the taxonomy, Ω? can be specified by the closure of the getImmediateParents(
<ConceptNode>) term-returning operator. In turn, the projection of IsA∗ on
the setΩ? can be obtained by using the observer subsumedBy?(<ConceptNode >
,< ConceptNode>).

In Navigli’s proposal, the situation is more delicate because not all IsA-
ancestors are included inΩ?. The crucial observation is that nodes with 2 or more
children in a taxonomy (the set S2 in Section 2.1) correspond (mostly) to least
common subsumers (lcs) of pairs of concepts whose subsumption paths meet
at that node for the first time.2 Therefore, if we use getLeastCommonSubsumer(
<ConceptNode>,<ConceptNode>) as term-returning operator in A, the least
fixedpoint starting from Ω will produce S2. Note that the lcs operator is of
independent interest, and has been used, among others, in computing concept
similarity in term taxonomies.

2 Cases where two paths from one concept C meet at an ancestor A seem to us to be
suspicious since children in taxonomies tend to be disjoint.

In KnowledgeBus, the knowledge base contains information about the con-
cept taxonomy (in the form of genls(B,C) atoms), the signature of predi-
cates, and general FOL axioms ψ. As in Section 2.2, we need to obtain the
sets of concepts and general predicates S∗ and P ∗. Since these are of dif-
ferent sorts it is possible to mix them together in the same set, and obtain
their union by repeatedly applying the following 3 term-returning operators:
getImmediateParents(<Concept>) as before; getPredicates(<Concept>) — re-
turning predicates that have Concept as the type of at least one of their ar-
guments; and getType(<Predicate>) — returning the tuple of concepts repre-
senting the type signature of the predicate.3 Once Ω? is computed, [13] retrieves
existing formulas involving these symbols, which can be simulated using listTold-
Formulas(), as above.

The proposal by Conesa and Olivé differs from KnowledgeBus because in Ax-
ioms1 all concepts in the formula must be generalizations of Ω. This is justified
by the fact that the formulas are used not for deduction (in which case other,
intermediate concepts could be needed) but for integrity checking. It means that
Ω? will not contain all concepts obtainable via getImmediateParents. So we need
to take two useful operators: getInheritedConstraints(<Concept>) — returning
all formulas inherited from super-classes; and hasVocabulary(<Formula>); and
then compose them into getInheritedIC, which will return only Axioms1. hasVo-
cabulary and getInheritedIC are then sufficient to generate Ω?, and subsumedBy?
ensures, as usual, sufficient subclass axioms, while listToldFormulas over Ω? pro-
duces the other desired axioms. Note that the “implementation” of this approach
(see S2, S3 in Section 2.3) is even harder to capture in our framework, though
S3(ii) is lcs again. We might take this to be less a fault of our definition, and
more a sign of problems with the proposal.

Please note that if we are willing to accept specially crafted term-returning
operators, then we can also capture previous modularization proposals such as
those of Noy&Musen [11] and Seidenberg&Rector [14]. Lack of space prevents
further discussion of this.

5 Summary

To summarize, we have proposed a generic definition for importing from knowl-
edge bases having Levesque-style Ask operators. The definition relies on term-
returning operators to obtain an enlarged set of concepts to consider, and ob-
server operators to select axioms or their consequences. We have shown how the
definition captures interesting aspects of some prior approaches, and in the pro-
cess discovered the important role played by the notion of lcs in some schemes.
The main work, including the use of this definition to study importing from
specific kinds of knowledge bases, and connecting lcs with predicate/theory ab-
straction, is still ahead of us.

3 Note that this does not eliminate data type arguments, but arguably this is in fact
correct: predicates p : Person × Integer and q : Office × Integer can in fact be
“joined” on their second argument, connecting Person and Office.

Acknowledgments: Borgida’s work is supported in part by the U.S. DHS under
ONR grant N00014-7-1-0150. Giunchiglia’s work is supported in part by the
EU-funded Open Knowledge project (http://www.openk.org/).

References

1. J. Bao, D. Caragea, V. Honavar: On the Semantics of Linking and Importing in
Modular Ontologies. ISWC 2006: 72-86

2. A. Borgida “On Importing Knowledge from DL Ontologies: intuitions and prob-
lems”, DL 2007

3. J. Conesa, A. Olivé: A Method for Pruning Ontologies in the Development of
Conceptual Schemas of Information Systems. J. Data Semantics V: 64-90 (2006)

4. J. Conesa, A. Olivé: Pruning Ontologies in the Development of Conceptual
Schemas of Information Systems. ER 2004: 122-135

5. B. Cuenca Grau, B. Parsia, E. Sirin: Working with Multiple Ontologies on the
Semantic Web. ISWC 2004: 620-634

6. B. Cuenca Grau, B. Parsia, E. Sirin, A. Kalyanpur: Modularity and Web Ontolo-
gies. KR 2006: 198-209

7. B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler. “A Logical Framework for
Modularity of Ontologies”, IJCAI 2007: 298-303.

8. B. Cuenca Grau, I. Horrocks, Y. Kazakov, U. Sattler. “Just the Right Amount:
Extracting Modules from Ontologies”, WWW 2007: 717-726.

9. G. D’Agostino, M. Hollenberg. “Uniform interpolation, automata and the modal
mu-calculus”. Advances in Modal Logic, Vol. 1, 1996.

10. H. J. Levesque: “Foundations of a Functional Approach to Knowledge Represen-
tation”. Artif. Intell. 23(2): 155-212 (1984)

11. N. Fridman Noy, M. A. Musen: “Specifying Ontology Views by Traversal”. ISWC
2004: 713-725

12. R. Navigli, “Extending, Pruning and Trimming General Purpose Ontologies”.
IEEE SMC 2002.

13. B. J. Peterson, W. A. Andersen, J. Engel, “Knowledge Bus: Generating
Application-focused Databases from Large Ontologies”, KRDB’98.

14. J. Seidenberg, A. L. Rector: “Web ontology segmentation: analysis, classification
and use”, WWW 2006: 13-22

15. W. R. Swartout, R. Tatil, K. Knight, and T. Russ, “Toward Distributed use of
Large-Scale Ontologies”,. Proc. Knowledge Acquisition for Knowledge-Based Sys-
tems Workshop, 1996.

