
A Hybrid Solver for Large Neighborhood
Search: Mixing Gecode and EasyLocal++

Raffaele Cipriano1, Luca Di Gaspero2, and Agostino Dovier1

1 DIMI (cipriano|dovier)@dimi.uniud.it
2 DIEGM l.digaspero@uniud.it

Università di Udine, via delle Scienze 208, I-33100, Udine, Italy

Abstract. We present a hybrid solver (called GELATO) that exploits
the potentiality of a Constraint Programming (CP) environment (Gecode)
and of a Local Search (LS) framework (EasyLocal++). GELATO allows
the user to easily develop and use hybrid meta-heuristic combining CP
and LS phases (in particular Large Neighborhood Search). We tested
some hybrid algorithms on different instances of the Asymmetric Travel-
ing Salesman Problem: even if only naive LS strategies have been used,
our meta-heuristics improve the standard CP and LS methods, in terms
of both quality of the solution reached and execution time. GELATO
will be integrated into a more general tool to solve Constraint Satisfac-
tion/Optimization Problems. Moreover, it can be seen as a new library
for approximate and efficient searching in Gecode.

1 Introduction

Combinatorial problems like planning, scheduling, timetabling, and, in general,
resource management problems, are daily handled by industries, companies, hos-
pitals, and universities. Their intractability however poses challenging problems
to the programmer: ad-hoc heuristics that are adequate for one problem are of-
ten useless for others [16]; classical techniques like integer linear programming
(ILP) need a big tuning in order to be effective; any change in the specification
of the problem requires restarting almost from scratch. In the last years many
efforts have been devoted to in the development of general techniques that allow
high-level primitives to encode search heuristics. Noticeable examples of these
techniques are constraint programming (CP—with the various labeling heuris-
tics) [12] and local search (LS—with the various techniques to choose and visit
the neighborhood). We are not dealing with the problem of finding the optimum
of a problem but with a reasonable solution to be computed in reasonable time.
The future seems to stay in the combinations of these techniques in order to
exploit the best aspect of each technique for the problem at hand (after a tuning
of the various parameters on small instances of the problem considered). This
is also witnessed by the success of the CP-AI-OR meetings [15]. In particular,
Large Neighborhood Search (LNS) can be viewed as a particular heuristic for
local search that strongly relies on a constraint solver [3] and it is a reasonable
way to blend the inference capabilities of LS and CP techniques.

In this work we develop a general framework called GELATOthat integrates
CP and LS techniques, defining a general LNS meta-heuristic that can be mod-
ified, tuned and adapted to any optimization problem, with a limited program-
ming effort. Instead of building a new solver from scratch, we based our frame-
work on two state-of-the-art, existing systems: the Gecode CP environment [13]
and the LS framework EasyLocal++ [5]. We choose these two systems (among
other ones, such as [11,10,7]) because both of them are free and open, strong
and complete, written in C++, and with a growing community using them.

We show how to model a LNS algorithm combining CP and LS in GELATO:
this modeling is easy to implement and it allows efficient computations. We test
the framework on hard Asymmetric Travel Salesman Problem instances and
show its effectiveness w.r.t. the traditional use of a pure CP approach and a
pure LS approach.

The results of this paper will be combined to those of [2] so as to obtain
a multi-language system able to model and solve combinatorial problems. This
tool will comprise three main parts: a modeling component, a translator, and
a solver. In the modeling component the user will be able to define in a high-
level style the problem and the instance he/she wants to solve and the algorithm
to use (CP search, possibly interleaved with LS, integer linear programming,
heuristics or meta-heuristics phases). The translation component will handle the
compilation of the model and the meta-algorithm defined by the user into the
solver frameworks, like Gecode or others. In the third phase, the overall compiled
program will be run on the problem instance specified by the user and the various
solvers will interact as set by the user in the model. A side-effect of our work
is a new library of search strategies for the Gecode system. GELATO provides
some primitives that allow a Gecode user to easily develop approximate search
algorithms, based on LS (in particular, with LNS). On the other hand, GELATO
can be considered also as a plug-in for the EasyLocal++ system, a framework
that allows the user to easily develop, test, and combine several Local Search
algorithms. With GELATO, an EasyLocal++ user can easily exploit the benefits
of CP in its LS algorithms.

2 Preliminary concepts

Discrete or continuous problems can be formalized using the concept of Con-
straint Satisfaction Problem (CSP). A CSP is defined as the problem of asso-
ciating values (taken from a set of domains) to variables subject to a set of
constraints. A solution of a CSP is an assignment of values to all the variables
so that all the constraints are satisfied. In some cases not all solutions are equally
preferable, but we can associate a cost function to the variable assignments. In
these cases we talk about Constraint Optimization Problems (COPs), and we
are looking for a solution that minimizes the cost value. The solution methods
for CSPs and COPs can be split into two categories:
− Complete methods, which systematically explore the whole solution space in

search of a feasible (for CSPs) or an optimal (for COPs) solution.

− Incomplete methods, which rely on heuristics that focus only on some areas
of the search space to find a feasible solution (CSPs) or a “good” one (COPs).

2.1 Constraint Programming basics

Constraint Programming (CP) [12] is a declarative programming methodology
parametric on the constraint domain. Combinatorial problems are usually en-
coded using constraints over finite domains, currently supported by all CP sys-
tems (e.g., [13,10,11]).

A CSP P is modelled as follows: a set X = {x1, . . . , xk} of variables; a set
D = {D1, . . . , Dk} of domains associated to the variables (i.e., if xi = di then
di ∈ Di); a set C of constraints (i.e., relations) over dom = D1 × · · · × Dk.
〈d1, . . . , dk〉 ∈ dom satisfies a constraint C ∈ C iff 〈d1, . . . , dk〉 ∈ C. A tuple
d = 〈d1, . . . , dk〉 ∈ dom is a solution of a CSP P if d satisfies every constraint
C ∈ C. The set of solutions of P is denoted with sol(P). If sol(P) 6= ∅, then P is
consistent. Often a CSP is associated to a function f : sol(P)→ E where 〈E,≤〉
is a well-ordered set (e.g., E = N or E = R). A COP is a CSP with an associated
function f . A solution for this COP is a solution d ∈ sol(P) that minimizes the
function f : ∀e ∈ sol(P)(f(d) ≤ f(e)).

This paradigm is usually based on complete methods that analyze the search
space alternating deterministic phases (constraint propagation—values that can-
not be assigned to any solution are removed by domains) and non-deterministic
phases (variable assignment—a variable is selected and a value from its domain
is assigned to it). This process is iterated until a solution is found or unsatisfia-
bility is reached; in the last case the process backtracks to the last choice point
(i.e., the last variable assignment) and tries other assignments.

2.2 Local Search basics

Local Search (LS) methods (see [1,4]) are a family of meta-heuristics to solve
CSPs and COPs, based on the definition of proximity (or neighborhood): a LS
algorithm typically moves from a solution to a near one, trying to improve an ob-
jective function, iterating this precess. LS algorithms generally focus the search
only in specific areas of the search space, so they are incomplete methods, in the
sense that they do not guarantee to find a feasible (or optimal) solution, but
they search non-systematically until a specific stop criterion is satisfied.

To define a LS algorithm for a given COP, three parameters must be defined:
the search space, the neighborhood relation, and the cost function. Given a COP
P , we associate a search space S to it, so that each element s ∈ S represents a
solution of P . An element s is a feasible solution iff it fulfills the constraints of
P . S must contain at least one feasible solution.

For each element s ∈ S, a set N (s) ⊆ S is defined. The set N (s) is called
the neighborhood of s and each member s′ ∈ N (s) is called a neighbor of s. In
general N (s) is implicitly defined by referring to a set of possible moves, which
define transitions between solutions. Moves are usually defined in an intensional

fashion, as local modifications of some part of s. A cost function f , which as-
sociates to each element s ∈ S a value f(s) ∈ E, assesses the quality of the
solution. f is used to drive the search toward good solutions and to select the
move to perform at each step of the search. For CSP problems, the cost function
f is generally based on the so-called distance to feasibility, which accounts for
the number of constraints that are violated. A LS algorithm starts from an initial
solution s0 ∈ S, and uses the moves associated with the neighborhood defini-
tion to navigate the search space: at each step it makes a transition between
one solution s to one of its neighbors s′, and this process is iterated. When the
algorithm makes the transition from s to s′, we say that the corresponding move
m has been accepted. The selection of moves is based on the values of the cost
function and it depends on the specific LS technique.

Large Neighborhood Search (LNS) is a LS method that relies on a particular
definition of the neighborhood relation and of the strategy to explore the neigh-
borhood. Differently from traditional LS methods, an existing solution is not
modified just by making small changes to a limited number of variables (as is
typical with LS move operators), instead a subset of the problem is selected and
searched for improving solutions. The subset of the problem can be represented
by a set FV of variables, that we call free variables, which is a subset of the
variables X of the problem. Defining FV corresponds to define a neighborhood
relation.

For example, a LS move could be to swap the values of two variables, or, more
generally the permutation of the values of a set of variables. Another possibility
for a neighborhood definition is to keep the values of some variables and to leave
the other variables totally free, constrained only by their domains.

Three aspects are crucial in LNS definition, w.r.t. the performance of this
technique: (1) which and (2) how many variables have to be selected (i.e., the
definition of FV), and (3) how to perform the exploration on these variables.
Let us briefly analyze these three key-points, starting from the third one.

(3) Given FV , the exploration can be performed with any searching tech-
nique: CP, Operation Research algorithms, and so on. We can be interested in
searching for: the best neighborhood; the best neighborhood within a certain
exploration timeout; the first improving neighborhood; the first neighborhood
improving the objective function of at least a given value, and so on. (2) De-
ciding how many variables will be free (|FV |) affects the time spent on every
large neighborhood exploration and the improvement of the objective function
for each exploration. A small FV will lead to very efficient and fast search, but
with very little improvement of the objective function. Otherwise, a big FV can
lead to big improvement at each step, but every single exploration can take a
lot of time. This trade-off should be investigated experimentally, looking at a
dimension of FV that leads to fast enough explorations and to good improve-
ments. Obviously, the choice of |FV | is strictly related to the search technique
chosen (e.g., a strong technique can manage more variables than a naive one)
and to the use or not of a timeout. (1) The choice of which variables will be
included in FV is strictly related to the problem we are solving: for simple and

not too structured problems we can select the variables in a naive way (ran-
domly, or iterating between given sets of them); for complex and well-structured
problems, we should define FV cleverly, selecting the variables which are most
likely to give an improvement to the solution.

2.3 Hybridization of CP and LS

Two major types of approaches to combine the abilities of CP and LS are pre-
sented in the literature [6,8]:
1. a systematic-search algorithm based on constraint programming can be im-

proved by inserting a LS algorithm at some point of the search procedure, e.g.:
(a) at a leaf (i.e., on complete assignments) or on an internal node (i.e., on a
partial assignment) of the search tree explored by the constraint programming
procedure, in order to improve the solution found; (b) at a node of the search
tree, to restrict the list of child-nodes to explore; (c) to generate in a greedy
way a path in the search tree;

2. a LS algorithm can benefit of the support of constraint programming, e.g.:
(a) to analyze the neighborhood and discarding the neighboring solutions that
do not satisfy the constraints; (b) to explore a fragment of the neighborhood of
the current solution; (c) to define the search of the best neighboring solution
as a problem of constrained optimization (COP).

In these hybrid methods one of the two paradigms is the master and the
second one acts as a slave, supporting the master at some point of the search
algorithm. Paradigms not based on the master-slave philosophy have also been
proposed. In [9] LS and constraint propagation are split in their components,
allowing the user to manage the different basic operators (neighborhood explo-
ration, constraint propagation and variable assignment) at the same level. In [7]
CP and LS are combined in a programming language (COMET), that supports
both modeling and search abstractions, and where constraint programming is
used to describe and control LS.

LNS is a LS strategy that can be naturally implemented using CP, leading
to hybrid algorithms that involves the approaches 2(a), 2(b) and 2(c) of the
above enumeration. CP can manage and exhaustively explore a lot of variables
subjected to constraints, so it is a perfect method for the exploration of large
neighborhoods.

2.4 The Solvers used

There are several tools commonly used by the community to solve CSPs and
COPs with the CP and LS paradigms. We focused on Gecode , for the CP aspects,
and EasyLocal++, for the LS algorithms, for three main reasons: goodness of
the solvers (they both are very strong, complete, and efficient); guarantee of
maintenance during time (they have a growing user community and they are
actively maintained by their developers); ease of integration (they are free, open
and written in C++, so they can be employed as C++ libraries). Moreover,

all these characteristics ensure the possibility in the future of easily integrating
these solvers with other C++ libraries. Here we can give only a short explanation
of these two solvers, suggesting the reader to take a look at [13] for Gecode and
[5] for EasyLocal++.

Gecode It is an open, free, portable, accessible, and efficient environment for
developing constraint-based systems and applications. It is implemented in C++
and offers competitive performances w.r.t. both runtime and memory usage. It
implements a lot of data structures, constraints definitions, and search strategies,
allowing also the user to define his own ones.

In the Gecode philosophy, a model is implemented using spaces. A space is the
repository for variables, constraints, objective function, searching options. Being
C++ an object-oriented language, the modeling approach of Gecode exploits the
inheritance: a model must implement the class Space, and the subclass construc-
tor implements the actual model. In addition to the constructor, a model must
implement some other functions(e.g., performing a copy of the space, returning
the objective function, . . .).

A Gecode space can be asked to perform the propagation of the constraints,
to find the first solution (or the next one) exploring the search tree, to find the
best solution in the whole search space.

EasyLocal++ It is an object-oriented framework that allows to design, imple-
ment and test LS algorithms in an easy, fast and flexible way. The basic idea of
EasyLocal++ (briefly EL) is to capture the essential features of most LS meta-
heuristics, and their possible compositions. This allows the user to address the
design and implementation issues of new LS heuristics in a more principled way.

The frameworks are characterized by the inverse control mechanism: the
functions of the framework call the user-defined ones and not the other way
round. The framework thus provides the full control structures for the invariant
part of the algorithms, and the user only supplies the problem specific details.

Modeling a problem using EL means to define the C++ classes representing
the basic concepts of a LS algorithm: e.g., the structure of a solution (or State, in
the EL language), the neighborhood (or Move), the cost function, the strategy to
navigate the neighborhoods (NeighborhoodExplorer). Once these basic concepts
are defined (in C++ classes that inherit from EL base classes and implement
their characteristics), the user selects the desired LS algorithm and run it. EL
provides a wide range of LS heuristic and meta-heuristic (Hill Climbing, Steepest
Descent, Tabu Search, Multi Neighborhood, . . .), allowing also the development
of new ones.

3 A Hybrid Solver for Large Neighborhood Search

In this section we describe the hybrid solver we have developed to implement
LNS algorithms that exploit a CP solver in the exploration of the large neighbor-
hoods; we called it GELATO (Gecode+EasyLocal = A Tool for Optimization).

Fig. 1: A UML class diagram of the main components of GELATO

We first define the basic elements of this tool, in a general way, without any
implementation detail. Then we explain the choices we made to integrate these
tools in a unique framework.

3.1 The key ingredients of the solver

GELATO is made-up of five main elements (see Fig. 1): a constraint model, a
move enumerator, a move performer, a CP solver, and a LS framework. The con-
straint model specify the problem we want to solve, according with the definition
given in Section 2.1. The move enumerator and the move performer define the
LNS characteristics (definition of the neighborhood and how to explore it, as in
2.2). The CP solver takes care of exploring the neighborhood. The LS framework
manages all these element together into a LS algorithm. We briefly analyze each
element.
Constraint model Here we define the variables, the domains, the constraints

and objective function of the problem we want to solve. At these level we specify
neither the instance input characteristics, that will be passed to the model as
a parameter at run time, nor the search options (variable and value selection,
timeout, . . .), that will be specified by the move performer when the model
will be actually solved. In GELATO, the constraint model is specified using
the Gecode language, but in general it can be expressed using any high-level
modeling language (SICStus Prolog, Minizinc, OPL) or low level language,
according to the CP solver that will be used. This model will be actually
instantiated and solved by the CP solver during the exploration of a large
neighborhood. It can be also used to find good starting solution for the main
LS algorithm (hybrid approach 1(a) in the enumeration of Section 2.3).

Move Enumerator (ME) It deals with the definition of the set FV for the
LNS, specifying which variable of the constraint model will be free in the explo-
ration of the neighborhood. According with the LS framework, we can specify
several kind of move enumerator: e.g., a random ME, that randomly selects a
specified number of variables of the problems; an iterative ME, that iterates
among all the N combination on the variables of the problem; a sliding ME,
that considers sliding window of K variables (i.e., FV = {X1, . . . , X1+k}, then
FV = {X2, . . . , X2+k} and so on).

Move Performer (MP) A move performer collects all the information about
how to search a large neighborhood, like searching timeout, variable and value
selection, constraint propagation policy, branching strategies and so on. It in-
stantiates the constraint model, according to the definition of the problem, the
instance, the move (given by the ME), and the CP solver. It invokes the CP
solver passing all these information and obtain the result of the exploration.

CP solver It is attached to a MP and must be able to recognize the constraint
model specified and to perform an exploration on the neighborhoods, with
the searching parameters given by them MP. It is expected to return the best
neighborhood found (according to the MP policy) and the value of the objective
function for it. In GELATO the CP solver used is Gecode, but in principle, there
is no restriction about what kind of solver to use: a solver that can be easily
interfaced with the other components could be a good choice.

LS framework It defines the high level interaction between the above compo-
nents, building up a real LS algorithm: it navigates the searching space through
the neighborhoods defined by the ME, exploring them using the MP. Any tra-
ditional LS search algorithm can be used at this step (e.g., Hill Climbing,
Steepest Descent, Tabu Search). Also meta-heuristic LS algorithm are allowed
(e.g., Multi-Neighborhood, Token Ring Search), if different kinds of ME and
MP are defined for the same problem. The LS framework used in GELATO is
EasyLocal++.

3.2 Mixing Gecode and EasyLocal++

Gecode and EasyLocal++ are two frameworks that differ in many ways: they have
different aims, use different data structures, and of course implement different
algorithms. However, they have some architectural similarities: they both are
written in C++; they both have base classes for the basic concepts and ask the
user to define his problem implementing these base classes; they provide general
algorithms (for CP and LS) that during executions call and use the derived
classes developed by the user.

To define a hybrid tool for LNS, the natural choice is to use the EL framework
as a main algorithm and Gecode as a module of EL that can be invoked to perform
large neighborhood explorations.

According to the architecture of Gecode and EL and to the main components
of the tools described in Section 3.1, we have defined a set of classes (described
below) that make possible the integration between the two frameworks. Only

the first two (ELState and GEModel) must be implemented by the user (with
derived class), because they contain the problem specific information; the other
ones are provided by our tools and the user has only to invoke them (but she/he
is also allowed to define his own ones).
ELState It is an EL state, subclass of the base class State of the EL framework.

It typically contains a vector of variables that represents a solution, and an
integer that contains the value of the objective function of the state.

GEModel It is the Gecode model, and it implements the methods requested to
work with the Gecode language and the EL framework. It inherits methods and
properties from the Gecode Space class.

LNSMove Base abstract class for the LNS moves of our framework. An actual
move must implement the method bool containsVar(Var) that says if a given
Var is free w.r.t. the move. We have defined two actual derived classes: District-
Move and NDifferentMove. DistrictMove is made up by several sets of variables
and of an active set: at a given time t only the variables of the active set are
free; the active set can be changed by the move enumerator. NDifferentMove is
made up by a single set of variables and a fixed integer N : at a given time t
only N variables of the set are free (they can be chosen randomly or iterating
between the variables in the set).

MoveEnumerator Base abstract class for ME, that cycles between a particular
kind of LNSMove. MoveEnumerator actual classes must implement the func-
tions RandomMove(), FirstMove(), and NextMove(). RandomMove(), given a
LNSMove, selects randomly the set of free variables, according to the specific
LNSMove definition (e.g., selecting randomly an active set of a DistrictMove).
FirstMove() and NextMove() are used to cycle on all the possible moves (e.g.,
cycling on all the active neighborhoods of a DistrictMove, or cycling on all the
N-combinations of the variables contained in a NDifferentMove). Our tool pro-
vides an actual MoveEnumerator for each LNSMove: a DistrictMoveME and a
NDifferentME.

MovePerformer This module applies a given move to a given state, returning the
new state reached. We define the GecodeMovePerformer, that takes a ELState
and a LNSMove and, according to the defined GEModel class, builds up a Gecode
Space and solves it.

LNSNeighborhoodExplorer It is the main class that EL uses for neighborhood
explorations. It wraps together a MoveEnumerator and a MovePerformer.

LNSStateManager It provides some basics functionalities of an ELState, such as
calculating the objective function of a state, and finding an initial state for the
search. This last task is performed using CP: an instance of the GEModel of the
problem is instantiated and explored until a first feasible solution is reached.

4 A simple experiment

We tested GELATO on instances of growing sizes of the Asymmetric Travel
Salesman Problem, taken from the TSPLib [14]. In this section we describe the

problem, the solving algorithms we used, the experiment we have performed,
and the results obtained.

The Asymmetric Travel Salesman Problem (ATSP) is defined as follows:
given a complete directed graph G = (V,E) and a function c that assigns a cost
to each directed edge (i, j), find a roundtrip of minimal total cost visiting each
node exactly once. We speak of asymmetric TSP if there exists (i, j) such that
c(i, j) 6= c(j, i) (imagine a climbing road).

4.1 CP Model, LNS Definition and LS algorithm for ATSP

The CP Model we used is chosen from the set of examples in the Gecode package.
We used an existing model in order to point out the possibility of using GELATO
starting from existing CP models, adding only some little modifications to them
(e.g., changing the class headings and a couple of statements in the constructor).

The first state is obtained by a CP search over the same model, without any
pre-assigned value of the variables, and without a timeout (because we need an
initial feasible solution to start the LS algorithm).

The Large Neighborhood definition we have chosen is the following: given a
number N < |V | and given a solution (a tour on the nodes, i.e. a permutation
of |V |), N variables are randomly selected and left free, while the other ones re-
main fixed. Therefore, the exploration of the neighborhood consists in exploring
the N free variables and it is regulated by the following four parameters: (1)
the variables with the smallest domain are selected, (2) the values are chosen
randomly, (3) a maximum number failures is set, and (4) the best solution found
before reaching that number of failure is returned.

The LS algorithm used is a traditional Hill Climbing, with a parameter K.
At each step it selects randomly a set of N variables, frees them and searches
on them for the best neighborhood, until the maximum number of failures is
reached. If the best neighborhood found is better or equal than the old one, it
becomes the new current solution; otherwise (i.e., the value is worse), another
random neighborhood is selected and explored (this is said idle iteration). The
algorithm stops when K consecutive idle iterations have been performed (i.e.,
stagnation of the algorithm has been detected). Every single large neighborhood
is explored using CP.

4.2 Experiments

The experiments have been performed on the following instances, taken from
the TSPLib [14]: br17 (that we call instance 0, with |V | = 17), ftv33 (instance
1, |V | = 34), ftv55 (instance 2, |V | = 56), ftv70 (instance 3, |V | = 71), kro124p
(instance 4, |V | = 100), and ftv170 (instance 5, |V | = 171).

The instances have been solved using: 1) a pure constraint programming
approach in Gecode, 2) a pure local search approach in EasyLocal++, and 3)
different LNS approaches encoded in GELATO.

The LNS approaches differ on the number (|FV |) of variables of the neigh-
borhood, which are computed proportionally on the number of variables of the

instances (|V |). In particular we tested |FV | equal to the 20%, 25%, 30%, 35%,
40%, 45% of |V |.

We tested also different stop criterions for the exploration of a single large
neighborhood, setting different values for maximum number of admitted failures:
the formula to calculate the number of failures is 2

√
|FV |∗Mult. Let us observe

that the search space and, consequently, the number of failures, grow exponen-
tially w.r.t. the number of variables. The parameter Mult allows us to tune the
exponential grow of the failures. We tested all the LNS approaches with three
values of Mult : 0.5, 1, and 1.5.

The number K of consecutive idle iterations admitted before forcing the
termination of the global GELATO algorithm has been fixed to 50.

The pure CP approach in Gecode uses the following parameters: (1) the
leftmost variable is selected, and (2) the values are chosen increasingly. We run
it only once, since it is deterministic, with a timeout of one hour. We also tried
a first-fail strategy (the variable with the smallest domain is selected), but its
performance in this case are slightly worse than the leftmost one. This is probably
due to the regular structure of the problem.

The pure LS approach in EasyLocal++ is based on a classical swap-move
definition: given a tour, two nodes are randomly selected and swapped. The
local search algorithm used is Hill Climbing, with a number of consecutive idle
iterations fixed to 500.

Since LNS and pure LS computations use randomness, we repeated each of
them 20 times. During each run, we stored the values of the objective func-
tion, that correspond to improvements of the current solution, together with the
running time spent. These data have been aggregated in order to analyze the
average behavior of the different LNS and pure LS strategies on each group of
20 runs. To this aim we performed a discretization of the data on regular time
intervals; subsequently, for each discrete interval we computed the average value
of the objective function on the 20 runs.

4.3 Results

In Figure 1 we show the values of best solutions obtained by the three method
for each instance, in percentage of the value of the best known solutions, taken
from the TSPLib [14]. For CP we reported the solution reached in 1 hour of
computation; for GELATO we chose the best solutions obtained with |FV | =
45% of |V | and Mult= 1.5, which turned out experimentally to be the values
for these parameters that behave better in average. For LS and GELATO we
reported the best solution obtained in the 20 runs.

Figure 2 shows the behavior the different methods on instance 5, the most
difficult one (the behavior on the other instances are similar). The GELATO
settings differs on |FV | (20, 25, 30, 35, 40, and 45 per cent of V), while the Mult
parameter is set to 1.5.

Figure 3 shows the behavior of GELATO (on instance 5, with |FV |= 35% of
|V |) for different values of the parameter Mult .

0 1 2 3 4 5

75
80

85
90

95
10

0

 Global Comparison

Instance

%
 o

f b
es

t k
no

w
n

so
lu

tio
n

CP
EL
GELATO

Fig. 2: Comparison of the best solutions obtained by the three methods

4.4 Discussion

Let us add some considerations about the results obtained, that can be sum-
marized as: when the size grows, GELATO definitely outperforms Gecode and
EasyLocal++ (if we do not necessarily need of finding the optimum solution).

For the two small instances (instance 0 and 1), Gecode is able to find the
optimum, because the search space is rather small. From instance 2 to 5, the
trouble of CP in optimizing large search spaces in reasonable time comes out,
and LNS gives better results. The pure LS approach is the weakest one, always
outperformed by the others. We outline that the solutions found with GELATO
are always between the 95% and 100% of the best known solutions.

In Figure 2 we show the behavior of the different algorithms on instance 5,
which is representative for all the big instances: in the first seconds of the execu-
tion, CP finds some improving solutions, but from that moment on it starts an
exhaustive exploration of the search space without finding any other significant
improving solution (the line of the objective function becomes quite horizontal).
On the other hand, LNS algorithms have a more regular trend: the objective
function is permanently improved during time, since a local minimum is found
and then the algorithm is stopped (after 50 idle iterations). LS ends the search
in a few seconds, without any significant improvement.

Some comparison between the different LNS parameters (number of variables
involved and number of failures until stop) can also be done: small LNS (“small”

0 20 40 60 80 100

30
00

32
00

34
00

36
00

38
00

Different methods on instance 5

Time (s)

F
O

bj
CP
EL
GELATO20
GELATO25
GELATO30
GELATO35
GELATO40
GELATO45

Fig. 3: Comparison between the different approaches on intance 5

stands for LNS with few free variables) are very fast, and can make very big
improvements in some seconds. Larger LNS are slower (they have bigger spaces
to analyze), but they can reach better solutions: in fact they optimize a larger
number of variables, so their exploration of the search space is more “global”;
it could also happen that a neighborhood is too big to allow CP to perform
an effective exploration. This trade-off must be investigates experimentally: e.g.,
from our tests it comes out that for instance 5, neighborhoods with |FV | = 35%
of |V | are the best ones, while the ones of 40% and 45% are too big, so ineffective
(see Figure 2).

A possible meta-heuristic that comes out from these considerations could be
the following:

1. start with small LNS (in this way we try to get the best improvement in the
shortest time);

2. when no better solutions can be found, increase the neighborhood’s dimen-
sion, then launch Large Neighborhood Search;

3. iterate 2 since the neighborhood’s dimensions increases to intractable/ineffective
ones.

This Multi-Neighborhood meta-heuristic should find large improving solu-
tions in very short time (that can be quickly output to the user), and then run
progressively deeper searches (even if more time expensive).

0 20 40 60 80 100

30
00

32
00

34
00

36
00

38
00

Different Mult parameter values

Time (s)

F
O

bj

CP
Mult 0.5
Mult 1
Mult 1.5

Fig. 4: Comparison between different stop criterions (parameter Mult) for
GELATO

In Figure 3 we show the best GELATO method on instance 5 (with |FV | =
35% of |V |) tuned with different stop criterions, i.e. different maximum numbers
of failures, obtained by changing the parameter Mult . It is clear that for that
instance (but also for the other ones we get the same result) a bigger number of
failures gives better results.

Source codes and other technical details are in http://tabu.diegm.uniud.
it/EasyLocal++/.

5 Conclusions and Future works

In this paper we showed that: using our GELATO hybrid framework, it is pos-
sible to combine a given CP model into a LS framework in a straightforward
way; in particular, we can use a Gecode model as a base to define every kind
of neighborhood, using the functionality provided by EasyLocal++ to execute
competitive Large Neighborhood Search algorithms. We tested GELATO on
several instances of the ATSP, and showed that performances of the hybrid LNS
algorighms are very faster w.r.t. the pure CP approach, on all the non-trivial
ATSP instances, even if the LS strategy is naive (Hill Climbing with random
neighborhood selection). We also proposed a general Multi Neighborhood hy-
brid meta-heuristic that should improve the results we obtained so far.

We wish to extend the research pursued in this paper along two lines: de-
veloping and testing new hybrid algorithms; extending GELATO into a more
general modeling framework. First of all we want to develop and test the Multi
Neighborhood meta-heuristic proposed and other hybrid algorithms (e.g., based
on Tabu Search, Steepest Descent, . . .). We will implement these algorithms us-
ing GELATO and test them on a set of benchmark problems, more structured
than the ATSP, also trying new problem-specific neighborhood definitions.

Concerning the second research line, we want to simplify the class hierarchy
of GELATO (some classes and functionality must be added, other ones need
to be cleaned up and refactored). Once GELATO has a more simple and clear
interface, it will be integrated into a more general modeling tool to easily model
and solve CSPs and COPs, that we already presented in [2]. In this tool, the user
will be able to model a problem in a high-level language (e.g., Prolog, Minizinc,
OPL), and specify the meta-heuristic he want to use to solve the problem; the
model and the meta-algorithm defined will be automatically compiled into the
solver languages, e.g. Gecode and EasyLocal++, since we use GELATO; at the
end, the overall compiled program will be run and the various tools will interact
in the way specified by the user in the modeling phase, to solve the instance of
the problem modeled. We have already implemented two compilers from declar-
ative languages to a low-level solvers (the Prolog-Gecode and MiniZinc-Gecode
compilers presented in [2]). We want to extend the functionalities of the com-
pilers already realized and develop the modeling-translating-solving framework
described above. Once this high-level modeling framework is well tested and reli-
able, developing hybrid algorithms will be flexible and straightforward and their
executions will benefit from the use of low level efficient solvers.

References

1. E. Aarts and J. K. Lenstra, editors. Local Search in Combinatorial Optimization.
John Wiley and Sons, Chichester, UK, 1997.

2. R. Cipriano, A. Dovier, and J. Mauro. Compiling and executing declarative mod-
eling languages to Gecode . ICLP2008, LNCS 5366:744–748, Springer, 2008.

3. E. Danna and L. Perron. Structured vs. unstructured large neighborhood search.
In Principles and Practice of Constraint Programming, CP 2003.

4. L. Di Gaspero. Local Search Techniques for Scheduling Problems: Algorithms and
Software Tools. PhD thesis, Univ. di Udine, DIMI, 2003.

5. L. Di Gaspero and A. Schaerf. EasyLocal++: An object-oriented framework
for flexible design of local search algorithms. Software — Practice & Experience,
33(8):733–765, July 2003.

6. F. Focacci, F. Laburthe, and A. Lodi. Local search and constraint programming.
In F. Glover and G. Kochenberger, eds, Handbook of Metaheuristics, chapter Local
Search and Constraint Programming, pages 369–403. Kluwer, 2003.

7. P. Van Hentenryck and L. Michel. Constraint-Based Local Search. MIT Press,
2005.

8. N. Jussien and O. Lhomme. Local search with constraint propagation and conflict-
based heuristic. Artificial Intelligence, 139(1):21–45, 2002.

9. E. Monfroy, F. Saubion, and T. Lambert. On hybridization of local search and
constraint propagation. ICLP 2004, LNCS 3132:299–313, Springer, 2004.

10. N. Nethercote, P. J. Stuckey, R. Becket, S. Brand, G. J. Duck, and G. Tack.
Minizinc: Towards a standard CP modelling language. CP2007, LNCS 4741:529–
543, 2007.

11. Swedish Institute of Computer Science. Sicstus prolog.
http://www.sics.se/isl/sicstuswww/site/index.html.

12. F. Rossi, P. van Beek, and T. Walsh. Handbook of Constraint Programming (Foun-
dations of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006.

13. Gecode Team. Gecode : Generic constraint development environment.
http://www.gecode.org.

14. Institut für Informatik Universität Heidelberg. Tsplib. http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/.

15. Various Authors. CP-AI-OR conference series. http://www.cpaior.org/.
16. D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.

Evolutionary Computation, IEEE Transactions on, 1(1):67–82, 1997.

