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Abstract. We propose in this paper a method for measuring the distance 

between ontologies susceptible to describe a common domain and for assessing 
the feasibility of their integration. This method is in two steps: the first step 
determines the potentially common parts of two ontologies, based on a prior 
alignment carried out between them. The second step computes the distance 
between these parts with regards to both their levels of detail and their 
structures, by exploiting the mappings contained in the alignment and adapting 
the Tree Edit Distance method. We limit our study here to lightweight 
ontologies, i.e., taxonomies represented in OWL1, the Ontology Web Language. 

This method was implemented and applied to real ontologies of the geographic 
domain. The results obtained so far seem significant. 
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1   Introduction 

Measuring the distance between heterogeneous ontologies is useful for many 

applications: 1) retrieving ontologies on the web, e.g. finding an ontology to replace 

another [8], finding ontologies that can enrich other ones, finding people using same 

ontologies to create new collaborations, etc.; 2) ontology evolution, in order to know 
to what extent an ontology, especially its structure, has evolved; 3) ontology fusion 

and data integration, to know in advance if it may be possible to make joint studies on 

data described by heterogeneous ontologies. 

    Ontology matching [7], which is addressed by many works and which consists in 

computing alignments between ontologies, i.e. determining correspondences between 

semantically related entities from heterogeneous ontologies, is a key idea enabling 

interoperability in the semantic web. It has brought solutions to some problems like 

finding ontologies for query translation. However, for the applications cited above we 

need to compute global similarity measures between ontologies. Indeed, for example, 

to enrich an ontology from another one, we need to know if they have close structures 

and if the second ontology is more detailed than the first one. An alignment between 

two ontologies does not allow knowing if these latter are complementary or not. 

                                                        
1 http://www.w3.org/TR/owl-features/ 

http://www.w3.org/TR/owl-features/


   In the geographic domain, where data sources are annotated using heterogeneous 

ontologies [3][5][6][11], we mainly focus on assessing the similarity between 

ontologies based on three main criteria. The first similarity measure deals with the 

universes of discourse described by both ontologies: does the source ontology deal 

with the same domain as the target ontology or does it also provide additional 

knowledge about a related domain? For example, if we have a domain ontology 

describing landforms and vegetation, does the source ontology provide us, in addition 

to that, with knowledge about climate? The second similarity measure aims at 
comparing the taxonomic structures of both ontologies’ common parts. The purpose is 

to assess whether they result from very different conceptualizations of the domain of 

interest or not: in other words, would it be difficult to communicate and exchange 

data with the community who produced this ontology? The third measure compares 

ontologies’ levels of detail to assess whether the source ontology is more or less 

precise than the target ontology. This aims at automatically determining whether 

available geodata sources have the appropriate thematic level of detail or not for a 

specific task. If we are looking for data describing buildings, we may need to make 

sure that they also explicitly describe more specific buildings such as cabins or huts. 

We propose here a new method for computing the distance between potentially 

common parts of aligned lightweight [17] ontologies. Some works have been 

dedicated to evaluating the global similarity between ontologies [2], [9], [14-16]. 
However, their similarity values are difficult to interpret, since they do not measure 

the difference with regards to particular criteria such as the structure or the level of 

detail. Our method, however, uses a pre-computed alignment between two ontologies 

and provides the user with measures with regards to both their structures and levels of 

detail. This allows to more efficiently assessing differences between ontologies. 

Moreover, it computes distance between potentially common parts of ontologies, 

since two ontologies may be similar on one common thematic but quite different on 

another one. In fact, when source ontologies have common parts with the target 

ontology, their taxonomic structures must also be compared in order to evaluate to 

what extent they result from similar conceptualization of the domain of interest. 

Moreover, the source ontologies’ level of detail must be evaluated to assess whether 
they are more or less precise than the target ontology. 

The remainder of this paper is structured as follows: section 2 presents our method 

for measuring the distance between sub-parts of ontologies. Section 3 presents the 

results obtained with our method, and section 4 gives some perspectives to our work. 

2   Proposed Method for Assessing Differences between Ontologies 

Our method, first, uses a simple decision tree and the results of an alignment carried 

out between the two ontologies to be compared, in order to determine the “important 

concepts” of each ontology, which encompass a large number of mapped concepts. 

Once the important concepts are determined, the sub-parts of ontologies whose they 

are roots are compared. The comparison of ontologies (or ontology parts) here 

consists in computing the distance with respect to their structures and their levels of 

detail. To do that, we propose a Tree Edit Distance based method to compute the 



distance between the structures of the compared ontology parts, and we exploit the 

results of the alignment performed between them to compute their levels of detail. 

2.1   Determining the Important Concepts of two Aligned Ontologies 

Our goal here is to determine the potentially common parts of two ontologies. To 
do that, we use existing tools to align the ontologies we want to compare and then we 

determine the parts of each ontology where the mappings are concentrated. Indeed, 

we believe that if two ontologies describe a common sub-domain then the concepts 

describing this sub-domain in both ontologies should generally be mapped together. 

We do not try here to improve the quality of the alignment, which is out of the scope 

of this paper. We suppose that the quality of the produced alignment is pretty good 

and the mappings it contains could be transformed into the following form: 

 ScoreDC OO ,,
21

, which means that the concept C in the ontology O1 is mapped 

with the concept D in the ontology O2, and this mapping has a score confidence Score 

(between 0 and 1). 

 

Fig. 1. The decision tree determining the important concepts of two aligned ontologies. 

Before detailing our method, we consider that a concept is important if it 

encompasses a large number of mapped sub-concepts or if it encompasses a medium 
number of mapped sub-concepts but at the same time its depth in the ontology is 

small. In both cases, the important concepts define sub-parts of the ontology where 

the mappings are concentrated. 

A first set of important concepts is determined thanks to the decision tree depicted 

in Fig. 1, which classifies each concept of the ontology in the class YES if it is an 

important concept or in the class NO if it is not . After that, additional rules allow to 

filter the first set of important concepts and to keep only the most significant ones.  

The decision tree proposes three rules allowing determining important concepts: 

The first rule (leading to the YES in the continuous and bold rectangle) detects the 

root of each ontology (the owl:Thing concept) as the important concept if the number 

of all mappings is high, since the root is the super class of any concept of the 



ontology, and it encompasses all mapped concepts. On the examples shown on Fig. 2 

the important concepts deduced by this rule are in continuous and bold circles. 

The second rule (leading to the YES in the dashed rectangle) allows determining 

the important concepts which encompass a large number of mapped concepts. This 

rule does not allow to a concept C to be important if there are too few remaining 

concepts in the ontology that are not mapped and not sub-concepts of C. In this case it 

is better to consider the root of the ontology as the important concept. For example, 

on Fig. 2-(a1) the concept 3 could be an important concept if we suppose that all 
mapped concepts are its sub-concepts. However, since there remains only one concept 

(concept 2) in the ontology which is not its sub-concept it is better to consider only 

the root as an important concept in order to include this remaining concept. In Fig. 

2(b1), however, there are two important concepts deduced by this rule (those with 

dashed lines). This is due to the fact that: 1) a large number of the mapped concepts 

are sub-classes of the concept 3 and consequently sub-classes of its parents ; 2) there 

remains a large number of concepts in the ontology which are not sub-concepts of 3 

and which can constitute another part describing another thematic which is not 

common to the compared ontologies. 

The third rule (leading to the YES in the shadow rectangle in the decision tree) 

allows determining the important concepts which encompass a medium number of 

mapped concepts and which are not deep in the ontology hierarchy. Indeed, in 
general, in an ontology, the distinction of the different described themes is made 

generally in its top level. In the example on Fig. 2(c1) the important concepts deduced 

by this rule are represented with shadow circles (2, 3 etc.). The important concepts are 

determined by this rule when the compared ontologies describe more than one 

common thematic. 

Until now we determine a set of possible important concepts. For example, on Fig. 

2(b1) and Fig. 2(c1) we have several important concepts which are deduced and we 

need to keep only the most significant among them, i.e. the more specific of them. To 

do this, we defined three additional rules allowing filtering these important concepts. 

They are tested in the following order, and only one of them is executed: 

 
Filtering Rule 1: If we have only one important concept (the root), then keep it as 

the important concept of the ontology. For example, on Fig. 2(a2) the concept 1 will 

be the important concept of the ontology; in other terms, the source ontology will be 

compared as a whole to the determined sub-parts of the target ontology. 

 

Filtering Rule 2: If we have important concepts deduced by the second rule of the 

decision tree (concepts in dashed circles), then we keep only the deepest among them 

as the important concept of the ontology. Indeed, in an ontology, the deeper the 

concepts are, the more they share common characteristics. In Fig. 2(b2), the important 

concept which will be kept is 3 since the Rule 1 will not be activated and the concept 

3 is the deepest important concept deduced by the second rule of the decision tree. 
This way we obtain one important concept encompassing a large number of mapped 

concepts without including concepts describing other themes. 

 

Filtering Rule 3: We keep all the deepest important concepts deduced by the third 

rule of the decision tree (concepts in shadow circles). For example, in figure Fig. 



2(c2), we keep only the important concepts 2 and 3 since they are the deepest ones. 

These concepts should be roots of two different themes described by the ontology. 

 

Fig. 2. Possible cases for determining the important concepts. 

2.2   Computing the Distance between the Ontology Parts 

We consider here that two aligned ontologies O1 and O2 have the same structure if 

the subsumption relations (or is-a relations) between all mapped concepts are 

preserved in both ontologies. In other terms, the ontologies structures are the same if 

we do not consider the non mapped concepts. If there is one is-a relation between two 

mapped concepts C1 and C2 in O1, and this relation does not exists in O2 between the 

corresponding concept of C1 and the corresponding concept of C2, then we consider 

that the structures of O1 and O2 are different. 

On Fig. 3(1) we have two ontologies with the same structure, but with different 

levels of detail. In this case, it is interesting to indicate to the user that these 
ontologies have similar structures, but that one is more detailed than the other one. 

This allows the user to decide, for example, to enrich the first ontology from the 

second one or to know if their fusion would be costly or not. In figure Fig. 3(2), 

however, both ontologies offer the same vocabulary, but their structures are different. 

Typically, in this case it would be costly to fusion or to combine these ontologies. 



 

Fig. 3. Difference of levels of detail and structures between ontologies. 

2.2.1   Comparing Ontologies’ Structures 

To compute the distance between the structures of two ontologies, we propose an 

adaptation of the Tree Edit Distance method [1], which is usually used to estimate the 

minimum effort which is necessary to transform an ordered tree into another one. We 

note that an ordered tree is a tree where the children of every node are ordered. The 

Tree Edit Distance method returns the minimum cost in terms of the number of 

operations (node insertion, node deletion and node renaming) which are necessary to 

transform one ordered tree into another one. Let us consider the example on Fig. 3(2). 

In order to transform tree1 into tree2 we need at least five operations (Fig. 4). So, 
transforming tree1 into tree2 costs 5. 

In order to give a sense to the cost returned by the Tree Edit Distance method, we 

need to normalize it. To do this, we use the normalization formula proposed in [4] 

(formula (2)), where NC is the normalized cost considered as the distance between the 

two trees, C is the value returned by the Tree Edit Distance method, and |tree 1| and 

|tree 2| are the respective sizes (number of nodes) of the ordered trees tree1 and tree2. 

21 treetree
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
  (2) 

 

   Fig. 4. Example of minimum operation number required to transform a tree into another one. 



In the example on Fig. 4 the distance between tree 1 and tree 2 will be 5/(7+7) = 

0.36, which means that similarity between tree 1 and tree 2 is 64%. In fact, the 

smaller the distance is, the closer the structures of ontologies are. 

 

The adaptation of the Tree Edit Distance method is done as follows: 

1. Every non mapped concept of each ontology is deleted and its mapped direct 

sub-concepts become direct sub-concepts of its closest mapped parent. Indeed, 

we are only interested in the structures formed by mapped concepts in each 
ontology. In Fig. 5, the concepts 8 and 9 in the ontology on the left are not 

mapped with concepts from the ontology on the right, so they are deleted and the 

concept 3 which is mapped becomes a direct child of the concept 1. The same 

reasoning is applied to the concept g. 

 

2. The next step consists in relabeling the concepts in the second ontology by the 

labels of their corresponding concepts in the first ontology. If a concept C from 

the second ontology is mapped with one concept D from the first ontology, then 

C is renamed to D. For example, on Fig. 5, the concept a is mapped with the 

concept 1, then a is renamed to 1. If a concept C of the second ontology is 

mapped with several concepts from the first ontology, then it takes the name of 

the corresponding concept having the highest score of similarity. On the Fig. 5, 
the concept h is mapped with the concepts 6 and 7 from the first ontology, 

however the score of the mapping with 7 is higher, then h will be renamed to 7. 

If it had been mapped with several concepts from the first ontology having the 

same score of similarity, then the label of the most general subsuming concept of 

them would have been used for renaming. If no most general subsuming concept 

exists, then we would have chosen randomly the label of one of them for 

renaming. On the Fig. 5, the concept f is mapped with the concepts 5 and 6 from 

the first ontology with the same score, then f  has to be renamed to 5, since 5 is 

more general than 6. We note that each concept from the first ontology is used at 

most one time to rename a concept in the second ontology. 

 
3. The last step consists in ordering the obtained trees to allow using existing 

algorithms and tools for computing the Tree Edit Distance (which is our 

objective here). On the Fig. 5 we obtain two ordered trees whose distance was 

computed in the previous example (distance = 0.36). 

 

Fig. 5. Transforming two aligned ontologies into two ordered trees. 



2.2.2   Computing the Levels of Detail of two Aligned Ontologies 

Two lightweight ontologies having close structures may have different levels of 

detail. We define here the level of detail of a concept C as the number of its sub-

classes. For example, on Fig. 3(1) the concept 2 is more detailed in the ontology on 

the right than in the ontology on the left, since it has two sub-concepts in the ontology 

on the right when it has no sub-concept in that on the left. Now, we need to have an 
overall indication allowing to know which of the two aligned ontologies is more 

detailed. We propose to do this by averaging, for each ontology, the levels of detail’ 

values of its mapped concepts. The following example illustrates this more clearly. 

Illustrating example. Let us consider the example on Fig. 3(1). To compute the level 

of detail of each ontology we create two vectors V1and V2, where V1 contains the 

level of detail values of each mapped concept from O1, and V2 contains the level of 

detail values of the corresponding concept in O2 of each mapped concept from O1. 

Then, the average value of V1 gives the level of detail of O1, and the average value of 

V2 gives the level of detail of O2.  Thus, we obtain the following vectors: 

    

















3

2

1

ConceptsMapped
              

66.0

0

0

2

1

1


















OLD

V
                    

66.2

0

2

6

2

2


















OLD

V
       

As we can see it, O2 is more detailed than O1.  

3   Experiments and Results 

The proposed methods were implemented and tested on real ontologies. The decision 

tree, determining the important concepts, was implemented in Java and using the 
Protégé OWL API2. The ontology structures comparison was also implemented as a 

Java program which uses the Protégé OWL API and reuses a Java implementation of 

the Tree Edit Distance method for ordered trees, available on the Web3 and described 

in [1]. The goal here is to determine which parts of two aligned ontologies are 

complementary, i.e. which parts are related by a large number of mappings and which 

have close structures but different levels of detail. We chose to test our methods on 

five ontologies (ontologies’ structures) describing geographic domains or domains 

close to geography, because our expertise in this domain allows us to better analyze 

the obtained results. The used ontologies are the followings: 

 Building and Places ontology4: developed in United Kingdom, its purpose is to 

describe the building feature and place classes surveyed by Ordnance Survey. 

 Transportation ontology5: this ontology describes transportation-related 

information in the CIA World Fact Book6. 

                                                        
2 http://protege.stanford.edu/plugins/owl/api/ 

3 web.science.mq.edu.au/~swan/howtos/treedistance/ 

4 http://www.ordnancesurvey.co.uk/ontology/BuildingsAndPlaces/v1.1/BuildingsAndPlaces.owl 

5 http://reliant.teknowledge.com/DAML/Transportation.owl 

http://protege.stanford.edu/plugins/owl/api/


 Earth Realm ontology7: elements of this ontology include “atmosphere”, 

“ocean”, and “solid earth”, and associated subrealms (such as “ocean floor”)8. 

 Hydrology9: this ontology is developed by Ordnance Survey to describe in an 

unambiguous manner the inland hydrology feature classes. 

 IGN ontology [12]: it is a bilingual ontology (French / English) which describes 

the topographic entities present in the geographic databases of the French 

Mapping Agency (IGN). 

These ontologies are first pairwise aligned using the method proposed in the 
TaxoMap tool [10]. In order to determine the important concepts we defined the 

semantics of classification criteria used in the decision tree. So, we consider that the 

rate (percentage) of aligned concepts is high when it is superior to 80%. It is medium 

when it is comprised between 30% and 80%, and it is low when it is inferior to 30%. 

A concept of an ontology O is considered as deep if its depth in O is higher than a half 

of the depth of O itself. We note that, actually, these values are fixed intuitively, 

however we are working on in order determine them empirically. The obtained results 

with these values are summarized on Fig. 6. 

 

Fig. 6. Important concepts obtained on real geographic ontologies. 

We observe on Fig. 6 that most of the used ontologies describe the topography; 

many important concepts are in relation to the topography, which is a good result 

since most of the used ontologies really describe the topographic objects. Also, if we 

look at the size of each determined partition (whose root is an important concept) and 

the number of its mappings, we deduce that the important concepts detection is pretty 

precise. For example, the number of mappings between the Buildings and Places 

ontology and the IGN ontology equals 288. From one side, there is only one important 

concept deduced for each ontology (respectively Place and Artificial Topographic 

Feature). From the other side, the number of mappings included in the part whose 

                                                                                                                                    
6  http://www.daml.org/ontologies/409 

7 http://sweet.jpl.nasa.gov/1.1/earthrealm.owl 

8 http://sweet.jpl.nasa.gov/guide.doc 

9 http://www.ordnancesurvey.co.uk/ontology/Hydrology/v2.0/Hydrology.owl 

http://www.daml.org/ontologies/409


Place is the root represents 89% of the total number of existing mappings, and the 

part whose Artificial Topographic Feature is the root contains all the mappings. So, 

the mappings are concentrated in the parts determined by our method. 

The next step is the comparison phase. In order to obtain significant results we 

consider only mappings with a score higher than 0.90. We first computed the distance 

between the ontology parts structures. The obtained results are shown on Fig. 8. 

 

 

 

Fig. 8. Results of the comparison of 
the ontology parts structures. The 
vertical axis indicates the computed 
Tree Edit Distance measures, and 
the horizontal axis indicates the 
compared ontology parts. Indeed, 
the numbers 1...9 refer to pairs of 

ontology parts that are compared. 
See Fig. 9. 

 

Fig. 8 shows that there are some ontology parts that have more similar structures 

than other ones. For example, the structure of the part of the Buildings and Places 

ontology whose the root is the important concept Topographic Object is very close to 
the structure of the part of the Hydrology ontology that has Topographic Object as a 

root. This is due to the fact that both ontologies are produced by the same institution, 

so with same conceptualization. The structure of the part of the Buildings and Places 

ontology whose the root is the important concept Place is, however, different from the 

structure of the part of the IGN ontology that has Artificial Topographic Feature as a 

root. In fact, in the metadata associated with Building and Places ontology, it is said 

that “…The rationale behind the Buildings and Places module is to provide a minimal 

set of definitions to maximise the abiliuty to reuse.   As a result it contains a shallow 

hierarchy and minimal property restrictions”. This explains the difference in 

structures between its parts and parts of the IGN ontology which is very structured. 

Finally, we compared the levels of detail (LD) of our ontologies using the method 
presented above. The results obtained are shown on Fig. 9. 

Fig. 9. Result of the comparison of the ontology parts levels of detail (LD). 

The results on the Fig. 9 are significant. For example, the Hydrology ontology is 

more detailed than the IGN ontology regarding the hydrographic features, and this can 



be explained as follows:  from one side the metadata associated with the Hydrology 

ontology say that the scope of this ontology includes permanent topographic features 

involved in the containment and transport of surface inland water of a size of 1 meter 

or greater including tidal water within rivers. From the other side, we know from the 

IGN databases specifications that the IGN databases, from which is built the IGN 

ontology, include only water surfaces larger than 7.5 meter. Another notable 

difference of levels of detail is between the Topographic Object part of the Hydrology 

ontology and the Topographic Object part of the Buildings and Places ontology. This 
result combined with the previous one telling us that the structures of these parts are 

very similar shows that these ontology parts are complementary and may help the user 

or a program to decide for example to enrich (for example thanks to an importation 

operation) the Topographic Object part of the Hydrology ontology from the 

Topographic Object  of the Buildings and Places ontology. 

4   Conclusion and Perspectives 

Means for evaluating distance between ontologies seems to us important for 

decision making systems in the context of data integration, ontology fusion, ontology 

evolution and ontology retrieval on the web. 

 We have presented in this paper a new method for measuring the distance between 

lightweight ontologies. Our method differs from existing methods in several ways: 1) 

it exploits alignments between ontologies rather than assuming that ontologies share 

exactly the same vocabulary; 2) it does not compare whole ontologies but only the 

potentially common parts of them determined by our decision tree, in order to more 
efficiently assess the differences between ontologies; 3) finally, our method provides 

indications about the level of detail of each ontology and computes a distance 

between the ontologies structures by adapting the Tree Edit Distance method, which 

was not used in the past in this context to the best of our knowledge. The proposed 

method is implemented and tested on several real geographic ontologies, and the 

results obtained so far seem significant. 

In the future, we plan to improve our method with respect to several aspects: 1) the 

ontology parts are determined with our decision tree which consists in detecting 

ontology parts where the mappings are concentrated, it would be interesting to 

compare and combine our decision tree with existing methods for ontology 

partitioning [13], in order to obtain better partitions. Moreover, our decision tree may 

be learnt using existing algorithms like the ID310 algorithm, particularly in order to 
automatically determine the semantics associated with each classification criteria; 2) 

our comparison method is actually restricted to lightweight ontologies, we plan to 

extend it to heavyweight ontologies in order include in our comparison procedures 

more complex constraints and relations between concepts modeled in domain 

ontologies; 3) another perspective of this work is to compare our method to similar 

ones [18] and to study the influence of different matching techniques on our distance 

measure; 4) finally, we plan to integrate to our method other information to better 

                                                        
10 http://en.wikipedia.org/wiki/ID3_algorithm 



understand differences between ontologies, like metadata associated with ontologies, 

ontology utilization purposes, etc. 
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