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Abstract. In [14] a generalisation of Formal Concept Analysis was in-
troduced with data mining applications in mind, K-Formal Concept
Analysis, where incidences take values in certain kinds of semirings, in-
stead of the standard Boolean carrier set. The construction leading to the
pair of dually (order) isomorphic lattices can be further manipulated to
obtain the three other types of Galois Connections providing a fuller set
of tools to interpret any relations between data. We relate this result to
previous descriptions of certain instances of such Galois Connections in
qualitative data analysis and provide concrete examples of them related
to Rmax,+-semimodules in quantitative data analysis.

1 Motivation: Lattices related to an Incidence

Data analysis results improve when many different tools are offered to the prac-
titioner. Consider then the modal operators ([13], def. 3.8.2; [6]) introduced by a
Boolean matrix, I ∈ 2G×M , over a set of objects, A ∈ 2G and, dually, over sets
B ∈ 2M of attributes operated by the converse relation It ∈ 2M×G as listed in
Table 1. Formal Concept Analysis adepts may recognise the extent and intent
polars in the sufficiency operators for a relation, [[I ]] (A) = A′, [[It]] (B) = B′ ,
but also their closure operators, [[It]][[I ]](A) = A′′ , [[I ]] [[It]] (B) = B′′ .

Perhaps less known is that the pairs of operators in the first and second
rows of Table 1 define the neighbourhood lattices: For a formal context (G, M, I)
define the span of a set of objects as: span(A) := 〈I〉(A) = (A)I

∃ . This is the
set of attributes related to some g ∈ A 1. Similarly, define for its dual context
(M,G, It) the content of a set of attributes, content(B) = [It] (B) = (B)∀I , as
the set of objects which can be completely described by the attributes in B .
Next consider the set N(G, M, I) (for Ger. Nachbar, neighbour) of neighbour
pairs, (A,B) ∈ N(G, M, I), such that span(A) = (A)I

∃ = B ⇔ A = (B)∀I =
content(B) . Then we can state the:
! This work has been partially supported by a grants from the Spanish Government-

Comisión Interministerial de Ciencia y Tecnoloǵıa project TEC2005-04264/TCM.
1 The second, operator notation is closer to Galois connection theory as explained

below and relates better to normal notation in Formal Concept Analysis.



Table 1. Modal operators over a relation and its converse for sets of objects A ⊆ G
and attributes B ⊆ M . The misalignment in the first two rows is intentional.

possibility operator over G necessity operator over M

〈I〉 (A) = {m ∈ M | (∃g ∈ G)[g ∈ A ∧ gIm] }
ˆ
It˜

(B) = { g ∈ G | (∀m ∈ M)[mItg ⇒ m ∈ B) }

necessity operator over G possibility operator over M

[I] (A) = {m ∈ M | (∀g ∈ G)[gIm ⇒ g ∈ A) }
˙
It¸

(B) = { g ∈ G | (∃m ∈ M)[m ∈ B ∧ mItg] }

sufficiency operator over G sufficiency operator over M

[[I]] (A) = {m ∈ M | (∀g ∈ G)[g ∈ A ⇒ gIm) }
ˆˆ

It˜˜
(B) = { g ∈ G | (∀m ∈ M)[m ∈ B ⇒ mItg) }

dual sufficiency operator over G dual sufficiency operator over M

〈〈I〉〉 (A) = {m ∈ M | (∃g ∈ G)[g /∈ A ∧ g"I"m] }
˙˙

It¸¸
(B) = { g ∈ G | (∃m ∈ M)[m /∈ B ∧ m "I"t g] }

Theorem 1 (Fundamental theorem of Neighbourhood lattices [6]). The
neighbourhood lattice, N(G, M, I), is a complete lattice in which infimum and
supremum are given by:
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Conversely, a complete lattice V is isomorphic to N(G, M, I) if and only if there
are mappings2 σ : G → V and κ : M → V such that σ(G)∪ {0} is join-dense in
V and κ(M)∪{1} is meet-dense in V and gIm is equivalent to σ(g) ! κ(m) for
all g ∈ G and all m ∈ M .

This result shows that N(G, M, I) is isomorphic to B(G, M, #I#) [6], but the draw-
ing and interpretation in terms of neighbourhood pairs must differ, since the
systems of spans and contents are now order isomorphic: if (A1, B1), (A2, B2)
are neighbour pairs, they are ordered by the relation: (A1, B1) ≤ (A2, B2) ⇐⇒
A1 ≤ A2 ⇐⇒ B1 ≤ B2 .

In a different train of thought and with algebraic applications in mind, when
considering finite incidences to be represented by Boolean matrices, I = [Iij ] and
sets of objets by Boolean (column) vectors, we may write: 〈I〉(A) =

∨
j Iij ∧ aj ,

[I] (A) =
∧

j Iij → aj , 〈〈I〉〉 (A) =
∨

j Iij ∧ xj and [[I]] (A) =
∧

j aj → Iij , where
→ indicates the logical conditional. It is clear that definition of the possibility
operator can be understood in terms of matrix multiplication in the Boolean
algebra where ∨ is addition and ∧ multiplication, so that we could write for
proper finite sets of objects and attributes with cardinals |G| = g, |M | = m,

2 Our names for the neighbour pair-creating functions to avoid those already taken by
Formal Concept Analysis.



an incidence I ∈ 2g×m and a set of objects A ∈ 2g×1, 〈I〉 (A) = It · A with
the conventional multiplication betwen boolean matrices. But that is not at all
apparent in the case of the other operators.

The question arises when considering a particular incidence whether there
are any more lattices related to it, and if so what their properties are. For in-
stance, are there analogues of the constructions and methods in Formal Concept
Analysis for the composition of the other operators? Are there similar operators
on typical domains for data mining like N0 or R+

0 ? Do these operators admit a
matrix representation?

In this paper we try to answer affirmatively to the questions posed above,
providing analogues for the three other types of lattice stemming from incidences
taking values in reflexive semifields. For that purpose apart from the wider scope
of Galois connections between arbitrary orders in section 2, we reformulate in
section 3 the construction of Galois connections in idempotent semimodules
which are idempotent analogues of vector spaces and provide examples and a
linear algebraic setting for concrete instances of these in section 4.

2 Galois Connections and Adjunctions

Let P = 〈P,≤P〉 and Q = 〈Q,≤Q〉 be partially ordered sets. We introduce the
following naming conventions for the purpose of clarification 3 :

Definition 1. 1. (λ, ρ) is a type OO Galois connection or (Galois) adjunc-
tion (on the left), and write (λ, ρ) : P ! Q iif: ∀p ∈ P, q ∈ Q λ(p) ≤Q
q ! p ≤P ρ(q) , that is, the functions are covariant, and we say that λ is
the lower or left adjoint while ρ is the upper or right adjoint .

2. (ρ, λ) : P "Q is a type II Galois connection or (Galois) adjunction (on
the right) iff: ∀p ∈ P, q ∈ Q ρ(p) ≥Q q ⇔ p ≤P λ(q) , both functions are
covariant, ρ is the upper adjoint, and λ the lower adjoint.

3. (ϕ, ψ) is a type OI Galois connection, or Galois Connection proper, and
write (ϕ, ψ) : P ⇀↼Q iff: ∀p ∈ P, q ∈ Q ϕ(p) ≥Q q ⇔ p ≤P ψ(q) , that is,
both functions are contravariant. For that reason they are sometimes named
contravariant or symmetric adjunctions on the right. Note that (ψ, ϕ) is also
a type OI Galois connection.

4. (.,.′) is a type IO, or co-Galois connection, and write (.,.′) : P ⇁↽Q
if: ∀p ∈ P, q ∈ Q .(p) ≤Q q ⇔ p ≥P .′(q) , that is, both functions are
contravariant. For that reason they are sometimes named contravariant or
symmetric adjunctions on the left. (.′,.) is also a co-Galois connection.

Our classification of Galois connections stresses the compositions with order-
and dual order-isomorphisms, or anti-isomorphisms. We take the type OO
Galois connection to be a basic adjunction composed with an even number of

3 For a revision of the genesis and importance of Galois Connections and adjunctions
see [3], as well as a discussion of the different notation and nomenclatures for these
concepts. See [4] for an early tutorial with mathematical applications in mind.



anti-isomorphism for the domain or range orders. Consequently, a type II Ga-
lois connection, is a basic adjunction with an odd number of anti-isomorphisms
composed on both the domain and range orders. To obtain contravariance we
compose with an odd number of anti-isomorphism on the ranges to obtain a
type OI Galois connection. Finally, to obtain a co-Galois connection, we com-
pose with an odd number of anti-isomorphisms only on the domain, i.e. to get a
a type IO Galois connection.

Table 2 summarises briefly the main properties of all types of Galois connec-
tions. Furthermore, as a sort of graphical summary, we introduce the diagram to

Table 2. Summary of Galois connections and their properties, for P, Q posets.

Left Adjunction: (λ, ρ) : P ! Q Galois connection: (ϕ, ψ) : P ⇀↼Q
∀p ∈ P, q ∈ Q λ(p) ≤Q q ! p ≤P ρ(q) ∀p ∈ P, q ∈ Q ϕ(p) ≥Q q ⇔ p ≤P ψ(q)

IP ≤ ρ ◦ λ and IQ ≥ λ ◦ ρ IP ≤ ψ ◦ ϕ and IQ ≤ ϕ ◦ ψ
λ = λ ◦ ρ ◦ λ and ρ = ρ ◦ λ ◦ ρ ϕ = ϕ ◦ ψ ◦ ϕ and ψ = ψ ◦ ϕ ◦ ψ

λ monotone, residuated ϕ antitone
ρ monotone, residual ψ antitone

λ join-preserving, ρ meet-preserving ϕ join-inverting, ψ join-inverting

co-Galois connection: ((,(′) : P ⇁↽Q Right Adjunction: (ρ, λ) : P "Q
∀p ∈ P, q ∈ Q ((p) ≤Q q ⇔ p ≥P (′(q) ∀p ∈ P, q ∈ Q ρ(p) ≥Q q ⇔ p ≤P λ(q)

IP ≥ (′ ◦ ( and IQ ≥ ( ◦(′ IP ≥ λ ◦ ρ and IQ ≤ ρ ◦ λ
( = ( ◦(′ ◦ ( and (′ = (′ ◦ ( ◦(′ ρ = ρ ◦ λ ◦ ρ and λ = λ ◦ ρ ◦ λ

( antitone ρ monotone, residual
( antitone λ monotone, residuated

( meet-inverting, (′ meet-inverting ρ meet-preserving, λ join-preserving

the upper left-hand corner of Figure 1 as the pattern that carries the structures
described in ([3], §1.2) and llustrated at the top left of Figure 1:

– A closure system, ρ(Q) = P , the closure range of the right adjoint (see
below).

– An interior system, λ(P ) = Q, the kernel range of the left adjoint (see below).
– A closure function (also “closure operator” [6,2]) γP = ρ ◦ λ ≥P IP , from

P to the closure range ρ(Q), with adjoint inclusion map ↪→P , where IP
denotes the identity over P .

– A kernel function (also “interior operator” [6], “kernel operator”) κP =
λ ◦ ρ ≤Q IQ, from Q to the range of λ(P ), with adjoint inclusion map ↪→Q ,
where IQ denotes the identity over Q.

– a perfect adjunction (λ̃, ρ̃) : P ! Q, that is, an order isomorphism between
the closure and kernel ranges P and Q .

However, a Galois connection proper can be seen in the top right of Figure 1)
whose ranges are both closure systems and both compositions closure operators
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Fig. 1. Diagrams visually depicting the maps and structures involved in the adjunction
on the left (λ, )) : P ! Q (top left), Galois connection (ϕ, ψ) : P ⇀↼ Q (top right), the
co-Galois connection ((,(′) : P ⇁↽ Q (bottom left) and the adjunction on the right
(), λ) : P " Q (bottom right) between two partially ordered sets (adapted from [3,13]).
Closure operators are denoted by γP , γQ , interior (kernel) operators by κP , κQ , clo-
sure systems by P , Q and interior (kernel) systems by P , Q .

due to the dualisation of the second set (we write γQ for the new closure oper-
ator), resulting in the well-known perfect Galois connection, (ϕ̃, ψ̃) : P ⇀↼Q , a
pair of dual order isomorphism between closure ranges lying at the heart of For-
mal Concept Analysis. The diagrams in the bottom left and right show analogue
structures for co-Galois connections and right adjunctions respectively.

As an example of all the above, consider P = 2G, Q = 2M the powersets of a
set of objects G and a set of attributes M . Then for each relation R ∈ 2G×M

we have (adapted from [4]):

– a Galois connection (type OI) (· R, · R) : 2G ⇀↼ 2M , with dually isomorphic
(closure) lattices of object and attribute sets at the heart of Formal Concept
Analysis.

– a left adjunction (type OO) (· R
∃ , · ∀R) : 2G ! 2M , with closure system

(
2M

)∀
R

that we call the neighbourhood lattice of objects.
– a right adjunction (type II) (· R

∀ , · ∃R) : 2G " 2M , with closure system
(
2G

)R

∀
that we call the neighbourhood lattice of attributes.



– a co-Galois connection (type IO) (· R
−, · −R) : 2G ⇁↽ 2M , with dually isomor-

phic (kernel) lattices of object and attribute sets.

3 Galois Connections between Idempotent Semimodules

It is not straightforward to describe the examples in section 2 in the algebra
of Boolean matrices. For this purpose, we develop the more encompassing the
concept of a Galois connection between two idempotent semimodules next.

3.1 Idempotent Semirings and Semifields

Basic definitions. A semiring S = 〈S,⊕,⊗, ε, e〉 is a structure where the
additive structure, 〈S,⊕, ε〉, is a commutative monoid and the multiplicative
structure, 〈S\{ε},⊗, e〉, a monoid whose multiplication distributes over addition
from right and left and whose neutral element is absorbing for⊗, ∀x ∈ K, ε⊗x =
ε . On any semiring S left and right multiplications can be defined: La : S →
S, b 2→ La(b) = ab, and Ra : S → S, b 2→ Ra(b) = ba . A commutative semiring
is a one whose multiplicative structure is commutative.

For instance, let S = 〈S,⊕,⊗, ε, e〉 be a semiring. Then the semiring of
(square) matrices over S is Mn(S) = 〈Sn×n,⊕,⊗, E , E〉 , with Sn×n denoting
the set of square matrices over the semiring with matrix operations: (A⊕B)ij =
Aij ⊕ Bij , 0 ≤ i, j ≤ n and (A ⊗ B)ij =

⊕n
k=1 Aik ⊗Bkj , 0 ≤ i, j ≤ n, null

element the matrix E , Eij = ε, 0 ≤ i, j ≤ n and unit E, Eii = e, 0 ≤ i ≤ n,
Eij = ε, 0 ≤ i, j ≤ n, i 3= j . Such semirings are not commutative in general even
if S is, except for M1(S) = S .

A semifield is a semiring whose multiplicative structure 〈S\{ε},⊗〉 is a group,
that is, there is an operation, ·−1 : S\{ε} → S\{ε} such that ∀a ∈ S, a⊗ a−1 =
a−1 ⊗ a = eS . For commutative semifields, whose multiplicative structure is a
commutative group, we have (a⊗ b)−1 = a−1 ⊗ b−1 .

An idempotent semiring or dioid (for double monoid), D , is a semiring
whose addition is idempotent, ∀a ∈ D, a ⊕ a = a , that is, whose additive
structure 〈D,⊕, ε〉 is an idempotent semigroup . Compared to a ring, an idem-
potent semiring crucially lacks additive inverses. All idempotent commutative
monoids 〈D,⊕, ε〉 are endowed with a natural order ∀a, b ∈ D, a 4 b ⇐⇒
a⊕ b = b , which turns them into ∨-semilattices with least upper bound defined
as a ∨ b = a ⊕ b . Moreover, the neutral element for the additive structure of
semiring D is the infimum for this natural order, εD = ⊥D . Hence all dioids are
sup-semilattices 〈D,4〉 with a bottom element.

A dioid whose multiplicative structure is a group is an idempotent semifield.
The formula for the infimum in such case was already put forward by Dedekind
[3]: the meet law is: a ∧ b = a−1 ⊗ (a ⊕ b) ⊗ b−1 , hence idempotent semifields
are already lattices. In this paper, we focus on two idempotent semifields4:

4 We use : = (read “becomes”) to pass from abstract to concrete algebra.



1. The maxplus semifield, Rmax,+ = 〈R ∪ {−∞},max,+,−∞, 0 〉 with inverse
·−1 : =−· is an idempotent commutative semifield.

2. The minplus semifield, Rmin,+ = 〈R∪ {∞},min,+,∞, 0 〉 is an idempotent
commutative semifield, with the same inverse as the previous example.

Complete Semirings and Dioids. A semiring S is complete, if for any index
set I including the empty set, and any {ai}i∈I ⊆ S the (possibly infinite) sum-
mations

⊕
i∈I ai are defined and the distributivity conditions:

(⊕
i∈I ai

)
⊗ c =⊕

i∈I (ai ⊗ c) and c ⊗
(⊕

i∈I ai

)
=

⊕
i∈I (c⊗ ai), are satisfied. Note that for

c = e the above demand that infinite sums have a result. A dioid D is complete,
if it is complete as a naturally ordered set 〈D,4〉 and left (La) and right (Ra)
multiplications are lower semicontinuous, that is, residuated: ∀a, b ∈ D, a 4
b,∀c ∈ D,Lc(a) 4 Lc(b),Rc(a) 4 Rc(b) . This implies that infinite sums are
defined in terms of suprema:

⊕
i∈I ai = supDi∈I{ai} , ∀{ai}i∈I ⊆ D , with the

convention that
⊕

i∈∅ ai = ε . A less strict definition is: a dioid D is said to be
boundedly complete5 if every set M ⊆ D order-bounded from above has a least
upper bound sup M∈ D .

In a complete idempotent semiring, D, because it is a sup-semilattice 〈D,∨〉
with bottom element ε, the infima of subsets also exist, hence D is in fact a
complete lattice . Further, for a complete idempotent semifield, this infimum can
be computed from the supremum as: ∀a, b ∈ D, a ∧ b = (a−1 ∨ b−1)−1 and
multiplication also distributes with respect to this infimum. For instance, the
Boolean semiring, B = 〈B,∨,∧, 0, 1 〉, with B = {0, 1} is complete, idempotent
and commutative.

A complete idempotent semiring D can never be a semifield unless it is iso-
morphic to the Boolean semifield B. For instance, its maximal element 9D sat-
isfies 9D ⊗ 9D = 9D, hence it cannot have an inverse. Rmax,+ is incomplete
because its bottom has no inverse in the sense that ∞+ (−∞) = −∞ 3= 0 . For
a similar reason, Rmin,+ is incomplete: its bottom has no inverse: −∞ +∞ =
∞ 3= 0 . (The apparent incongruence between these sums is about to be solved.)

The Completion of Idempotent Semifields. Let a lattice-ordered group
G = 〈G,4,⊗〉 be a lattice 〈G,4〉 endowed with a group operation such that the
multiplications on either side are isotone (or lower semicontinuous):

a, b, c ∈ G, a 4 b ⇒ c⊗ a 4 c⊗ b, a⊗ c 4 b⊗ c

A lattice-ordered group G is said to be conditionally complete if it is condition-
ally complete as a lattice. Every conditionally-complete lattice-ordered group is
commutative in the product operation. Also, lattice-ordered semigroups which
are not singletons have no least, nor greatest elements. For instance, dioids are
lattice-ordered semigroups for the natural order, hence they are commutative in
the product and incomplete, lacking bottom ⊥ or top 9 elements, or both. How-
ever, we may complete a lattice ordered group with the canonical enlargement
construction as follows:
5 Also conditionally complete or simply complete in the context of dioids [5].



Construction 2 (([9,10,11,12]) Canonical enlargement of a lattice-ordered
group). For any lattice-ordered group G = 〈G,4,⊗〉: adjoin two elements ⊥ and
9 to G to obtain G = G∪{⊥,9} and extend the order to G as ⊥ 4 a 4 9,∀a ∈
Ḡ . Then extend the product to two different operations, upper,

·
⊗ , and lower,

·
⊗ , multiplications:

a
·
⊗ b =






⊥ if a, b ∈ G ∪ {⊥,9},with a = ⊥, or b = ⊥;
9 if a, b ∈ G ∪ {9},with a = 9, or b = 9;
a⊗ b if a, b ∈ G;

(1)

a
·
⊗ b =






9 if a, b ∈ G ∪ {⊥,9},with a = 9, or b = 9;
⊥ if a, b ∈ G ∪ {⊥},with a = ⊥, or b = ⊥;
a⊗ b if a, b ∈ G;

(2)

to obtain the structure G = 〈G,4,
·
⊗,

·
⊗〉, known as the canonical enlargement of

G = 〈G,4,⊗〉 . In this structure,
·
⊗ and

·
⊗ are associative and commutative over

G , as the original ⊗ was over G , and the isotony of the product with respect to
the natural order extends to G . Furthermore, if e is the unit element of 〈G,⊗〉,
it is similarly the unit of 〈G,

·
⊗〉 and 〈G,

·
⊗〉 .

This is the basis for the completion of idempotent semifields, to follow:

Construction 3. The top completion [5] of a dioid D is another dioid D =
〈D,

·
⊕,

·
⊗, ε, e〉 where: D = D ∪ {9} and in which

·
⊗ coincides with its definition

in construction 2 when D is considered as bearing a lattice-ordered (multiplicative
semi-)group, and we extend ⊕ with the extra top-element:

a
·
⊕ b =

{
9 if a = 9 or b = 9;
a⊕ b, if a, b ∈ D;

(3)

Construction 4 (Top Completion of an idempotent semifield). Given
an (incomplete) idempotent semifield D, on its top enlargement as a dioid by
construction 3, D , we extend the notation for the inverse with the following
conventions: ε−1 = 9,9−1 = ε . In that way we have two related complete
idempotent semifield structures:

– a complete lattice for the natural order 〈D,4〉, the one we have been focusing
on, D = 〈D,

·
⊕ = ∨,

·
⊗,⊥, e〉, and

– a complete lattice for the dual of the natural order, 〈D,4d〉 = 〈D,:〉
Dd = 〈D,

·
⊕ = ∧,

·
⊗,9, e〉 where the meet is defined (on D) as above and

the definition of
·
⊗ follows that in construction 2 .

Using constructions 2, 3 and 4, already invoked by Moreau [9] we have:

– The top completion of Rmax,+ is Rmax,+ = 〈R ∪ {−∞∞},max,
·
+,−∞, 0〉,

the completed Maxplus semifield.



– The top completion of Rmin,+ is Rmin,+ = 〈R∪{−∞,∞},min,#,∞, 0〉 the
completed Minplus semifield .

Note that in this notation we have −∞
·
+∞ = −∞ and −∞#∞ = ∞, which

solves several issues in dealing with the separately completed dioids, as promised.
In the completed structure, we have the following De Morgan-like relations

between the multiplications, their residuals and inversion:

Property 5 ([12], lemma 2.2). In the top enlargement S of any commutative
semifield S we have:

(a
·
⊕ b)−1 = a−1 ·

⊕ b−1 (a
·
⊕ b)−1 = a−1

·
⊕ b−1 (4)

(a
·
⊗ b)−1 = a−1 ·

⊗ b−1 (a
·
⊗ b)−1 = a−1

·
⊗ b−1

Furthermore if S is idempotent, the residuals

a
·
⊗ b 4 c ⇔ b 4 a

·
\ c ⇔ a 4 c

·
/ b a

·
⊗ b 4d c ⇔ b 4d a

·
\ c ⇔ a 4d c

·
/ b (5)

can be expressed in terms of the multiplications as:

a
·
\ c = a−1 ·

⊗ c = (a
·
⊗ c−1)−1 c

·
/ a = c

·
⊗ a−1 = (c−1

·
⊗ a)−1 (6)

a
·
\ c = a−1

·
⊗ c = (a

·
⊗ c−1)−1 c

·
/ a = c

·
⊗ a−1 = (c−1 ·

⊗ a)−1

3.2 Semimodules over Reflexive Idempotent Semifields

Basic definitions. A semimodule over a semiring is defined in a similar way to
a module over a ring [1,8,7] a left S-semimodule, Y, is an additive commutative
monoid 〈Y,⊕, εY〉 endowed with a map (λ, y) 2→ λ⊗y such that ∀λ, µ ∈ S, y, z ∈
Y , and following the convention of dropping the symbol for the scalar action and
multiplication for the semiring we have:

(λµ)y = λ(µy) εSy = εY (7)
λ(y ⊕ z) = λy ⊕ λz eSy = x

The definition of a right S-semimodule, X , follows the same pattern with the
help of a right action, (λ, x) 2→ x ⊗ λ and similar axioms to those of (7.) A
(K,S)-semimodule is a set M endowed with left K-semimodule and a right S-
semimodule structures, and a (K,S)-bisemimodule a (K,S)-semimodule such
that the left and right multiplications commute. For a left S-semimodule, Y, the
left and right multiplications are defined as: LSλ : Y → Y, y 2→ LSλ (y) = λy, and
RY

y : S → Y, λ 2→ RY
y (λ) = λy . And similarly, for a right S-semimodule.

For instance, the semimodule of finite matrices Mg×m(S) = 〈Sg×m,⊕, E〉 is a
(Mg(S),Mm(S))-bisemimodule for finite g and m, with matrix multiplication-
like left and right actions and componentwise addition, and so are the set of



column vectors Mm×1(S) and the set of row vectors M1×g(S) . For the com-
pleted semifields of Rmax,+ and Rmin,+, we have:

(A
·
⊗B)ij : = nmax

k=1
(Aik ·

+Bkj) (C
·
⊗D)ij : =

n
min
k=1

(Cik #Dkj)

A left, right D-semimodule X over an idempotent semiring D inherits the
idempotent law: ∀v ∈ X, v ⊕ v = v, which induces a natural order on the
semimodule: ∀v, w ∈ X, v ≤ w ⇐⇒ v ⊕ w = w , whereby it becomes a
∨-semilattice, with εX the minimum. In the following we systematically equate
idempotent D-semimodules and semimodules over an idempotent semiring D .
When D is a complete idempotent semiring, a left D-semimodule, X is complete
(in its natural order) if it is complete as a naturally ordered set and its left and
right multiplications are (lower semi)continuous. Trivially, it is also a complete
lattice, with join and meet operations given by: v ≤ w ⇐⇒ v ∨ w = w ⇐⇒
v ∧ w = v . This extends naturally to right- and bisemimodules.

As in the semiring case, because of the natural order structure, the actions
of idempotent semimodules admit residuation: given a complete, idempotent left
D-semimodule, Y, we define for all y, z ∈ Y , λ ∈ D the residuals

(
LDλ

)#
: Y →

Y, z 2→
(
LDλ

)#
(z) = λ\z,

(
RY

y

)#
: Y → D, z 2→

(
RY

y

)#
(z) = z/y, and likewise

for a right semimodule, X .
If D is idempotent (resp. complete), then finite matrix semimodules are idem-

potent (resp. complete) with the componentwise partial order their natural order.
For D a completed idempotent semifield as per construction 4, the left and right
residuals of

·
⊗ and

·
⊗ are:

(A
·
\B)ij =

m⊕

k=1

(
A−1

ki

·
⊗Bkj

)
(B

·
/ C)ij =

p⊕

k=1

(
Bik

·
⊗C−1

jk

)
(8)

(A
·
\B)ij =

m⊕

k=1

(
A−1

ki ·
⊗Bkj

)
(B

·
/ C)ij =

p⊕

k=1

(
Bik ·

⊗C−1
jk

)

with summations those of the dioid corresponding to the multiplication.
There is a remarkable operation that changes the character of a semimodule

while at the same time reversing its order by means of residuation: let D be a
complete dioid, and X be a complete right D-semimodule, its opposite semim-
odule is the complete left D-semimodule X op = 〈X,

op
⊕,⊥X op〉 with the same

underlying set X, addition defined by (x, z) 2→ x
op
⊕ z = x∧ z where the infimum

is for the natural order of X , bottom element ⊥X op = 9X , and left action:
D ×X → X (λ, x) 2→ λ

op→ x = x/λ . Consequently, the order of the opposite
is the dual of the original order.

It is easy to see that Rmin,+ is precisely the complete, idempotent semiring
opposite to Rmax,+ , taken as a semimodule, Rmin,+ = (Rmax,+)

op
and vicev-

ersa, Rmax,+ = (Rmin,+)
op

, since opposition of semimodules is an involution.
Finally, for an element of a semimodule over and idempotent semifield, x ∈ X,

we define the inverse as (x−1)i = x−1
i (which is not felicitous, given that x−1⊗x



is not defined in general.) However, with the precautions taken for Rmax,+, Rmin,+

we can write: (x−1)i : =−xi .

Basic construction of Galois connections over reflexive semimodules.
The following construction is due to Cohen et al. [1]. Let D be a complete dioid;
for a bracket 〈· | ·〉 : Y ×X → Z between left and right D-semimodules, Y and X
respectively, onto a D-bisemimodule Z and an arbitrary element ϕ ∈ Z, which
we call the pivot, define the maps, ·∗ϕ : Y → X and ∗

ϕ· : X → Y :

y∗ϕ =
∨
{x ∈ X | 〈y | x〉 ≤ ϕ } ∗

ϕx =
∨
{ y ∈ Y | 〈y | x〉 ≤ ϕ } (9)

Proposition 1 ([1], th. 42).
(
·∗ϕ, ∗

ϕ·
)

: Y ⇀↼X is a type OI Galois connection.

Note that X and Y are both already complete lattices as well as free vector
spaces. However, the closure lattices Y = ∗

ϕ(X) and X = (Y)∗ϕ do not generally
agree with their ambient vector spaces in their joins, but only in their meets.
A reflexive dioid, (D, ϕ), is a complete dioid such that (〈· | ·〉 : D ×D → D,ϕ)
with 〈λ | µ〉 = λµ induces a perfect Galois connection under construction (9),
that is, a pair of mutually inverse order isomorphisms: ∀λ ∈ D, ∗ϕ(λ∗ϕ) = λ, and
(∗ϕλ)∗ϕ = λ . In reflexive dioids X and Y are actually (join-)subsemimodules of
the corresponding spaces ([1], prop. 28).

This construction is affected crucially by the choice of a suitable pivot ϕ: if
we consider the bracket to reflect a degree of relatedness between the elements
of each pair, only those pairs (y, x) ∈ Y ×X are considered by the connection
whose degree amounts at most to ϕ . Therefore we can think of the pivot as a
maximum degree of existence allowed for the pairs.

Finally, ϕ need not be unique: if (D, ϕ) is reflexive, for any λ ∈ D invertible,
(D, ϕλ) is reflexive. Cohen et al. [1] prove that idempotent semifields are reflexive,
and suggest that for the Boolean semiring we must choose ϕ = 0B, the bottom
in the order. For other semifields any invertible element may be chosen, e.g.
ϕ = eD .

4 Galois Connections Generated by Matrices over
Completed Idempotent Semifileds

In this section we provide an easy way to build all possible Galois connections
between two semimodules over an idempotent semifield. We use the Moreau
notation troughout to prove that it simplifies things considerably. For all of this
section, consider a completed, reflexive idempotent semiring (D, eD) , and let Y
and X be left and right semimodules over D or its opposite.

Definition 6. For Y ∼= D1×n,X ∼= Dn×1 and bracket 〈· | ·〉OI : Y × X →
D, 〈y | x〉OI = y

·
⊗x we define a conjugation to be the Galois connection of type

OI obtained from the maps in equation 9, and we write simply: (·∗, ∗·) : Y ⇀↼X .



Table 3. Brackets between left and right free semimodules defined over a complete
idempotent semifield and its opposite.

With range in D With range in Dop

〈· | ·〉OI : D1×n ×Dn×1 → D [· | ·]OI : (Dop)1×n × (Dop)n×1 → Dop

〈y | x〉OI = y
·
⊗x [y | x]OI = y

·
⊗x

〈· | ·〉OO : D1×n × (Dop)1×n → D [· | ·]OO : (Dop)1×n ×D1×n → Dop

〈y | x〉OO = y
·
/ x = y

·
⊗x∗ [y | x]OO = y

·
/ x = y

·
⊗x∗

〈· | ·〉IO : (Dop)n×1 × (Dop)1×n → D [· | ·]IO : Dn×1 ×D1×n → Dop

〈y | x〉IO = (x
·
⊗ y)∗ = y∗

·
⊗x∗ [y | x]IO = (x

·
⊗ y)∗ = y∗

·
⊗x∗

〈· | ·〉II : (Dop)n×1 ×Dn×1 → D [· | ·]II : Dn×1 × (Dop)n×1 → Dop

〈y | x〉II = y
·
\x = y∗

·
⊗x [y | x]II = y

·
\x = y∗

·
⊗x

By Equation (9): y∗ = y
·
\ eD , ∗x = eD

·
/ x . For any other invertible element

ϕ we have the ϕ-conjugations: y∗ϕ = y
·
\ϕ = y

·
\(eD

·
⊗ϕ) = y∗

·
⊗ϕ and ∗

ϕx =

ϕ
·
⊗ ∗x . Hence, the conjugations in Rmax,+ are: y∗ : =−yt, ∗x : =−xt .

Consider Table 3.We claim:

Proposition 2. 1. The brackets in the left column generate all possible types
of Galois connections between Y and X by composition with adequate conju-
gations.

2. The brackets in the right column generate all possible connections between
the conjugates of Y and X by composition with adequate conjugations.

Proof. For 1) Bracket 〈· | ·〉OI generates the conjugations above, which are Ga-
lois connections of type OI by Proposition 1. 〈· | ·〉II generates another type OI
between (Dop)n×1 and Dn×1, hence pre-composing with a conjugation between
D1×n and (Dop)n×1 as defined previously obtains a right adjunction, type II, be-
tween D1×n and Dn×1. The procedure is exactly the same for type OO and type
IO connections. For 2) the procedure is exactly the same starting from [· | ·]OI
which is the one generating the Galois connection proper between (Dop)1×n and
(Dop)n×1 . =>

The following proposition states, essentially, that the Galois connections over D
and its opposite are essentially inverses (as expected from the inversion of orders
between the opposite semifields):

Proposition 3. For all brackets above, for k ∈ {OI,OO,IO,II} we have:

〈y | x〉k = (
[
y−1 | x−1

]
k
)−1 [y | x]k = (〈y−1 | x−1〉k)−1 (10)

Note that such Galois connections can be built being D either a scalar or a
matrix semiring. Hence, considering the brackets in Table 4, we claim, with a
similar proof:



Table 4. Brackets between left and right free semimodules defined over a complete
idempotent semifield and its opposite with the aid of matrices defined over each semi-
field.

With range in D With range in Dop

〈· | ·〉ROI : D1×g ×Dm×1 → D [· | ·]ROI : (Dop)1×g × (Dop)m×1 → Dop

〈y | x〉ROI = y
·
⊗R

·
⊗x [y | x]ROI = y

·
⊗R

·
⊗x

〈· | ·〉ROO : D1×g × (Dop)1×m → D [· | ·]ROO : (Dop)1×g ×D1×m → Dop

〈y | x〉ROO = (y
·
⊗R)

·
/ x = y

·
⊗R

·
⊗x∗ [y | x]ROO = (y

·
⊗R)

·
/ x = y

·
⊗R

·
⊗x∗

〈· | ·〉RIO : (Dop)g×1 × (Dop)1×m → D [· | ·]RIO : Dg×1 ×D1×m → Dop

〈y | x〉RIO = (x
·
⊗ ∗R

·
⊗ y)∗ = y∗

·
⊗R

·
⊗x∗ [y | x]RIO = (x

·
⊗ ∗R

·
⊗ y)∗ = y∗

·
⊗R

·
⊗x∗

〈· | ·〉RII : (Dop)g×1 ×Dm×1 → D [· | ·]RII : Dg×1 × (Dop)m×1 → Dop

〈y | x〉RII = y
·
\(R

·
⊗x) = y∗

·
⊗R

·
⊗x [y | x]RII = y

·
\(R

·
⊗x) = y∗

·
⊗R

·
⊗x

Proposition 4. 1. For a given R ∈Mg×m(D) , the brackets in the left column
generate all possible types of Galois connections between the appropriate Y
and X by composition with adequate conjugations.

2. For a given R ∈Mg×m(Dop) , the brackets in the right column generate all
possible connections between the appropriate Y and X by composition with
adequate conjugations.

Proof. The proof is straightforward following the steps of proposition 2 and a
property similar to that for the brackets above. The proof for type OI Galois
connections can be found in [1], §4.5, as well as that of type IO. =>

5 Conclusion

In this paper we have provided algebraic formulae for the construction of Galois
connections of all four different types viz. left and right adjunctions, Galois con-
nections proper and co-Galois connections, between semimodules over idempo-
tent, reflexive semifields. Although such semifields turn out to be incomplete, we
have supplied a construction allowing their completion and, further, a notation,
reminiscent of one introduced by Moreau, for expressing all Galois connection
operators in matrix algebra.

The main scheme of combining a basic Galois connection proper plus the
Cohen-Gaubert-Quadrat conjugation is already looming in [1,5]. Similarly, the
use of the Moreau notation is already present in [10] in relation to co-Galois
connections (type IO) and the completions of certain idempotent semigroups
but was not explored systematicatically there. Of course, this is exactly the way
the right-axiality (R∀

∃) and the co-Galois connection (R−
−) where introduced in

[4], but only for subsets of 2G and 2M , whose generalisation for other semirings
is not straightforward. All in all, this shows directly that K-Formal Concept
Analysis is just one of the cases here described and indirectly the same holds for
standard Formal Concept Analysis.
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