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Abstract
Following the spread of digital channels for everyday activities and electronic payments, huge collections of online transactions
are available from financial institutions. These transactions are usually organized as time series, i.e., a time-dependent sequence
of tabular data, where each element of the series is a collection of heterogeneous fields (e.g., dates, amounts, categories, etc.).
Transactions are usually evaluated by automated or semi-automated procedures to address financial tasks and gain insights
into customers’ behavior. In the last years, many Trees-based Machine Learning methods (e.g., RandomForest, XGBoost)
have been proposed for financial tasks, but they do not fully exploit in an end-to-end pipeline all the information richness of
individual transactions, neither they fully model the underling temporal patterns. Instead, Deep Learning approaches have
proven to be very effective in modeling complex data by representing them in a semantic latent space. In this paper, inspired
by the multi-modal Deep Learning approaches used in Computer Vision and NLP, we propose UniTTab, an end-to-end Deep
Learning Transformer model for transactional time series which can uniformly represent heterogeneous time-dependent
data in a single embedding. Given the availability of large sets of tabular transactions, UniTTab defines a pre-training
self-supervised phase to learn useful representations which can be employed to solve financial tasks such as churn prediction
and loan default prediction. A strength of UniTTab is its flexibility since it can be adopted to represent time series of arbitrary
length and composed of different data types in the fields. The flexibility of our model in solving different types of tasks (e.g.,
detection, classification, regression) and the possibility of varying the length of the input time series, from a few to hundreds
of transactions, makes UniTTab a general-purpose Transformer architecture for bank transactions.
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1. Introduction
Transactional data are time-dependent collections of fi-
nancial transactions. For instance, a bank account can be
seen as a time series of transactions, each composed of a
tabular data entry with fields specifying the transaction
amount, the transaction operation and the receiver type
(see Figure 1). These data can be used as training data
for different Machine Learning approaches, in a variety
of tasks. Some examples are:

• Customer Value Management, to support market-
ing or commercial actions, for instance via the
creation of tailored offers;

• Credit and Liquidity Risk, to assess the initial
risk, and to detect early risk signals, for instance,
represented by changes in expense patterns or in
the regularity of incomes;

• Fraud detection and Anti Money Laundering, to
identify potential malicious behaviors.

For these purposes, transactional data have been so far
processed with symbolic AI (e.g., rule-based expert sys-
tems) and/or with ensembles of trees-based machine
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learning models. RandomForest [1], LightGBM [2], XG-
Boost [3] and CatBoost [4] are the most frequently used.

Despite the success of Deep Learning methods in other
application areas (e.g., Natural Language Processing and
Computer Vision), trees-based models seemed to outper-
form deep learning models on most of the tabular datasets
[5]. These datasets are typically composed of tens to hun-
dreds of features and thousands to hundreds of thousands
of samples. However, the size of transactional datasets
is growing rapidly, now exceeding millions of trans-
actions in some cases. Since the performance of deep-
learning models improves with dataset size, tree-based
models are the best choice only for small and medium-
size datasets [6]. In addition, the use of tree-based models
for transactional data is limited to constructing simple
aggregated features, such as calculating the average
spending over recent months or determining the total
income for the past year. This approach has clear limita-
tions in fully harnessing the precise and timely informa-
tion that transactional data encapsulates.

Recently, various deep learning networks have been
developed for heterogeneous data, mostly for tabular
datasets. Lyu et al. [7] combine different modules and
can represent both numerical and categorical features.
Borisov et al. [8] use a distillation approach to map deci-
sion trees, trained on heterogeneous tabular data, onto
homogeneous vectors. Huang et al. [9] represent cate-
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Figure 1: Some samples of transactions from the Transaction dataset used for fraud detection.

gorical features using an attribute-specific embedding
which is used as a prefix, concatenated with the actual
field value. Schäfl et al. [10] use a non-parametric repre-
sentation of the training data, which reminds the use of
external networks in Transformers [11]. However, these
approaches do not model the temporal dynamics: each
row in the table is an individual sample. A trivial solution
could be to concatenate multiple rows into single sam-
ples, but none of the previous work has demonstrated
that their architecture can model more than hundreds of
fields as an individual sample.

To overcome these problems, we propose a custom
Deep Learning architecture based on modern Transform-
ers [12], which can uniformly represent heterogeneous
time-dependent data, and which is trained on a large-
scale transactional dataset. We call our model UniT-
Tab (Unified Transformer for Time-Dependent Heteroge-
neous Tabular Data), and we show that it consistently out-
performs state-of-the-art approaches based on both Deep
Learning and standard Machine Learning techniques.

2. Related works
The heterogeneous nature of transactional data and the
lack of large public annotated datasets, due to privacy
and commercial reasons, make these data extremely dif-
ficult to be handled by deep neural networks. However,
in recent years some works have started to address these
challenges. For instance, Padhi et al. [13] proposed one
of the first deep learning architectures for heterogeneous
time series (TabBERT). As a solution to data heterogene-
ity, the authors quantize continuous attributes so that
each field is defined on its finite vocabulary.

Another recent work is TabAConvBERT proposed by
Shankaranarayana & Runje [14]. They present an archi-
tecture that can deal with both categorical inputs (by
using an embedding neural network) and numerical in-
puts (by using a shallow neural network).

The architecture presented by X. Huang et. al. [9]
provides a solution to data heterogeneity, but it cannot
handle the temporal component of the data and therefore
is unable to solve tasks involving transaction sequences.

A different line of work involves directly or indirectly

using natural language-based “interfaces” between the
tabular data and a Transformer. For instance, in LUNA
[15], numerical values are represented as an atomic nat-
ural language string.

Our proposal differs from the aforementioned works
in different aspects. On the one hand, we deal with all
the variability dimensions of the problem: numerical,
categorical and temporal. On the other hand, we train our
model using arbitrary length and long-range time series,
which can include up to 150 transactions per sample. As
a result, it is possible to deal with transactional tasks that
require learning the long-term dependencies of the data.
Furthermore, the learning phase is enriched with new
custom masking techniques, which allow all related fields
to be masked simultaneously, making the initial general-
purpose training more challenging for our model.

3. Method

3.1. Pre-training and Fine-tuning
The current great availability of data together with the
advancement of AI research have opened the possibility
of developing larger models with more general purposes.
This is already a reality in almost every application re-
garding unstructured data, like text, images and video.
Many general-purpose models have gained fame in re-
cent years: GPT-3 [16], BERT [17], CLIP [18], DALL-E
[19]. All these models have been pre-trained using large
datasets jointly with a self-supervised approach.

The goal of the pre-training phase is to learn a good
representation of the input data. As a result, models
trained within this scheme show great generalization
capabilities even without further training, like the gen-
eration of text of GPT models. These capabilities can
further improve after a second training phase, called
fine-tuning over a specific task, for example, ChatGPT’s
stunning ability to conversate. Taking inspiration from
these models, we use a large dataset of transactions to
pre-train a Transformer network using self-supervised
learning, and then we use a (smaller) labeled dataset to
fine-tune the network for a specific task.

During the pre-training stage, we train our UniTTab
model using the Masked Token pretext task [17]. Some
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Figure 2: A schematic illustration of the UniTTab architecture for financial data.

of the input features are masked to the model, and the
model is trained to predict the masked features as a func-
tion of the “visible” ones. This method makes it possi-
ble to train a model to automatically learn the seman-
tics and to extract relevant information contained in the
sequence of transactions. Specifically, for an input se-
quence, we randomly replace a field value with the special
symbol [MASK]. We use a standard replacement proba-
bility value of 0.15 [17, 13]. Moreover, with probability
0.1, we also mask all the fields in a transaction, while, for
the fields representing the time stamp, they are always
either jointly masked or jointly unmasked. These addi-
tional masking strategies, inspired by the block masking
of adjacent image patches used in BEiT [20], make the
pretext task more challenging for the network.

It is important to remark that, within the pre-training
phase, the training of the model solely relies on input
features of transactions, eliminating the need for labels.
This way we can use the entire transactional dataset,
even if it is not fully labeled for the specific downstream
task. This is the case of the Czech dataset [21] used for
loan default prediction, described in Section 4.1.

3.2. The architecture
We develop a custom model called UniTTab, designed to
be suited for sequences of heterogeneous transactional
data. Borrowing the techniques used in text analysis
in BERT or GPT models, we use input time series with
variable length. We vary the sequence length from 10
to 150 transactions, where each transaction is composed
of a fixed number of 10 or 6 fields. As a result, each
time series can vary in length from 100 to 900 items, a
challenging length to manage even for text sentences.

Given the data structure, we propose the hierarchical
architecture shown in Figure 2. The architecture is com-
posed of two different Transformers, and it is trained end-
to-end. The first Transformer (“Field Transformer”)
takes as input the 𝑘 features describing a single trans-
action, like transaction amount, merchant information,
transaction date and time. The features are transformed

in 𝑘 final embeddings, which are concatenated in a single
embedding vector. This embedding is the representation
of a single transaction. Then a sequence of these em-
beddings, each representing a transaction, is fed to the
second Transformer (“Sequence Transformer”). The
Sequence Transformer models the statistic dependencies
between different transactions in the sequence and out-
puts embedding elements in the latent space. This is the
general-purpose latent space where the representation
can be potentially exploited for many tasks, such as clas-
sification (e.g., to classify the client behavior), detection
(e.g., to detect anomalies, frauds), and prediction (e.g., to
predict product churn in next few months).

As depicted in Figure 2, during pre-training, for each
masked field we use the corresponding output embedding
to predict the field value. Instead, during fine-tuning, we
add a class token [CLASS] at the beginning of the transac-
tion embedding sequence, and we use the corresponding
output embedding to solve the financial tasks. This em-
bedding can attend to all transaction embeddings in the
sequence, allowing it to exploit all field information of
all transactions.

3.3. Feature representation
Our model can effectively represent heterogeneous data,
encoding both numerical fields (e.g., the amount), cat-
egorical fields (e.g., the type of transaction), and fields
with a specific structure (e.g., the date).

The most common approach to tackle this challenge
is to reduce all the features to a common representation:
usually numerical for ensemble of trees or categorical for
deep learning architectures like TabBERT [13]. However,
discretizing numerical features into a finite set of values
results in a loss of information. For example, it could be
important to know if an amount is precisely 20 euros or
20.50 to distinguish between a withdrawal and a grocery
expense. For this reason we develop a custom represen-
tation to transform numerical values in the input vector.
In particular, we represent each numerical value as a fea-
ture vector obtained by the concatenation of a battery of



different frequency functions (depicted with a sine wave
symbol in Figure 2). Similar representations are used in
NeRFs [22] for 3D synthesis. Conversely, we adopt a tra-
ditional “category encoding” to represent the categorical
features, by using simple embedding neural networks
(as used in [13]). Finally, we use a custom “time encod-
ing” method for the timestamp attributes. The value of a
timestamp is split using a combination of different field
values: the year, the month, the day and, if necessary, the
hour. Then each such value is represented as a categorical
feature (e.g., with 12 elements for the month).

4. Experimental results
The effectiveness of the model has been tested over two
large size datasets of transactions: the PKDD’99 Finan-
cial Dataset [21] and our Real Bank Account Transaction
Dataset (in short, RBAT Dataset). The first dataset is
public and is used as a benchmark for predicting loan
default. Instead, the second dataset is private and is used
to assess how well our model predicts customer churn
in comparison to standard industry models. The cho-
sen experiments are binary classification tasks with a
large level of unbalance in the statistics of the two target
classes.

In all the experiments, the model is first pre-trained
using self-supervision (Section 3.1) and then fine-tuned
on the classification task, in a standard supervised way,
using the labeled data.

4.1. Loan default prediction
The loan default prediction is a classification task defined
on the PKDD’99 Financial Dataset, which is a public
dataset of real transactions from a Czech bank [21]. This
dataset is composed of 1M of transactions from 4500
clients. It also includes customer information, but we use
only the transactions, each composed of 6 fields (times-
tamp, amount, type and channel of the transaction).

The dataset presents a large fraction of unlabeled data,
in fact most of the accounts don’t have any loans, and
they cannot be used for the classification task. This is
the perfect example of the potentiality of our model: we
perform the pre-training on all the accounts present in
the dataset (4500) and then we fine-tune the model only
on the labeled ones (478 for training and 204 in test). With
such a small number of samples UniTTab has been able
to obtain good results, way higher than ensemble of trees,
and the possibility to exploit all the data in pre-training
is its main advantage.

To evaluate our model’s ability to deal with longer
sequences and variable lengths, we test different se-
quence lengths of transactions. We define a maximum
length value 𝑡𝑚𝑎𝑥 (ranging from 50 to 150), and for each

account we include the entire sequence of transactions if
it is shorter than the maximum. Instead, if the sequence
exceeds the maximum length, we only consider the most
recent 𝑡𝑚𝑎𝑥 transactions. It’s important to note that,
during pre-training the average sequence length is 232
transactions, whereas during fine-tuning the average se-
quence length is 80 transactions. This happens because,
for fine-tuning, we only take transactions made before
the loan begins. For this reason, if we set 𝑡𝑚𝑎𝑥 to 150,
during fine-tuning almost all transaction sequences are
of variable length. It’s also interesting to observe that,
increasing the length of the sequence, the result of the
model improves. This is likely due to the information in-
crease in the input sequence, but it demonstrates that the
model is able to deal with long sequences of transactions.

4.2. Effect of Pre-Training
One of the main advantages of using Deep Learning meth-
ods over traditional Machine Learning approaches is the
possibility to pre-train a large network using a large un-
supervised dataset, and then fine-tune the same network
on the (usually scarcer) available annotated data of a
downstream task. In order to quantify the contribution
of the pre-training phase, and to show that this is useful
also when the unlabeled dataset is not huge, we use the
PKDD’99 Financial Dataset, and we pre-train the mod-
els with different portions of the pre-training dataset.
Specifically, in Figure 3 we indicate the fraction of the
pre-training dataset used for each experiment, where
zero corresponds to training the models from scratch di-
rectly on the (labeled) downstream task data. The results
in the figure show that both Deep Learning methods (i.e.,
TabBERT and UniTTab) significantly benefit from the
pre-training phase, even using only a small portion of
the unlabeled data (e.g., 0.25). Furthermore, when pre-
training is performed, our UniTTab gets a significantly
higher F1 score than traditional tree-based models.

4.3. Churn prediction: comparison with
industry standards

We also compare our model with a custom transactional
tree-based pipeline on a churn rate prediction task. The
task is defined on the private RBAT dataset, which is pro-
vided by an international bank and is composed of several
hundred million real transactions of bank customers.

The churn prediction task is defined as whether or not
a customer churns in the next 3 months, given a 6-month
history sequence of transactions performed by that cus-
tomer. The history sequences provided to the models
are of variable length, with an average of 192 transac-
tions and up to a maximum of 500 transactions. Each
sequence is associated with a binary target that repre-
sents the presence of the churn event for that customer in



Table 1
Loan default prediction task: average and standard deviation results obtained with 5 random seeds.

𝑡𝑚𝑎𝑥 Model F1 score Average Precision ROC AUC Accuracy

50
TabBERT [13] 0.611(±0.032) 0.594(±0.031) 0.827(±0.048) 90.7(±1.6)
LUNA [15] 0.604(±0.048) 0.613(±0.048) 0.869(±0.030) 92.5(±1.7)
UniTTab (ours) 0.619(±0.011) 0.574(±0.017) 0.882(±0.021) 90.2(±1.5)

100
TabBERT [13] 0.636(±0.024) 0.625(±0.036) 0.874(±0.019) 91.6(±0.9)
LUNA [15] 0.624(±0.075) 0.601(±0.018) 0.846(±0.025) 92.5(±1.7)
UniTTab (ours) 0.654(±0.032) 0.653(±0.033) 0.903(±0.006) 91.4(±1.2)

150
TabBERT [13] 0.620(±0.024) 0.603(±0.016) 0.857(±0.026) 91.6(±1.1)
LUNA [15] 0.637(±0.043) 0.589(±0.017) 0.851(±0.030) 92.6(±1.2)
UniTTab (ours) 0.673(±0.038) 0.690(±0.030) 0.912(±0.018) 92.3(±1.1)

-
Random Forest [23] 0.2667 - 0.6957 89.27
XGBoost 0.608(±0.079) 0.700(±0.040) 0.894(±0.019) 92.8(±1.8)
CatBoost 0.527(±0.065) 0.617(±0.079) 0.866(±0.043) 92.0(±1.1)

Figure 3: Loan default prediction task: impact of different portions of the pre-training dataset.

the following 3 months. Initially, our model has been pre-
trained on a random sample of 1M untargeted accounts,
corresponding to approximately 300 million transactions.
Then, we evaluate the performance of our model and
industry standards using fine-tuning datasets of different
sizes, ranging from 50K transaction sequences up to 1
million sequences.

Figure 4 shows that our UniTTab model significantly
outperforms industry standards for every training dataset
size. It also demonstrates the scalability of our model
through an increased number of fine-tuning samples:
increasing the number of training accounts yields con-
siderably improved AUC on the churn prediction task.

5. Conclusion
The UniTTab project presented in this paper is a step
towards the creation of general-purpose architectures for
bank transactions. The empirical results show that our

model drastically outperforms both deep learning and
standard machine learning based predictive models on
different benchmarks. We believe that our work and our
results can stimulate this research field and the adoption
of self-supervised deep learning in banking data.
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