RSDC’09: Tag Recommendation
Using Keywords and Association Rules

Jian Wang, Liangjie Hong and Brian D. Davison

Department of Computer Science and Engineering
Lehigh University, Bethlehem, PA 18015 USA
{jiw307, 1ih307, davison}@cse.lehigh.edu

Abstract. While a webpage usually contains hundreds of words, there
are only two to three tags that would typically be assigned to this page.
Most tags could be found in related aspects of the page, such as the
page own content, the anchor texts around the page, and the user’s
own opinion about the page. Thus it is not an easy job to extract the
most appropriate two to three tags to recommend for a target user.
In addition, the recommendations should be unique for every user, since
everyone’s perspective for the page is different. In this paper, we treat the
task of recommending tags as to find the most likely tags that would be
chosen by the user. We first applied the TF-IDF algorithm on the limited
description of the page content, in order to extract the keywords for the
page. Based on these top keywords, association rules from history records
are utilized to find the most probable tags to recommend. In addition,
if the page has been tagged before by other users or the user has tagged
other resources before, that history information is also exploited to find
the most appropriate recommendations.

1 Introduction

Social bookmarking services allow users to share and store references to various
types of World Wide Web (WWW) resources. Users can assign tags to these
resources, several words best describing the resource content and his or her
opinion. To assist the process of assigning tags, some services would provide
recommendations to users as references. In Tatu et al. [5] work, they mentioned
that the average number of tags in RSDC’08 bookmarking data is two to three.
Thus, it is not an easy task to provide reasonable tag recommendations for the
resource with only two to three related tags on average. Tag recommendation is
a challenge task in ECML PKDD 2009 where participants should provide either
content-based or graph-based methods to help users to assign tags. This work
shows some results that aim to this challenge.

The challenge provides description of the resources and posts of the tag.
Description contains some basic information about the resources and post is the
tuple of user, tag and resource. In the challenge, there are two types of resources,
normal web pages, named as bookmark, and research publications, named as
bibtex, with different schemas of descriptions. A post records the resource and the



tags assigned to it by a particular user. The task is to provide new tags to new
resources with high F-Measure performance on the top five recommendations.
The difficulties of this challenge fall in:

— How to take advantage of the record content itself, while the description is
very limited? For example, bookmark is only described with the title of the
web page and a short summary while bibtex is usually described with title,
publication name, and authors of the paper.

— How to utilize history information to recommend tags which do not appear
in the page content? Though we can use keywords to help find possible tags,
tags are not just keywords. Tags could be user’s opinion about the page, the
category of the page, so on and so forth. This kind of tag might be tracked
by using history information.

— How to choose the most appropriate two to three tags among the potential
pool? By analyzing the page content and history information, we might have
a pool which contains the reasonable tag recommendations. Yet we cannot
recommend all those to the user. Instead of that, only two to three tags need
to be extracted from that pool.

In order to solve the above problems, we propose tag recommendation using
both keywords in the content and association rules from history records. After
we end with a pool which contains potential appropriate tags, we introduce a
method, named common and combine, to extract the most probable ones to
recommend. Our evaluation showed that integrating association rules can give
better F-Measure performance than simply using keywords.

Besides using association rules, some history information will be used more
directly, if the resource has been tagged before or the target user tagged other
documents before. These history records would greatly improve recommendation
performance.

In this paper, we tuned some parameters in our recommendation system to
generate the best F-Measure performance while recommending at most five tags.

2 Related Work

Lipczak [3] proposed a recommendation system mainly based on individual posts
and the title of the resource. The key conclusion of their experiments is that,
they should not only rely on tags previously attached when making recommen-
dations. Sparsity of data and individuality of users greatly reduce the usefulness
of previous tuple data. Looking for potential tags they should focus on the di-
rect surrounding of the post, suggesting a graph-based method. Tatu et al. [5]
proposed a recommendation system that takes advantage of textual content and
semantic features to generate tag recommendations. Their system outperformed
other systems in last year’s challenge. Katakis et al. [2] proposed a multilabel
text classification recommendation system that used titles, abstracts and exist-
ing users to train a tag classifier.



In addition, Heymann et al. [1] demonstrated that “Page text was strictly
more informative than anchor text which was strictly more informative than sur-
rounding hosts”, which suggests that we do not have to crawl other information
besides page content. They also showed that the use of association rules can help
to find recommendations with high precision.

3 Dataset Analysis and Processing

3.1 Dataset from the Contest

Three table files were provided by the contest, including bookmark, bibtex and tas.
The bookmark file contains information for bookmark data such as contentID,
url, url-hash, description and creation date. The bibtex file contains information
for bibtex data such as contentID, and all other related publication information.
The tas file contains information for (user, tag, resource) tuple, as well as the
creation date. The detailed characteristics for these files could be found in Table
1. In this work, all contents were transformed into lower case since the evaluation
process of this contest ignores case. In the mean time, we filtered the latex format
when we exported bibtex data from the database.

Table 1. Detail information about training dataset, provided by the contest

file [# of lines[information

bookmark| 263,004 |content_id (matches tas.content_id),

url_hash (the URL as md5 hash),

url, description, extended description, date

bibtex 158,924 |content_id (matches tas.content_id), journal, volume
chapter, edition, month, day, booktitle, editor, year
howPublished, institution, organization, publisher

address, school, series, bibtexKey, url, type, description
annote, note, pages, bKey, number, crossref, bibtexAbstract
simhash0, simhash1, simhash2, entrytype, title, author, misc
tas 1,401,104 |userlD, tag,

content_id

(matches bookmark.content_id or bibtex.content_id)
content_type (1 = bookmark, 2 = bibtex), date

3.2 Building Experiment Collection

We considered and tried merging duplicate records together in training process
yet found it did not help much. Thus we kept the duplicate records when building
our experiment collections. Since our proposed tag recommendation approach
does not involve a training process, we did not separate the dataset into training
one and testing one at first. We evaluated our recommendation system on all



documents in the given dataset. Based on the type of documents, there are three
different collections in our dataset:

bookmark collection from dataset provided We created a collection book-
mark_more to contain all bookmark information which were provided by the con-
test training dataset. Every document in the collection corresponds to a unique
contentID in bookmark file. It contains all information for that record, includ-
ing description and extended description. There are 263,004 documents in this
collection.

During the experiment, we crawled the external webpage for every contentID.
Yet the performance showed that the external webpage are not as useful as
the simple description provided by the contest. Regardless of performance, it
also cost too much time, which is not realistic for online tag recommending. In
addition, an external webpage usually contains too many terms, which makes it
even harder to extract two to three appropriate terms to recommend as tags.

bibtex collection from dataset provided We created a collection bib-
tex_original to contain all bibtex information which were provided by the original
dataset. Every document in the collection corresponds to a unique contentID in
bibtex file. It contains all information for that record, including all attributes in
Table 1 except simhash(, simhashl and simhash2. There are 158,924 documents
docs in this collection.

bibtex collection from external resources If the url of a bibtex record
points to some external websites such as portal.acm.org and citeseer, we crawled
that webpage and extracted useful information for this record. All these docu-
ments are stored in another collection. Similarly, every document in the collection
corresponds to a unique contentID in bibtex file. There are 3,011 documents in
this collection bibtez_parsed.

4 Keyword-AssocRule Recommendation

We consider the tag recommendation problem as to find the most probable terms
that would be chosen by users. In this paper, P(X) indicates the probability of
term X to be assigned to the document as tag. For every document, the term
with high P(X) has the priority to be recommended.

4.1 Keyword Extraction

In this step, our assumption is that the more important this term in the docu-
ment, the more probable for this term to be chosen as tag.

We used two term weighting functions, TF-IDF and Okapi BM25 [4] to ex-
tract “keywords” from resources. In a single collection, we calculated TF-IDF
and BM25 value for every term in every document.



For TF-IDF, the weighting function is defined as follows:
TF —IDF =TF, 4 x IDF; (1)

where T'F; 4 is the term frequency that equal to the number of occurrences of
term t in document d. I DF; is inverse document frequency that is defined as:
N
IDF, =log— 2
¢ T, (2)
where dfy is the number of documents in the collection that contain a term ¢ and
N is the total number of documents in the corpus.
For Okapi BM25, the weighting function is defined as follows:

TFt’d(l + kl)
TFa+ki(1—b+bx 1)

BM?25 = IDF(q;) (3)
i=1

where T'F; 4 is the frequency of term ¢ in document d and Ly and L, are the

length of document d and the average document length for the whole collection.

IDF(q;) here is defined as

N — n(ql) + 0.5
n(g;) + 0.5 )

The terms in the single document are ranked according to its TF-IDF or
BM25 value in decreasing order. A term with high value or high rank is consid-
ered to be more important in the document. Thus Py (X) can be calculated by
Algorithm 1.

IDF(q;) = log

Algorithm 1 To calculate Py(X), by using results from keyword extraction
method
for all documents in the collection do
rank all terms according to TF-IDF or BM25 value in decreasing order
for all term X in the document do
Py (X) =100 — rank(X);
{//rank(X) = 1 indicated the top position, 2 indicated the second position,
etc. }
end for
end for

As shown in Table 2, TF-IDF performed better than BM25 in tag recommen-
dation process. The following processes in this work were all performed based
on results of TF-IDF method.

4.2 Using Association Rules

Recent work by Heymann et al. [1] showed that using association rules could
help to find tag recommendation with high precision. They expanded their rec-
ommendation pool in decreasing order of confidence. In this paper, we used



Table 2. Performance of key word extraction method in every collection, while recom-
mending at most 5 tags.

collection BM25 TF-IDF

recall precision f-measure| recall precision f-measure
bibtex_original {0.0951 0.0561  0.0706 |0.0989 0.0592  0.0741
bibtex_parsed [0.1663 0.1059  0.1294 |0.1800 0.1158  0.1409

bookmark more|0.1186 0.0940  0.1049 |0.1189 0.0943  0.1052

alternative approaches to deeply analyze association rules, which are found in
history information. It does help to extract tags which are more likely to be used
by users.

Finding association rules in history records We used three key factors in
association rules, including support, confidence and interest. Every unique record
is treated as the basket and the tags (X, Y, etc.) associated with every record are
treated as the items in the basket. For every rule X — Y, support is the number
of records that contain both X and Y. Confidence indicates the probability of
Y in this record if X already associates with the record, i.e., P(Y|X). Interest
is P(Y|X) — P(Y), showing how much more possible that X and Y associating
with the record together.

Table 3. Sample Association rules found in training dataset

bookmark bibtex
X —-Y confidence|support |interest X —-Y confidence|support|interest
blog — software 0.0541 291 | 0.0454 ||systems — algorithms| 0.2886 205 | 0.2757
blogs — blogging 0.1345 291 | 0.1333 ||algorithms — systems| 0.0492 295 | 0.0470
blogging — blogs 0.2910 291 | 0.2885 systems — genetic 0.2847 201 | 0.2721
artery — cardiology 0.9510 291 | 0.9506 genetic — systems 0.0497 291 | 0.0475
photos — photography 0.3149 290 | 0.3138 ||tagging — folksonomy| 0.5097 288 | 0.5085
photography — photos 0.3142 290 | 0.83131 ||folksonomy — tagging| 0.5115 288 | 0.5103
learning — foodcooking 0.1004 290 0.1000 genetic — and 0.0466 273 0.0441

The rules X — Y we constructed all have support > 10, thus at least 10
resources in our training dataset contain both X and Y as tags. As we mentioned
before, we did not separate the dataset into training and testing sets. During
evaluation, some records might benefit from the rule it contributed at first, yet
at least 9 more resources also contributed to the rule. The support limit here
is chosen arbitrarily. Two sets of rules are constructed independently, one for
bookmark dataset and another one for bibtex dataset. Some sample rules are
showed in Table 3.

Choosing appropriate recommendations by using association rules
Here the problem becomes to be:

If X — Y exists in the association rules, how possible that term Y should
be recommended when X is likely to be recommended?



Given P(X) and the confidence value P(Y|X), P(Y) could be calculated
according to law of total probability, which is sometimes called as law of
alternatives:

P(Y)=> P(YNX,) (5)

or

P(Y) =Y P(Y | X,)P(X,) (6)

since P(Y N X,) = P(Y | X,,)P(X,,). According to the above equations, the
algorithm to calculate P,(Y"), which is called Assoc(Y) in this paper, is shown
in Algorithm 2.

Algorithm 2 To calculate P,(X), by using association rules

for all documents in the collection do
for all term X in the document do
for all association rule X — Y do
P,(Y)+ = (confidence of X —Y) * Py(X);
{//Px(X) is calculated by Algorithm 1}
end for
end for
end for

4.3 Combining Keyword Extraction with Association Rules Results

After Py(X) and P,(X) are calculated for every term in the document, one
method, in Algorithm 3, is to linearly combine the two values to calculate the
final probability P.(X) for recommending a term X.

Similarly, term with higher P.(X), i.e., higher rank in Combined results has
the priority to be recommended.

The experiments showed that weight could affect the F-Measure performance
and the optimal weight to combine is different for every collection. Figure 1
shows the effect of weight in bibtex_parsed collection, where F-Measure reaches
the peak during increase of weight from 0.1 to 0.9. This trend is similar in other
two collections. Our experiments indicated that the optimal weight to achieve
best F-Measure for bibtex_parsed, bibtex_original, bookmark_more is 0.7, 0.5 and
0.5, respectively. The evaluation results with optimal weight for every collection,
in this step, is shown in the second column of Table 4. Compared to the TF-IDF
results in the first column, it is obvious that the association rules can greatly
help to improve the F-Measure performance.

Another method we found that worked well is common and combine. In
common step, if the term in top rank of keyword extraction results do have
Assoc(X) > 0, then recommend this term. In combine step, extract terms with



Algorithm 3 To calculate P.(X), by linearly combining results from TF-IDF
& association rules
for all documents in the collection do
TF — IDFmax = maximum TF — [DF(X) for all terms in this document
Assocmax = maximum Assoc(X) for all terms in this document
for all term X in the document do
TF — IDF(X) = TF — IDF(X)/TF — IDFmax;
{// normalize TF — IDF(X) value}
Assoc(X) = Assoc(X)/Assocmax;
{// normalize Assoc(X) value, Assoc(X) = P,(X) in Algorithm 2.}
Combined(X) =TF — IDF(X) % weight + Assoc(X) x (1 — weight);
{//linearly combine the two values}
rank terms according to decreasing order of Combined(X);
P.(X) =100 — rank of Combined(X);
{//rank = 1 indicated the top position, 2 indicated the second position, etc.}
end for
end for

-y >< kK

weight

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

—+—precision —m=—fmeasure recall

Fig. 1. Performance for different weight in bibtex_parsed. For every weight, no. of tags
changes from 1 to 5.



Table 4. Performance for only using TF-IDF results, linearly combining results of
TF-IDF & association rules, and common & combine the two results, for the top N tag
recommendations

TF-IDF 1] linearly combining results 1] common & combine
bibtex_original
Top N| recall precision f-measure[|[Top N|recall precision f-measure|[[Top N[ recall precision f-measure
1 0.0199 0.0636 0.0304 1 0.0339 0.1105 0.0519 1 0.0344 0.1123 0.0527
2 0.0378 0.0610 0.0467 2 0.0593 0.0979 0.0739 2 0.0619 0.1018 0.0770
3 0.0579  0.0603 0.0591 3 0.0824  0.0900 0.0860 3 0.0848 0.0927 0.0886
4 0.0787 0.0598 0.0680 4 0.1046 0.0849 0.0937 4 0.1065 0.0867 0.0956
5 0.0989 0.0592 0.0741 5 0.1244 0.0802 0.0975 5 0.1264 0.0816 0.0992
bibtex_parsed
Top N| recall precision f-measure||Top N| recall precision f-measure|| Top N| recall precision f-measure
1 0.0708 0.2033 0.1050 1 0.0728 0.2106 0.1081 1 0.0723 0.2155 0.1083
2 0.1138 0.1710 0.1367 2 0.1171 0.1802 0.1419 2 0.1212  0.1871 0.1471
3 0.1438 0.1487 0.1462 3 0.1527 0.1605 0.1565 3 0.1549 0.1635 0.1591
4 0.1665 0.1316 0.1470 4 0.1771 0.1425 0.1580 4 0.1778 0.1432 0.1586
5 0.1800 0.1158 0.1409 5 0.1959 0.1281 0.1549 5 0.1968 0.1291 0.1559
bookmark_more
Top N| recall precision f-measure||Top N| recall precision f-measure||Top N| recall precision f-measure
1 0.0388 0.1285 0.0596 1 0.0449  0.1547 0.0696 1 0.0460 0.1599 0.0715
2 0.0693 0.1172 0.0871 2 0.0846 0.1400 0.1055 2 0.0872 0.1487 0.1099
3 0.0919 0.1080 0.0993 3 0.1133 0.1286 0.1205 3 0.1165 0.1358 0.1254
4 0.1077 0.1001 0.1038 4 0.1375 0.1202 0.1283 4 0.1415 0.1255 0.1330
5 0.1189 0.0943 0.1052 5 0.1581 0.1132 0.1319 5 0.1623 0.1172 0.1361

high P.(X) for recommendation. The total number of tags to recommend is
controlled by k, the number of tags to check in the common step is common-no,
and the number of tags to extract in the combine step is combine-no. Detailed
steps are shown in Algorithm 4.

Since the evaluation of this contest only cares for the first 5 tags to recom-
mend, we set k = 5. If common-no = 10 and combine-no = 5, the results for all
three collections are shown in third column of Table 4.

Generally speaking, F-Measure increases with the increase of common-no and
reaches the peak near common-no = 20. At the same time, it reaches its highest
point as combine-no increases, and remains the same level with the further in-
crease of combine-no. Since the total number of tags to recommend is fixed to
be 5, the combine step will stop before it reaches the limit of how many tags to
check, i.e., combine-no. Thus if combine-no is greater than a certain number, it
won’t affect the f-measure performance anymore.

Since the recommendations would be further modified by history results, we
set k = 80, common-no=10, and combine-no=80 here.

If only recommending at most 5 tags, the F-Measure performance of all
above methods, including only using TF-IDF, linearly combining results of TF-
IDF & association rules, and common & combine the two, are shown in Figure
2. It is obvious that using association rules can greatly enhance the TF-IDF
performance, either by linear combination or common & combine. Common &
combine method is slightly better than linearly combining the two.

4.4 Checking Resource or User Match with History Records

In this section, historical information is used more directly. We performed 10-fold
cross validation to report the performance in this section.



Algorithm 4 Common and Combine, to integrate results from TF-IDF & as-
sociation rules
for all documents in the collection do
count = 0;
{// common step}
for i =1 to common-no do
{// common-no is the parameter to tune. It controls how many terms to check
in TF-IDF results.}
extract term X with TF-IDF rank = 4;
if Assoc(X) > 0 then
recommend this term X;
count + +;
{//count is the number of tags that have been recommended in common
step. }
end if
14+
end for
{// combine step}
rank all terms by P.(X) in decreasing order.
{// P:(X) is the combination value of keyword extraction and association rules
results, calculated by Algorithm 3.}
for j =1 to (k — count) do
{// k is the total number of tags to recommend, k — count is the number of tags
to recommend in combine step}
extract the term Y with (rank in P.(X) results) = j;
if Y is not in the recommendation list then
recommend this term Y ;
end if
J++;
if j > combine-no then
{// combine-no is the parameter to tune. It controls how many terms to check
in combined results of TF-IDF & association rules.}
exit the combine step;
end if
end for
end for




bibtex_original bibtex_parsed bookmark_more

W TFIDF H linearly combine of TFIDF & association rules  common & combine of TFIDF and association rules

Fig. 2. F-Measure performance for different methods in all collections. For every
method, at most 5 tags are recommended. The three methods to compare are only
using TF-IDF, linearly combining results of TF-IDF & association rules, and common
& combine

Resource match If the bookmark or bibtex in the testing dataset already ap-
peared before in training dataset, regardless of which user assigned the tags, the
tags that were assigned before would be directly inserted into our recommenda-
tion list for this document. These tags from historical information have higher
priority than the tags that were recommended in previous steps.

User match Suppose the tags that are assigned by users previously in the
training dataset, regardless of to which documents, make up the user’s tagging
vocabulary. Our assumption here is that every user prefers to use tags in his/her
own tagging vocabulary, as long as the tags are relevant to the document. Thus
the tags in the user’s tagging vocabulary would be given higher priority. The
common and combine algorithm is again applied here. In common step, if the
terms with high rank in previous steps do appear in user’s tagging vocabulary,
then recommend this term. In combine step, extract terms with high ranks in
previous steps to recommend. The number of tags to check in the common step is
common-no, and the number of tags to extract in the combine step is combine-no.

The two parameters, common-no and combine-no, are tuned to achieve the
best F-Measure performance when recommending at most 5 tags. common-no is
fized to be 53 in Figure 3, while combine-no increases from 1 to 5. In that figure,
it shows that F-Measure increases and reaches the peak point at combine-no =
1. In Figure 4, combine-no is fixed to be 1 and common-no increases from 1 to
80. F-Measure increases with the initial increase of common-no and reaches the
peak point in the middle. In this work, we set common-no = 53, and combine-no
=1.



0.22

0.21 —

0.2

0.19 —+—recall

'—'\\ -=-precision
0.18 \.\. —+—fmeasure

0.17

0.16

1 2 3 4 5

combine-no

Fig. 3. In common and combine method for checking user match, performance for
different combine-no and fized common-no = 53. At most 5 tags are recommended.

=== recall

=== precision

=t fmeasure

0.12 .ll
|

0.1 -

1 5 9 131721252933374145495357616569 7377

common-no

Fig.4. In common and combine method for checking user match, performance for
different common-no and fized combine-no = 1. At most 5 tags are recommended.



Exact match with same user and same resource In this step, if user has
tagged the same document in the training dataset, then the tags he used before
for this document would be directly recommended again.

4.5 Combining Results in all Collections

According to the performance of each collection, our priority to combine the
results is shown in Table 5.

Table 5. Priority to combine results

Priority Method
Tags from records that has exact match with same user and same bookmark/bibtex
Tags from records that has match with same user
Tags from records that has match with same resource (bookmark url or bibtex publication)
common & combine results of bibtez_parsed
common & combine results of bibtexz-original
common & combine results of bookmark-more

Higher to lower

For example, if a record both exists in bibtex_parsed and bibtex_original, the
results for this record are chosen from bibtex_parsed instead of bibtex_original,
since the former one has higher priority.

If we only consider to combine the common & combine results for all three
collections, the best performance is shown in column without checking the history
records of Table 6.

Table 6. Performance for without checking history records, resource match with higher
priority and user match with higher priority, for the top N tag recommendations

[without checking history records || resource match higher 1T user match higher ]

Top N| recall precision f-measure||Top N| recall precision f-measure||Top N| recall precision f-measure
1 |0.0415 0.1395 __ 0.0639 1 [0.0835 0.2312 _ 0.1226 1 |0.0867 0.2396__ 0.1273
0.0783_ 0.1305___ 0.0979 0.1344 0.2143 __ 0.1652 0.1374 0.2220 _ 0.1698
0.1059 0.1204 _ 0.1126 0.1667 0.1980 _ 0.1810 0.1684 0.2064 __ 0.1855
0.12902 0.1115 _ 0.1197 0.1915_0.1866 __ 0.1890 0.1916 0.1954 _ 0.1935
0.1510 0.1046 _ 0.1235 0.2118 0.1778 _ 0.1933 0.2104 0.1871 _ 0.1981

EIFNIIN
EIFNIIN
EIFNIIN

If step Tags from records that match with same user has lower priority than
tags from records that match with same resource, the best result is shown in
column resource match higher of Table 6. Otherwise, the best result is shown in
column wuser match higher of Table 6. The results indicate that even for those
bookmarks that were tagged by other users before, it is still beneficial to consider
the target user’s own tagging vocabulary.

To sum up, the best performance on training dataset is shown in Table 7,
including the detailed results only for bookmark and bibtex.

5 Conclusions and Future Work

In this paper, we proposed a tag recommendation system using keywords in the
page content and association rules from history records. If the record resource



Table 7. Best performance on training dataset, only for bookmarks and only for pub-
lications, for the top N tag recommendations

[ all resources 11 only for bookmark 11 only for bibtex

Top N| recall precision f-measure||Top N| recall precision f-measure]|| Top N| recall precision f-measure
1 [0.0867 0.2396__ 0.1273 1_[0.0771 0.2364 _ 0.1163 T _|0.1025 0.2448 _ 0.1445
0.1374 0.2220 _ 0.1698
0.1684_0.2064 __ 0.1855
0.1916 0.1954 __ 0.1935
0.2104_ 0.1871 __ 0.1981

0.1296 0.2215 0.1635
0.1613 0.2056 0.1808
0.1843 0.1932 0.1887
0.2035 0.1841 0.1933

0.1504 0.2228 0.1796
0.1803 0.2076 0.1930
0.2038 0.1990 0.2014
0.2218 0.1921 0.2059

EIFNEIN
EIFNEIN
EIFNEIN

or target user appeared before, the history tags would be used as references to
recommend, in a more direct way. Our experiments showed that association rules
could greatly improve the performance with only keyword extraction method,
while history information could further enhance the F-Measure performance of
our recommendation system.

In the future, other keyword extraction method can be implemented to com-
pare with TF-IDF performance. In addition, graph-based methods could be com-
bined with our recommendation approach to generate more appropriate tag rec-
ommendations.

Acknowledgments

This work was supported in part by a grant from the National Science Founda-
tion under award IIS-0545875.

References

1. P. Heymann, D. Ramage, and H. Garcia-Molina. Social tag prediction. In SIGIR ’08:
Proceedings of the 31st annual international ACM SIGIR conference on Research
and development in information retrieval, pages 531-538, New York, NY, USA,
2008. ACM.

2. I. Katakis, G. Tsoumakas, and I. Vlahavas. Multilabel text classification for auto-
mated tag suggestion. In Proceedings of the ECML/PKDD 2008 Discovery Chal-
lenge Workshop, part of the European Conference on Machine Learning and Prin-
ciples and Practice of Knowledge Discovery in Databases, 2008.

3. M. Lipczak. Tag recommendation for folksonomies oriented towards individual
users. In Proceedings of the ECML/PKDD 2008 Discovery Challenge Workshop,
part of the European Conference on Machine Learning and Principles and Practice
of Knowledge Discovery in Databases, 2008.

4. S. E. Robertson. Overview of the OKAPI projects. Journal of Documentation,
53(1):3-7, 1997.

5. M. Tatu, M. Srikanth, and T. D’Silva. Rsdc’08: Tag recommendations using book-
mark content. In Proceedings of the ECML/PKDD 2008 Discovery Challenge Work-
shop, part of the European Conference on Machine Learning and Principles and
Practice of Knowledge Discovery in Databases, pages 96-107, 2008.



