Computing minimal mappings

Fausto Giunchiglia, Vincenzo Maltese, Aliaksandtayeu

Dipartimento di Ingegneria e Scienza dell’'Infornmas (DISI) - Universita di Trento
{fausto, maltese, autayeu}@disi.unitn.it

Abstract. Given two classifications, or lightweight ontologjeve compute the
minimal mapping, namely the subset of all possiterespondences, called
mapping elements, between them such that i) allothers can be computed
from them in time linear in the size of the inpataogies, and ii) none of them
can be dropped without losing property i). In thaper we provide a formal
definition of minimal mappings and define a timéi@ént computation algo-

rithm which minimizes the number of comparisonsween the nodes of the
two input ontologies. The experimental results skogubstantial improvement
both in the computation time and in the number afpping elements which
need to be handled.

Keywords. Ontology matching, lightweight ontologies, mininmappings

1 Introduction

Given any two graph-like structures, e.g., datalsagk XML schemas, classifica-
tions, thesauri and ontologies, matching is usudbytified as the problem of finding
those nodes in the two structures which semanyicalirespond to one another. Any
such pair of nodes, along with the semantic ratatiip holding between the two, is
what we informally call anapping element. In the last few years a lot of work has
been done on this topic both in the digital libear[15, 16, 17, 21] and the computer
science [2, 3, 4, 5, 6, 8, 9] communities. In thégper we concentrate on lightweight
ontologies (or formal classifications), as formatlgfined in [1, 7], and we focus on
the problem of findingminimal mappings, that is, the subset of all possible corre-
spondences, calledapping elements, such that i) all the others can be computed from
them in time linear in the size of the input grgphed ii) none of them can be
dropped without losing property i). This must net $een as a limitation. There are
plenty of schemas in the world which can be traadlawith almost no loss of infor-
mation, into lightweight ontologies. For instantegsauri, library classifications, file
systems, email folder structures, web directortassiness catalogues and so on.
Lightweight ontologies are well defined and pervasiThe main advantage of mini-
mal mappings is that they are the minimal amouninfdrmation that needs to be
dealt with. Notice that this is a rather importd@ature as the number of possible
mapping elements can grow uprtom with n andm being the size of the two input
ontologies. Minimal mappings provide clear usapiidvantages. Many systems and
corresponding interfaces, mostly graphical, havenberovided for the management
of mappings but all of them hardly scale with thereasing number of nodes, and the
resulting visualizations are rather messy [3]. kemnore, the maintenance of smaller
sets makes the work of the user much easier, fastetess error prone [11].



The main contributions of this paper are a fornedindtion of minimal and, dually,
redundant mappings, evidence of the fact that the minimal mappingaslsvexists and
it is unique and an algorithm for computing it. $kilgorithm has the following main
features:

1. It can be proved to be correct and complete, instirgse that it always com-
putes the minimal mapping;

2. It minimizes the number of calls to the node matghiunction which com-
putes the relation between two nodes. Notice tbdematching in the general
case amounts to logical reasoning [5], and it nesyire exponential time;

3. It computes the mapping of maximum size (includimg maximum number of
redundant elements) as it maximally exploits tHermation codified in the
graph of the lightweight ontologies in input. Thig, turn, avoids missing
mapping elements due to pitfalls in the node matghiunctionse.g. because
of missing background knowledge [8].

As far as we know very little work has been dondlanissue of computing mini-
mal mappings. In general the computation of minimappings can be seen as a spe-
cific instance of the mapping inference problem [@pser to our work, in [9, 10, 11]
the authors use Distributed Description Logics (DID12] to represent and reason
about existing ontology mappings. They introdudewa debugging heuristics which
remove mapping elements which are redundant orrgenénconsistencies from a
given set [10]. The main problem of this approahalso recognized by the authors,
is the complexity of DDL reasoning [11]. In our apach, instead of pruning redun-
dant elements, we directly compute the minimal setong other things, our ap-
proach allows us to minimize the number of calladde matching.

The rest of the paper is organized as follows.i8e@ provides a motivating ex-
ample. Section 3 provides the definition for redamdand minimal mappings, and it
shows that the minimal set always exists and iigjue. Section 4 describes the al-
gorithm while Section 5 evaluates it. Finally, Sect6 draws some conclusions and
outlines the future work.

2 A motivating example

Classifications are perhaps the most natural tootdns use to organize informa-
tion content. Information items are hierarchicallyanged under topic nodes moving
from general ones to more specific ones as longeago deeper in the hierarchy.

i ! H
! 1
| journals : | Q programming and i
H Q | ! development H
! 1
1 1
! development and : ! :
| programming e : | e languages :
: languages | : H
1 1
! | ! . |
: java e : : G Java :
1 \ 1 i
1 i 1 .
| ! . @ magazines !

Fig. 1. Two classifications



This attitude is well known in Knowledge Organipatias the principle of organiz-
ing from the general to the specific [16], callgtthetically theget-specific principle
in [1, 7]. Consider the two fragments of classificas depicted in Fig. 1. They are
designed to arrange more or less the same cottenfrom different perspectives.
The second is a fragment taken from the Yahoo viedztory (category Computers
and Internet).

Following the approach described in [1] and expigitdedicated NLP techniques
tuned to short phrases (for instance, as desciibfIB]), classifications can be con-
verted, exactly or with a certain degree of appration, into their formal alter-ego,
namely into lightweight ontologies. Lightweight otdgies [1, 7] are acyclic graph
structures where each natural language node labehmslated into a propositional
Description Logic (DL) formula codifying the meangirof the node. Notice that the
formula associated to each node contains the ferwiulhe node above to capture the
fact that the meaning of each node is contextudllzg the meaning of its ancestor
nodes. As a consequence, the backbone structuhe eésulting lightweight ontolo-
gies is represented by subsumption relations betweees. The resulting formulas
are reported in Fig. 2.

journals#1 Q programming#2 U development#1

(development#1 U programming#2)
M languages#3 M journals#1

languages#3 M
(programming#2 U development#1)

java#3 M languages#3 M
(programming#2 U development#1)

Java#3 N
(development#1 U programming#2)

M languages#3 M journals#1 magazines#1 N java#3 N

languages#3 N

M’ = {<A, G, =>, <B, D,c>, <B, E,c>, <B, G,2>, <C, D,c>, <C, E,=>, <C, F,.c>, <C, G,=>}
M ={<B, E,E>, <C, G,=>}

Fig. 2. The minimal and redundant mapping between twawgrght ontologies

Here each string denotes a concept (e.g., jourbaksid the number at the end of
the strings denote a specific concept construatemh fa WordNet sense. Fig. 2 also
reports the resulting mapping elements. We asshateeich mapping element is as-
sociated with one of the following semantic relatipdisjointness i), equivalence
(=), more specific £) and less specificx), as computed for instance by semantic
matching [5]. Notice however that not all the maygpielements have the same se-
mantic valence. For instancex:B is a trivial logical consequence otB and ED,
and similarly for @F and G=G. We represent the elements in the minimal mapping
using solid lines and redundant elements usingethtihes. M’ is the set of maxi-
mum size (including the maximum number of redundaetments) while M is the
minimal set. The problem is how to compute the madiset in the most efficent way.

Ihttp://dir.yahoo.com/



3 Redundant and minimal mappings
Adapting the definition in [1] we define a lightvghit ontology as follows:

Definition 1 (Lightweight ontology). A lightweight ontology O is a rooted tree
<N,E,L"> where:
a) N is afinite set of nodes;
b) E is a set of edges on N;
c) LFis a finite set of labels expressed in a Propmsiti DL language such that for
any node nl N, there is one and only one lah&IL";
d) lii"c 7 with ny being the parent of.n.

The superscript F is used to emphasize that lavelsn a formal language. Fig. 2
above provides an example of (a fragment of) tgbtiveight ontologies.
We then define mapping elements as follows:

Definition 2 (Mapping element). Given two lightweight ontologies Oand Q, a
mapping element m between them is a triple /5 R>, where:

a) n;[ON; is a node in Q called the source node;

b) n,0ON, is a node in @ called the target node;

c¢) RO{=,c, 3, 1}is the strongest semantic relation holding betweeand n.

The partial order is such that disjointness isrgiev than equivalence which, in
turn, is stronger than subsumption (in both dimew), and such that the two sub-
sumption symbols are unordered. This is in orderetarn subsumption only when
equivalence does not hold or one of the two no@érsghbinconsistent (this latter case
generating at the same time both a disjointnessaaubsumption relation), and simi-
larly for the order between disjointness and edeivee. Notice that, under this order-
ing, there can be at most one mapping element leetiveo nodes.

The next step is to define the notion of redundaftye key idea is that, given a
mapping element snr,, R>, a new mapping element¥m,’, R’> is redundant with
respect to the first if the existence of the seccewd be asserted simply by looking at
the relative positions of;rwith ny’, and np with ny'. In algorithmic terms, this means
that the second can be computed without runningithe expensive node matching
functions. We have identified four basic redundapatterns as follows:

Fig. 3. Redundancy detection patterns



In Fig. 3, the blue dashed mappings are redundartt whe solid blue ones. The
bold red solid lines show how a semantic relatiooppgates. Let us discuss the ra-
tionale for each of the patterns:

» Pattern (1): each mapping element <C, B is redundant w.r.t. <A, B;>. In
fact, C is more specific than A which is more sfiedhan B which is more
specific than D. As a consequence, by transiti@itig more specific than D.

 Pattern (2): dual argument as in pattern (1).

 Pattern (3): each mapping element <C, D3 is redundant w.r.t. <A, B,>. In
fact, we know that A and B are disjoint, that Griere specific than A and that
D is more specific than B. This implies that C @&ndre also disjoint.

 Pattern (4): Pattern 4 is the combinations of patterns (1) @d

In other words, the patterns are the way to capgagieal inference from structural
information, namely just by looking at the positiohthe nodes in the two trees. As
we will show, this on turn allows computing the wedant elements in linear time
(w.r.t. the size of the two ontologies) from theesrin the minimal set. Notice that
patterns (1) and (2) are still valid in case wessitilte subsumption with equivalence.
However, in this case we cannot exclude the pdigibiiat a stronger relation holds
between C and D. A trivial example of where thisds the case is provided in Fig. 4

(a).

L
Fig. 4. Examples of non redundant mapping elements

On the basis of the patterns and the consideratibose we can define redundant
elements as follows. Here path(n) is the path ftleenroot to the node n.

Definition 3 (Redundant mapping element). Given two lightweight ontologies O
and Q, a mapping M and a mapping elementid with m’ = <C, D, R’> between
them, we say that m’ is redundant in M iff one leé following holds:
(1) If R"is =, AmOM with m = <A, B, R> and n¥ m’ such that R0 {c, =}, A
O path(C) and D1 path(B);
(2) If R"is 2, AmOM with m = <A, B, R> and n¥ m’ such that R0 {3, =}, C
0 path(A) and B path(D);
3) If R is 1, AmOM with m = <A, B, 1> and m# m’ such that ACJ path(C)
and BO path(D);
(4) If R"is =, conditions (1) and (2) must be satisfied.




See how Definition 3 maps to the four patternsio B. Fig. 2 in Section 2 pro-
vides examples of redundant elements. Definitiarta® be proved to capture all and
only the cases of redundancy.

Theorem 1 (Redundancy, soundness and completeness). Given a mapping M between
two lightweight ontologies Qand Q, amapping element nT1 M is redundant if and
only if it satisfies one of the conditions of Défian 3.

The soundness argument is the rationale descritrethé patterns above. Com-
pleteness can be shown by constructing the cougterent that we cannot have re-
dundancy in the remaining cases. We can proceezhbgneration, negating each of
the patterns, encoded one by one in the condiappgaring in the Definition 3. The
complete proof is given in [22]. Fig. 4 (b) providan example of non redundancy
which is based on pattern (1). It tells us thatdkistence of a link between two nodes
does not necessarily propagate to the two nodesvb&lor example we cannot derive
that Canine= Dog from the set of axioms {Canime Mammal, Mammak Animal,
Dogc Animal}, and it would be wrong to do so.

The notion of redundancy allows us to formalizelo&on of minimal mapping as
follows:

Definition 4 (Minimal mapping). Given two lightweight ontologies and Q, we
say that a mapping M between them is minimal iff:

a) AmOM such that m is redundant (minimality condition);
b) AM’ DM satisfying condition a) above (maximality condit).
A mapping element is minimal if it belongs to thenimal mapping.

Note that conditions (a) and (b) ensure that theimdl set is the set of maximum
size with no redundant elements. As an example séteM in Fig. 2 is minimal.
Comparing this mapping with M’ we can observe tlhelements in the set M’ - M
are redundant and that, therefore, there are ner clpersets of M with the same
properties. In effect, <A, G3> and <B, G=> are redundant w.r.t. <C, &> for pat-
tern (2); <C, Dg>, <C, E,=> and <C, Fg> are redundant w.r.t. <C, &> for pat-
tern (1); <B, D&> is redundant w.r.t. <B, E> for pattern (1). Note that M contains
far less mapping elements w.r.t. M'.

As last observation, for any two given lightweighttologies, the minimal map-
ping always exists and it is unique.

Theorem 2 (Minimal mapping, existence and uniqueness). Given two lightweight
ontologies @ and Q, there is always one and only one minimal mapfiatyveen
them.

A proof is given in [22].



4 Computing minimal and redundant mappings

The patterns described in the previous sectionesidgow to significantly reduce
the amount of calls to the node matchers. By logkar instance at pattern (2) in Fig.
3, given a mapping element m = <A, B> we know that it is not necessary to com-
pute the semantic relation holding between A anddescendant C in the sub-tree of
B since we know in advance that itisAt the top level the algorithm is organized as
follows:

e Step 1, computing the minimal mapping modulo equivalence: compute the
set of disjointness and subsumption mapping elesnertich areminimal
modulo equivalence. By this we mean that they are minimal modulo ayush
ing, whenever possible, two subsumption relatidnspposite direction into a
single equivalence mapping element;

e Step 2, computing the minimal mapping: eliminate the redundant subsump-
tion mapping elements. In particular, collapseth# pairs of subsumption
elements (of opposite direction) between the sam rtodes into a single
equivalence element. This will result into thinimal mapping;

e Step 3, computing the mapping of maximum size: Compute the mapping of
maximum size (including minimal and redundant magptlements). During
this step the existence of a (redundant) elemesurizputed as the result of the
propagation of the elements in the minimal mapping.

The first two steps are performed at matching timkile the third is activated
whenever the user wants to exploit the pre-compotaepping elements, for instance
for their visualization. For lack of space in tledowing we give only the pseudo-
code for the first step. The interested readerloak at [22] for the pseudo-code of
the other two steps.

The minimal mapping is computed by a functibreeM atch whose pseudo-code
is given in Fig. 5. M is the minimal set while ThdaT2 are the input lightweight on-
tologies.

10 node: struct of {cnode: wff; children: node[];}

20 T1,T2: tree of (node);

30 relationin {c, =2, =, 1};

40 element: struct of {source: node; target: node; rel: relation;};
50 M list of (elenent);

60 bool ean direction;

70 function TreeMatch(tree T1, tree T2)
80 {TreeDisjoint(root(Tl),root(T2));

90 direction := true;
100  TreeSubsunedBy(root(T1), root(T2));
110 direction := fal se;

120  TreeSubsunedBy(root (T2), root (T1));
130 TreeEqui v();
H

Fig. 5. Pseudo-code for the tree matching function

TreeMatch is crucially dependent on the node matching fumstNodeDigoint
(given in [22])andNodeSubsumedBYy (Fig. 6) which take two nodes nl1 and n2 and



return a positive answer respectively in case sfoditness or subsumption, or a
negative answer if it is not the case or they areable to establish it. Notice that
these twdunctions hide the heaviest computational costgairiicular their computa-
tion time is exponential when the relation holdst possibly much faster, when the
relation does not hold. The main motivation forstig that the node matching prob-
lem, in the general case, should be translateddigjointness or subsumption prob-
lem in propositional DL (see [5] for a detailed degtion). The goal, therefore, is to
compute the minimal mapping by minimizing the cédithe node matching functions
and, in particular minimizing the calls where tledation will turn out to hold. We
achieve this purpose by processing both trees esyndTo maximize the perform-
ance of the systentreeMatch has therefore been built as the sequence of three f
tion calls: the first call tolreeDigoint (line 80) computes the minimal set of dis-
jointness mapping elements, while the second amdhiihd call toTreeSubsumedBy
compute the minimal set of subsumption mapping elgmin the two directions
modulo equivalence (lines 90-120). Notice thathie second calll reeSubsumedBy
is called with the input ontologies with swappet&so These three calls correspond to
Step 1 above. Line 130 in the pseudo code of tleeM atch implements the Step 2.

Given two sub-trees in input, rooted in nl and ti TreeDigoint function
searches for the first disjointness elements akomg pair of paths in them. Look at
[22] for corresponding pseudo-code and the complegeription.

TreeSubsumedBYy (Fig. 6) recursively finds all minimal mapping elements wher
the strongest relation between the nodes (er dually, = in the second call in the
TreeMatch, line 120. In the following we will concentratelpron the first call).

10 function bool ean TreeSubsunedBy(node nl, node n2)
20 {cl,c2: node; LastNodeFound: bool ean;

30 if (<nl,n2, 1> 0 M then return false;

40 i f (!NodeSubsunedBy(nl, n2)) then

50 foreach c1 in GetChildren(nl) do TreeSubsunedBy(cl, n2);
60 el se

70 {Last NodeFound : = fal se;

80 foreach c2 in GetChildren(n2) do

90 i f (TreeSubsunmedBy(nl,c2)) then Last NodeFound := true;
100 if (!LastNodeFound) then AddSubsunptionMappi ngEl enent (nl, n2);
120 return true;

140 ;

150 return false;

160 };

170 function bool ean NodeSubsunedBy(node nl, node n2)

180 {if (Unsatisfiabl e(nkConjunction(nl.cnode, negate(n2.cnode)))) then
return true;

190 else return false; };

200 function AddSubsunpti onMappi ngEl enent (node nl, node n2)
210 {if (direction) then AddMappi ngEl enent (<nl, n2, =>);
220 el se AddMappi ngEl enent (<n2, n1, =2>); };

Fig. 6. Pseudo-code for thEreeSubsumedBy function

Notice thatTreeSubsumedBy assumes that the minimal disjointness elements are
already computed. As a consequence, at line 3Beitks whether the mapping ele-



ment between the nodes nl and n2 is already imthenal set. If this is the case it
stops the recursion. This allows computing thengieo disjointness relation rather
than subsumption when both hold (namely in presesfcan inconsistent node).
Given n2, lines 40-50 implement a depth first recum in the first tree till a subsump-
tion is found. The test for subsumption is perfodnby theNodeSubsumedBYy func-
tion that checks whether the formula obtained keyadbnjunction of the formulas as-
sociated to the node nl and the negation of thadtar for n2 is unsatisfiable (lines
170-190). Lines 60-140 implement what happens #fieffirst subsumption is found.
The key idea is that, after finding the first sutpgtion, TreeSubsumedBYy keeps re-
cursing down the second tree till it finds the lsibsumption. When this happens, the
resulting mapping element is added to the minineal(Bne 100). Notice that both
NodeDigoint andNodeSubsumedBy call the functionUnsatisfiable which embeds
a call to a SAT solver.

To fully understandl'reeSubsumedBYy, the reader should check what happens in
the four situations in Fig. 7. In case (a) thetfiteration of theTreeSubsumedBy
finds a subsumption between A and C. Since C hashiidren, it skips lines 80-90
and directly adds the mapping element <A €, to the minimal set (line 100). In
case (b), since there is a child D of C the albariiterates on the pair A-D (lines 80-
90) finding a subsumption between them. Since theeeno other nodes under D, it
adds the mapping element <A, B% to the minimal set and returns true. Therefore
LastNodeFound is set to true (line 90) and the rimgpplement between the pair A-C
is recognized as redundant. Case (c) is similae difference is thalreeSubsum-
edBy will return false when checking the pair A-D (li88), thanks to previous com-
putation of minimal disjointness mapping elemeatsd therefore the mapping ele-
ment <A, C,=> is recognized as minimal. In case (d) the albarifterates after the
second subsumption mapping element is identifiefitst checks the pair A-C and it-
erates on A-D concluding that subsumption doeshotd between them (line 40).
Therefore, it recursively callBreeSubsumedBy between B and D. In fact, since <A,
C, => will be recognized as minimal, it is not worthecting <B, C,=> for pattern
(1). As a consequence <B, B> is recognized as minimal together with <A,G.

Fig. 7. Examples of applications of tie eeSubsumedBy

Five observations. The first is that, even if, @llerTreeMatch implements three
loops instead of one, the wasted (linear) timaigely counterbalanced by the expo-
nential time saved by avoiding a lot of uselestsdalthe SAT solver. The second is
that, when the input trees T1 and T2 are two noflesgM atch behaves as a node
matching function which returns the semantic retatholding between the input
nodes. The third is that the call ToeeDigoint before the two calls tdreeSubsum-
edBy allows us to implement the partial order on relasi defined in the previous



section. In particular it allows returning only &jdintness mapping element when
both disjointness and subsumption hold. The foigtthe fact that skipping (in the
body of theTreeDigjoint) the two sub-trees where disjointness holds istvaliaws
not only implementing the partial order (see thevipus observation) but also saving
a lot of useless calls to the node matching funstid he fifth and last observation is
that the implementation afreeMatch crucially depends on the fact that the minimal
elements of the two directions of subsumption aisgbihtness can be computed in-
dependently (modulo inconsistencies).

5 Evaluation

The algorithm presented in the previous sectidrydecall it MinSMatch, has been
implemented by taking the node matching routineshef state of the art matcher
SMatch [5] and by changing the way the tree stmacisimatched. The evaluation has
been performed by directly comparing the resultMofSMatch and SMatch on sev-
eral real-world datasets. All tests have been perd on a Pentium D 3.40GHz with
2GB of RAM running Windows XP SP3 operating systeith no additional applica-
tions running except the matching system. Bothesystwere limited to allocating no
more than 1GB of RAM. The tuning parameters wetetesehe default values. The
selected datasets had been already used in presi@isations, see [14]. Some of
these datasets can be found at OAEI weB. Sitee first two datasets describe courses
and will be calledCornell andWashington, respectively. The second two come from
the arts domain and will be referred toTaspia and con, respectively. The third two
datasets have been extracted from the Looksmadglé@nd Yahoo! directories and
will be referred to asource andlarget. The fourth two datasets contain portions of
the two business directories eCl@aad UNSPS€and will be referred to asclass
andUnspsc. Table 1 describes some indicators of thepleity of these datasets.

# Dat aset pair Node count Max dept h Aver age
branchi ng factor

1 Cor nel | / Washi ngt on 34/ 39 3/3 5.50/4.75

2 Topi a/ I con 542/ 999 2/9 8.19/3.66

3 Sour ce/ Tar get 2857/ 6628 11/15 2.04/1.94

4 Ecl ass/ Unspsc 3358/ 5293 4/ 4 3.18/9.09

Table 1. Complexity of the datasets

Consider Table 2. The reduction in the last colusncalculated as (1-m/t), where
m is the number of elements in the minimal set taiscthe total number of elements
in the mapping of maximum size, as computed by Ma&h. As it can be easily no-
ticed, we have a significant reduction, in the 6§-96%.

The second interesting observation is that in T&ble the last two experiments,
the number of total mapping elements computed bySMWatch is slightly higher
(compare the second and the third column). Thikiesto the fact that in the presence
of one of the patterns, MinSMatch directly infelne existence of a mapping element
without testing it. This allows MinSMacth, differdynfrom SMatch, to avoid missing

2 http://oaei.ontologymatching.org/2006/directory/
3 http://www.eclass-online.com/
4 http://www.unspsc.org/



elements because of failures of the node matchingtions (because of lack of back-
ground knowledge [8]). One such example from oypeexnents is reported below
(directories Source and Target):

\Top\Computers\internet\Broadcasting\Video Shows
\Top\Computing\Internet\Fun & Games\Audio & VideaiMes
We have a minimal mapping element which states \id¢o Shows= Movies.

The element generated by this minimal one, whichaistured by MinSMatch and
missed by SMatch (because of the lack of backgrdenmmiviedge about the relation

between ‘Broadcasting’ and ‘Movies’) states thab&Icastings Movies.

S- Mat ch M nShat ch
# Total mappi ng Tot al mappi ng M ni mal mappi ng Reduction, %
el enments (t) el enents (t) el enents (m
1 223 223 36 83. 86
2 5491 5491 243 95. 57
3 282638 282648 30956 89. 05
4 39590 39818 12754 67.97

Table 2. Mapping sizes.

To conclude our analysis, Table 3 shows the redudti computation time and
calls to SAT. As it can be noticed, the time rethrd are substantial, in the range
16% - 59%, but where the smallest savings aredoy small ontologies. In principle,
the deeper the ontologies the more we should Se&heinterested reader can refer to
[5, 14] for a detailed qualitative and performarmaaluation of SMatch w.r.t. other
state of the art matching algorithms.

Run Tine, ns SAT calls
# S- Mat ch M nSwat ch | Reducti on, S-Mat ch M nSwat ch | Reducti on,
% %
1 472 397 15. 88 3978 2273 42. 86
2 141040 67125 52. 40 1624374 616371 62. 05
3 | 3593058 1847252 48. 58 56808588 19246095 66. 12
4 | 6440952 2642064 58. 98 53321682 17961866 66. 31

Table 3. Run time and SAT problems

6 Conclusions

In this paper we have provided a definition an@st &lgorithm for the computa-
tion of the minimal mapping between two lightweighttologies. The evaluation
shows a substantial improvement in the (much lowemputation time, in the (much
lower) number of elements which need to be storetiteandled and in the (higher)
total number of mapping elements which are computed

The future work includes the experimentation witirious large Knowledge Or-
ganization Systems (e.g., NALT, AGROVOC, LCSH).

References

1. F. Giunchiglia, M. Marchese, |. Zaihrayeu, 2006.cé&tling Classifications into Light-
weight Ontologies. Journal of Data Semantics 8 5Fp31.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. Shvaiko, J. Euzenat, 2007. Ontology MatchBpringer-Verlag New York, Inc. Se-
caucus, NJ, USA.

P. Shvaiko, J. Euzenat, 2008. Ten Challenges ftol@yy Matching. In Proceedings of the
7th International Conference on Ontologies, Databasnd Applications of Semantics
(ODBASE 2008).

J. Madhavan, P. A. Bernstein, P. Domingos, A. YleMa 2002. Representing and Rea-
soning about Mappings between Domain Models. At National Conference on Arti-
ficial Intelligence (AAAI 2002).

F. Giunchiglia, M. Yatskevich, P. Shvaiko, 2007nfatic Matching: algorithms and im-
plementation. Journal on Data Semantics, X, 2007.

C. Caracciolo, J. Euzenat, L. Hollink, R. Ichise,lgaac, V. Malaisé, C. Meilicke, J. Pane,
P. Shvaiko, 2008. First results of the OntologygAtnent Evaluation Initiative 2008.
F.Giunchiglia, . Zaihrayeu, 2007. Lightweight Olatgies. In The Encyclopedia of Data-
base Systems, to appear. Springer, 2008.

F.Giunchiglia, P. Shvaiko, M. Yatskevich, 2006. &sering missing background knowl-
edge in ontology matching. Proceedings of the Eitftopean Conference on Atrtificial In-
telligence (ECAI 2006), pp. 382—-386.

H. Stuckenschmidt, L. Serafini, H. Wache, 2006. $o@&ng about Ontology Mappings.
Proceedings of the ECAI-06 Workshop on Contextugprsentation and Reasoning.

C. Meilicke, H. Stuckenschmidt, A. Tamilin, 2008aproving automatically created map-
pings using logical reasoning. In the proceedirfghe 1st International Workshop on On-
tology Matching OM-2006, CEUR Workshop ProceediWgs 225.

C. Meilicke, H. Stuckenschmidt, A. Tamilin, 2008ed&oning support for mapping revi-
sion. Journal of Logic and Computation, 2008.

A. Borgida, L. Serafini. Distributed Description @ies: Assimilating Information from
Peer Sources. Journal on Data Semantics pp. 153-184

|. Zaihrayeu, L. Sun, F. Giunchiglia, W. Pan, Q, Mu Chi, and X. Huang, 2007. From
web directories to ontologies: Natural languagecessing challenges. In"8nternational
Semantic Web Conference (ISWC 2007).

P. Avesani, F. Giunchiglia and M. Yatskevich, 2085Large Scale Taxonomy Mapping
Evaluation. In Proceedings of International Sentamieb Conference (ISWC 2005),
pp. 67-81.

M. L. Zeng, L. M. Chan, 2004. Trends and IssueEstablishing Interoperability Among
Knowledge Organization Systems. Journal of the Aecaer Society for Information Sci-
ence and Technology, 55(5) pp. 377-395.

L. Kovacs. A. Micsik, 2007. Extending Semantic Matg Towards Digital Library Con-
texts. Proc.eedings of the 11th European Conferendgigital Libraries (ECDL 2007), pp.
285-296.

B. Marshall, T. Madhusudan, 2004. Element matchhingoncept maps. Proceedings of the
4th ACM/IEEE-CS Joint Conference on Digital Libesi(JCDL 2004), pp.186-187.

B. Hjgrland, 2008. What is Knowledge Organizati®i®]?. Knowledge Organization. In-
ternational Journal devoted to Concept Theory, sifigation, Indexing and Knowledge
Representation 35(2/3) pp. 86-101.

D. Soergel, 1972. A Universal Source Thesaurus @mssification Generator. Journal of
the American Society for Information Science 23(f), 299-305.

D. Vizine-Goetz, C. Hickey, A. Houghton, and R. fiqmson. 2004. Vocabulary Mapping
for Terminology Services. Journal of Digital Infoation, Volume 4, Issue 4.

M. Doerr, 2001. Semantic Problems of Thesaurus Mapgdournal of Digital Information,
Volume 1, Issue 8.

F. Giunchiglia, V. Maltese, A. Autayeu, 2008. Cortipg minimal mappings. University
of Trento, DISI Technical Report: http://eprint®ld.unitn.it/archive/00001525/



