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Abstract. We define a translation of aggregate programs to normal logic pro-
grams which preserves the set of partial stable models. We then define the classes
of definite and stratified aggregate programs and show that the translation of such
programs are, respectively, definite and stratified logic programs. Consequently
these two classes of programs have a single partial stable model which is two-
valued and is also the well-founded model. Our definition of stratification is more
general than the existing one and covers a strictly larger class of programs.

1 Introduction

In the recent years there is an increasing interest in extending the syntax and semantics
of answer set programming systems with aggregate atoms [2, 8, 14]. Current work sup-
ports only a limited number of aggregate functions. For example the SMODEL S system
supports only cardinality and summation aggregates. The dlv system supports, in addi-
tion, MIN, MAX, and PROD aggregates but it does not support recursion over aggregates
[2].

In two papers [5,11] we defined partial stable semantics for logic programs with
arbitrary aggregate relations. The semantics are based on Approximation Theory [3, 4]
which provides a solid algebraic framework for defining non-monotonic semantics. The
ultimate well-founded and stable semantics of aggregate programs [5] are the most pre-
cise semantics which could be defined within the framework of Approximation Theory.
They are extensions of the ultimate semantics for standard logic programs [4] to logic
programs with aggregates and are, in general, different from the standard well-founded
and stable semantics for logic programs. On the other hand, the semantics of [11] are
extensions of the partial stable semantics of normal logic programs [12].

In this paper we continue the investigation of aggregates by defining a translation
of aggregate programs to normal logic programs. This translation has the property that
partial stable models of the aggregate program [11] coincide with partial stable models
of its translation [12]. For some aggregates our translation is equivalent to the trans-
lation of weight constraints to nested expressions by Ferraris and Liftshitz [6]. How-
ever, our translation is defined for arbitrary aggregate relations including non-monotone
ones while weight constraints are essentially a combination of a monotone and anti-
monotone aggregate relations.

As an application of the translation we present a novel definition of stratification of
aggregate programs. The existing definitions [2, 5, 10] treat aggregate atoms as negative
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literals. So, all atoms defining the set expression of an aggregate atom have to be at a
strictly lower stratum than the atom in the head. The difference of our definition is that
for monotone aggregate relations, the positive atoms of the set expression can be at the
same stratum as the atom in the head. Similarly, for anti-monotone aggregate relations,
the negative atoms in the set expression can be at the same stratum as the atom in the
head. In this way we obtain a more general definition which covers a strictly larger
class of programs. Under the semantics of [11] such stratified aggregate programs have
a two-valued well-founded model which coincides with the single two-valued stable
model.

The paper is organized as follows. We start by presenting the necessary background
on Approximation Theory in Section 2. In Section 3 we recall the syntax of aggregate
programs and the partial stable semantics of [11]. The main results of the paper are
presented in Section 4 and the proofs are given in Section 5. Finally, we discuss related
work (Section 6) and give some concluding remarks (Section 7).

2 Preliminarieson Approximation Theory

We first present the necessary background on Approximation Theory following [4] on
which the semantics of aggregate programs of [11] is based. The basic concept is that
of an approximation of the elements of a lattice (L, <) by pairs (z,y). If z < y then
we call the pair (x,y) consistent and if z = y then we call the pair exact. We denote
the set of all consistent pairs on L with L¢. We call the elements in the set L¢ partial
elements. For example if L is a set of interpretations then the elements of L¢ are called
partial interpretations. The partial order relation < on L can be extended in two ways
to partial orders on L°:

truth order: (z,y) <¢ (x1,91) ifandonly if z < zp andy < yy
precision order: (z,y) <, (z1,y1) ifandonlyifz <z andy; <y

A consistent pair (x,y) can be seen as an approximation of all elements in the
interval [z,y] = {z € L | z < z < y} which is always non-empty. In this sense, the
precision order <, corresponds to the precision of the approximation, that is (z,y) <,
(z1,y1) ifand only if [z, y] D [x1,y1]. Exact pairs (z, z) approximate a single element
2 and represent the embedding of L in L°.

Consider the lattice TWO = {f, t} of classical truth values ordered as f < t. We
denote the set of consistent elements 7TWQO° of TWO with THREE. The exact pairs
(f,f) and (t, t) are the embedding of the classical truth values f and t respectively and
are maximal in the precision order. Only the pair (f,t) approximates more than one
truth value, namely the set {f,t}, and corresponds to the value of undefined, denoted
with u. The truth order <; is used to define conjunction and disjunction in THREE
which are interpreted as greatest lower bound A; and least upper bound Vv, respectively.
Negation in THREE is defined as —(z,y) = (—y, —z). In particular, -f = t, -t = f,
and —u = u. This interpretation of the connectives —, A, and V is the same as the one
given by Kleene’s strong three-valued logic.

We briefly recall the definition of partial stable operator, the definition of different
classes of stable fixpoints, and some basic properties.
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Definition 1 (Partial Approximating Operator). Let O : L — L be an operator on a
complete lattice L. We say that A : L¢ — L€ is a partial approximating operator of O
if the following conditions are satisfied:

— Aextends O, i.e. A(z,z) = (O(z),O(z)) forevery z € L;
— Ais <,-monotone.

Because A is a <,-monotone operator on a complete semilattice then it has a least
fixpoint. It is called the Kripke-Kleene fixpoint of A and denoted with K K (A).

We denote the projection of an approximating operator A : L — L¢ on the first
and second components with A and A2, i.e. if A(z,y) = (u,v) then A'(z,y) = wand
A?%(z,y) = v. From the <,-monotonicity of A follows that A is monotone in the first
argument and A2 is monotone in the second argument. Recall that for a fixed element
b € L, the operator A* (-, b) is defined only on the domain [_L, b]. However, it is possible
that for some element = € [L,b], Al(x,b) & [L,b]. Similarly, for a fixed element
a € L, the operator A?(a, -) is defined on the domain [a, T] but it is possible that for
some element y € [a, T], A%(a,y) & [a, T]. Denecker et al. [4] showed that if (a, b)
is a post-fixpoint of 4, i.e. (a,b) <, A(a,b) then the operators A*(-,b) and 4%(a, )
are well-defined on the domains [L, b] and [a, T] respectively. Such pairs (a,b) are
called A-reliable. Let L™ denote the set of A-reliable pairs. The partial stable operator
S : L™ — L¢ is defined as follows:

S(a,b) = (Ifp(Ax. All[L’b](.Z',b)),
Lfp(Ay. A%|fa,71(a,9)) ).

The fixpoints of S are called partial stable fixpoints of A. The stable operator S is
monotone in the precision order <, and has a least fixpoint, called the well-founded
fixpoint of A and denoted with W F'(A). This fixpoint can be computed by transfinite
iteration of S starting from the bottom element in the <, order which is (L, T). Of
special interest are elements in the set ST (A) = {« € L | (z,z) is a fixpoint of
S} which are called exact stable fixpoints of A. An important property of exact stable
fixpoints is that they are minimal fixpoints of O. For such fixpoints it is possible to give
a simpler characterization: x is an exact stable fixpoint if and only if O(z) = z and
Ifp(Al(,2)) = @.

In logic programming we are interested in approximating the immediate conse-
quence operator Tp. The standard partial approximating operator of T'p is Fitting’s
three-valued @ p operator [7]. The Kripke-Kleene fixpoint of & p is equal to the Kripke-
Kleene semantics of P [7]. Although partial stable models [12] are defined in a very
different way they do coincide with partial stable fixpoints of & [3]. Finally, exact
stable fixpoints of #p are equal to the set of stable models defined by Gelfond and
Lifschitz [9]. To see this, let GL(P; I') denote the Gelfond-Lifschitz transformation of
a program P with respect to an interpretation 1. It is easy to show that (I, I,) =
Ter(p;1,)(I1). Thus [fp(®}(-,I)) is equal to the least model of GL(P;I). Conse-
quently, I is an exact stable fixpoint of &p if and only if I is a stable model of P.
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3 Aggregate Programs

3.1 Aggregate Functions and Relations

An aggregate is typically understood as a function from a multiset to a single element.
A multiset (also called a bag) is similar to a set except that an object can occur multiple
times. The most general definition of a multiset A on a domain D is a mapping M :
D — Card where Card is the class of cardinal numbers. For every element z € D,
M (x) gives the multiplicity of . In this work we consider only finite multisets. First,
we define a multiset with finite multiplicity as a function M : D — IN where IN is the
set of natural numbers. A finite multiset is a multiset with finite multiplicity such that
M (z) > 0 only for a finite number of elements. We denote the set of all finite multisets
on D with M(D). The subset relation between multisets is defined as follows: M; C
M, if and only if M, (z) < Ma(x) forall z € D. The additive union M = M; & M,
of My and M, is defined as M(xz) = Mi(z) + Ms(x) for all z € D. The multiset
difference M = M; — M, of My and M- is defined as M (z) = M;(z) — My (z) if
Mi(z) > Ms(z) and M (x) = 0 otherwise. We denote the empty multiset with @. For
the rest of the paper by multiset we mean a finite multiset.

In this work we treat aggregates as relations — an aggregate relation on D is any
relation R C M(D;) x D,. An aggregate relation R represents an aggregate function
when for every multiset M there is exactly one element d € D, such that (M, d) € R.
Examples of aggregate relations are CARD C M(D) x IN for any set D defined as
(M,d) € carD ifandonly ifd = >, M(z) and sum C M(IR) x IR “return-
ing” the sum of the elements in the input multiset, i.e. (M,d) € sum if and only if
d =3 ,cp*-M(x). Because we consider only finite multisets then both relations are
defined for all input multisets and consequently they are also aggregate functions. An
aggregate relation R C M(D1) x D, represents a partial aggregate function when for
every multiset M there is at most one element d € D, such that (M, d) € R. For ex-
ample taking an average of an empty multiset is not defined. So the aggregate relation
AVG C M(IR) x IR is a partial aggregate function.

Another advantage of representing aggregates as relations is that we can obtain new
aggregate relations by composition of an existing aggregate with another relation. Let
R C M(D;) x D, be an aggregate relation and P C Dy x Dj a binary relation.
The composition of R and P is an aggregate relation Rp C M (D7) x D3 defined as
follows: (M,d) € Rp if and only if there exists a € D, such that (M,a) € R and
(a,d) € P. Typically, the binary relation P is some partial order relation on the domain
D. For example the sUM > aggregate relation means that the sum of the elements in the
multiset is greater than or equal to the second argument.

Monotonicity of aggregate relations is defined as follows.

Definition 2. Let R be an aggregate relation on D. We say that R is:

— monotone if (M7,d) € Rand M; C M, implies (M2, d) € R;
— anti-monotone if (M>,d) € Rand My C M, implies (M;,d) € R.
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3.2 Set Expressions, Aggregate Atoms, and Logic Programs

Aggregate programs are built over a set of propositional atoms At and a domain D. A
literal is an atom a (positive literal) or the negation of an atom not a (negative literal).
The complement L of a literal L is defined as L = not a if L = aand L = a if
L =not a.

A weight literal is an expression L = w where L is a literal and w € D is the weight
associated with L. A set expression is a finite set of weight literals. Syntactically, we
denote a set expression as {L; = wx, ..., L, = wy}. The set of all set expression is
denoted with S&. It forms a lattice under the subset order. However, since we consider
only finite set expressions, this lattice is not complete. For a set expression s, w(s)
denotes the multiset consisting of the weights of all weight literals in s.

An aggregate atom has the form R(s, d) where R is an aggregate relation, s is a set
expression, and d € D. An example of an aggregate atom is SUM> ({a = 1,b = 2},2).
Itis true in an interpretation I if the aggregate relation is true for the multiset consisting
of the weights of the literals true in I, i.e. if the sum of those weights is greater than or

equal to 2.
Arule hasthe form A < BiA...AB, where A isan atom called the head of the rule
and every B; is a a literal or an aggregate atom. The set B = {By, ..., B,} is called

the body of the rule. It can be partitioned in three sets namely, positive literals pos(B),
negative literals neg(B), and aggregate atoms aggr(B). An aggregate program is a
(possibly infinite) set of rules. A normal logic program is a set of rules which does not
contain aggregate atoms.

Definition 3. A monotone aggregate atom is an aggregate atom R(s, d) such that either
R is a monotone aggregate relation and s contains only positive weight literals, or R
is an anti-monotone aggregate relation and s contains only negative weight literals.
A definite aggregate program is a program which contains only positive literals and
monotone aggregate atoms.

3.3 Semantics of Aggregates

An interpretation for an aggregate program is defined as the set of atoms which are as-
signed the value true. The set of all interpretations is denoted with Z. It forms a complete
lattice under the subset inclusion order. Satisfiability of a literal L by an interpretation
I is defined in the usual way and denoted by I |= L.

For a set expression s and an interpretation 7 we denote with s’ the subset ex-
pression of s which contains only the literals which are true in I that is s’ = {L =
w € s | I = L}. We now define an evaluation function for set expressions as
[s]; = w(s?) that is the multiset of weights of all literals in s which are true in
I. Satisfiability of an aggregate atom R(s,d) is defined as follows: I = R(s,d) if
and only if ([s];,d) € R. For example, {b} = sum>({a = 1,b = 2},2) while
{a} l?é SUMZ({a =1,b= 2}7 2)

With every logic program with aggregates P we can associate an immediate conse-
quence operator T5??" in an obvious way.

Definition4. T3 (I)={A| A+ Be PandI |= B}
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For definite aggregate programs this operator is monotone.
Proposition 1. If P is a definite aggregate program then the 759" is monotone.

Example 1 (Party Invitation). A set of people S are invited to a party. A personp € S
accepts the invitation if and only if at least k,, of his friends also attend the party. With
every person p € S we associate an atom p denoting whether p accepts the invitation.
Let F, = {q1,...,qn,} C S be the set of friends of p. For every person p we have the
following rule:

p CARD>({q1 = 1,...,qn, = 1}, kp).

We note that CARD> is a monotone aggregate relation and there are no negative literals
in the program and in the set expression so the program is a definite aggregate program.
Consequently, the T2?9" operator is monotone.

Consider two people @ and b such that a will accept the invitation if and only if b
does and vice versa. The precise input is S = {a,b}, F, = {b} and F;, = {a}, and
ko = ky = 1. The program is the following:

a < CARD>({b =1},1).
b < CARD>({a = 1},1).

The least fixpoint of the T2?9" operator is the interpretation in which all atoms are false.
That is neither a nor b will attend the party. O

3.4 Partial Stable Models

We now recall the definition of the partial stable semantics [11] of aggregate programs.
It is defined using Approximation Theory so we have to define a partial approximating
operator of 757", We do this by extending Fitting’s ¢p operator for standard logic
programs [7] to aggregate programs. As a consequence the semantics is an extension of
the partial stable semantics of logic programs [12]. The ¢ p operator is defined by eval-
uating the bodies of the rules in three-valued logic. Our goal is to extend this function
to aggregate atoms.

First, we extend the evaluation function [s] , of set expressions to partial interpreta-

tions as follows:
[slir ) = (w(s™), w(s™)).

The result of [s] ;, ;) is a partial multiset of the form (M1, M>), i.e. My and M
are multisets such that M; C M,. For example, consider the partial interpretation
(I, I) = (0,{p,q}) and the set expression s = {p = 1,¢ = 1}. Then [[5]](11,12) =
(@, M) where M is a multiset containing two times 1 and no other elements, i.e.
M(1) =2and M(z) =0forall z # 1.

In three-valued logic, aggregates are interpreted as partial relations which take par-
tial multisets as input. In [11] we introduced a whole framework for defining semantics
of aggregate programs. Any interpretation of an aggregate symbol satisfying certain
properties gives rise to a different semantics. We also proposed the semantics obtained
by taking the most precise approximating aggregate, called ultimate approximating ag-
gregate.
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Definition 5. Let R € M(D) x D be an aggregate relation. The ultimate approxi-
mating aggregate of R is a function R : M(D)¢ x D — THREE. It is defined as
R((M17 M2)a d) = (Rl((Mla M2)7 d)a I52((1\417 MZ)a d)) where ﬁla R® : M(D)C x
D — TWO are the projections of R on the first and second component, defined as
follows:

RY((My, Ms),d) = tifand only if VM € [My, Ms] : (M,d) € R
R?((My, Ms),d) = tifand only if 3M € [My, M] : (M,d) € R

The next step is to define a valuation function for aggregate formulas in three-valued
logic. For convenience, we view a partial interpretation (Iy, I>) as a function I : At —
THREE defined as I(a) = (I1(a), I2(a)).

Definition 6 (Partial valuation function).

Hi( (A), for an atom A

Hi( ([s]7,d), for an aggregate atom R(s, d)
Hi(=F) = —H;(F)

Hi(F AG) = Hi(F) A Hi(G)

Hi(FV G) = Hi(F) Vi Hi(G)

Based on H; we define a three-valued immediate consequence operator $39" for
aggregate programs.

Definition 7. #p(I) = .J where J(A) = \/t{Hf(B) | A« Be P}

For logic programs without aggregates the %" operator coincides with Fitting’s
& p operator [7] and the ¥p operator defined by Przymusinski [12]. Partial stable models
of programs with aggregates are defined as the partial stable fixpoints of 379"

Example 2. Reconsider the program from Example 1:

a < CARD>({b =1},1).
b < CARD>({a = 1},1).

It has a two-valued well-founded model in which both a and b are false. This model is
also equal to the least fixpoint of 757" and to the single exact stable model. O

4 Tranglation to Normal Logic Program

In this section we present a translation of an aggregate program to a normal logic pro-
gram which preserves the set of partial stable models. Then we define the class of strat-
ified aggregate programs and show that they have two-valued well-founded models.
For two formulas F and G we denote that they are equivalent in two valued logic
with F' = G and that they are equivalent in three-valued logic with F' =3 G, that is
H:(F) = H;(G) for any partial interpretation I. Because two-valued interpretations
are also partial interpretations equivalence in three-valued logic implies equivalence in
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two-valued logic. The opposite is not true. This is because there are no tautologies in
three-valued logic. For example, p A (¢V —q) = pbutp A (¢ V —q) #3 p.

The translation ¢r(R(s, d)) of an aggregate atom R(s, d) is a propositional formula
F in disjunctive normal form — \/,_; F; where I is an index set. Every disjunct F; is
a conjunction of literals using only atoms from the set expression s and F; |= R(s, d).
More precisely, the disjuncts Fé o of F' are indexed by pairs (s1, s2) of subset ex-
pressions s; and s, of s such that s; C s5. The set expression s; contains the literals
which have to be true and s — s contains the literals which have to be false:

Fiuy = NI L=wes}ANI|L=we (s —5)}.

The translation of an aggregate atom R(s, d) is defined as

tr(R(s,d)) = V{F(ssl’sz) | s1 Cs2 Csand Ffy, .y ER(s,d)}
Proposition 2. A =3 tr(A) for every aggregate atom A.

Because set expressions are finite we can obtain a simpler translation if we consider
only minimal (treating a disjunct as a set of literals) disjuncts F(, ) Lettrm denote
this translation:

trm(R(s,d)) = \/{F(SSMZ) | F{s, s,y 1s @ minimal set of literals such that
1 C 85 C sand F(ssl’sz) = R(s,d)}
Example 3. Consider the program P consisting of the following rule:
a < SUM>({a=1,b=2},2).
The translation ¢r(P) of P is the program

a <+ b.
a+ aANb.
a+ notaAb.

On the other hand, the translation ¢trm (P) is the program

a < b.

Proposition 3. tr(A) =3 trm(A) for every aggregate atom A.

The translation of a program P is obtained by first translating all aggregate atoms in
all rules from P. Then, we rewrite the body of every rule to disjunctive normal form and
replace the rule with one rule for every disjunct. We denote the translation of a program
P with ¢r(P) or trm(P) depending on which translation we use for aggregate atoms.
The main result is an equivalence of the associated operators of the two programs.
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Theorem 1. F9" = &, (py = Pyrm(p)-

As a consequence the original and the translated programs have the same set of
partial stable models.
We now look at the translation of definite aggregate programs.

Proposition 4. If P is a definite aggregate program then trm(P) is a definite normal
program.

Definite logic programs have a two-valued well-founded model which coincides
with the single exact stable model. Consequently, this property also holds for definite
aggregate programs.

Proposition 5. A definite aggregate program has a least model which is equal to the
single two-valued partial stable model and the well-founded model.

More generally, we can define a stratification of a program with aggregates which
corresponds to a stratification of its translation.

Definition 8 (Dependency Graph). The dependency graph of a program P is a signed
directed graph. Its nodes are the set of atoms of the program P. There is an edge from
a to b if and only if there is a rule in P with a in the head and b in the body or in a set
expression of an aggregate atom. The edge is positive if all occurrences of b in all rules
for a are either in a positive literal, in a positive weight literal of a monotone aggregate
relation, or in a negative weight literal of an anti-monotone aggregate relation. In all
other cases the edge is negative.

Definition 9 (Stratified Aggregate Program). An aggregate program is stratified if
the dependency graph does not have a cycle containing a negative edge.

For normal logic programs, the notions of dependency graph and stratification coin-
cide with the standard definitions [1]. The previous definition of stratification of aggre-
gate programs [10] (also used in [5]) is more restrictive than ours and covers a smaller
class of aggregate programs. The difference is that they do not differentiate between
monotone, anti-monotone, and non-monotone aggregate relations.

Proposition 6. If an aggregate program P is stratified then ¢trm (P) is stratified.

For stratified logic programs without aggregates the well-founded model is two-
valued and coincides with the perfect model and the single exact stable model. Conse-
quently, stratified aggregate programs also have a two-valued well-founded model.

Example 4. Consider the program P consisting of the two rules:

a ¢ CARD>({a =1},1).
b + CARD<({a = 1},0).

This program is stratified according to Definition 9. but it is not stratified according to
[2,10]. Also, the associated T'5?" operator is non-monotone.
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The translations ¢r(P) and ¢trm(P) are both equal to

a <+ a.
b < not a.

which is a stratified logic program with a two-valued well-founded model {b}. O

We finish the section with a a remark that our definitions of definite and stratified
aggregate programs do not cover the entire class of aggregate programs which are trans-
lated to definite (resp. stratified) programs.

Example 5. Consider the program P consisting of the single rule:
a < SUM> ({not a = —2,b = 3},0).

Because the set expression of the aggregate in the body contains both positive and
negative numbers, the SUM> aggregate is non-monotone. So, the program is neither
definite nor stratified. However, the translation of the aggregate is trm(Sum> ({not a =
—2,b=3},0)) = aV band of the program is trm(P) =

a < a.
a < b.

which is a definite normal program. Using an algebraic transformation of sum derived
aggregates [14] which is also valid under our semantics, the aggregate atom is equiva-
lent to sUM>({a = 2,b = 3},2) and the program P has the same set of partial stable
models as the program P’:

a < SUM> ({a = 2,b=3},2).

which is now a definite aggregate program. O

5 Proofs

To show that for definite aggregate programs the 75" is monotone (Proposition 1)
we only need to show that monotone aggregate atoms are monotone with respect to
interpretations.

Lemma 1. If R(s,d) is a monotone aggregate atom and I and J are interpretations
suchthat I C J then I = R(s,d) implies J = R(s, d).

Proof. First, consider then case when s contains only positive weight literals and R is
monotone. Then [s], C [s], and consequently ([s],,d) € R implies ([s],,d) € R.
Similarly, if s contains only negative weight literals then [s], D [s],. Consequently
([s],,d) € rimplies ([s] ;,d) € R because R is an anti-monotone aggregate relation

Before proving Proposition 2 we give an alternative characterization of Ff81 5) =
R(s, d) in terms of the ultimate approximating aggregate R of R.
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Lemma2. F, ., = R(s,d)ifandonlyifforall M € [w(s1),w(s2)] : (M, d) € Rif
and only if ((w(s1),w(sz)),d) € R*.

Proposition 2. A =3 tr(A) for every aggregate atom A.

Proof. We have to prove equivalence for the two components %! and H? of A and
for each component we have to prove two directions. Let A be an aggregate atom of
the form R(s, d). Fix a partial interpretation I and let (s;,s5) = s! and (M, M) =
(w(s1),w(sz2)). Inthe proof we treat ¢r(A) as a set of formulas.

(H', =) Suppose that #}(A) = t. This implies that (w(s1),w(s2),d) € R'
and by Lemma 2 F(, . | R(s,d). So, F,, ., € tr(A). Itis also the case that
H(F,, 4,)) = t and consequently H3(F) = t.

(H!, <) Suppose thatH}(tr(A)) = t. This means that there is a disjunct F(SS,I,S,Q) €
tr(A) such thatH}(F(ss,l’sé)) = t. Thismeans that (s}, s5) <, (s1,s2) and so [s1, s2] C
[s],sh]. By definition of ¢r(A), Flu o) € tr(A) only if for all M € [w(s}),w(s})],
(M,d) € R. Because [s1,s2] C [s},sh] then also for all M € [w(s1),w(s2)] =
[Mi, Ms], (M, d) € Rand hence H}(A) = t.

(H?, =) Assume that H%(R(s, d)) = t. This means that there exists M € [My, M>]
suchthat (M,d) € R. Let s’ € [s1, s2] be the set expression such that w(s') = M. This
means that F¢, ., € tr(A) and it has the form

Foomv= N LA N Ian A\ T

L=we€s, L=weEs—s2 L=weEsa—s1

where the sign of the literals in the third group depend on whether L = w € s'.
The important thing is that all literals in the first and second group are true in I and
all literals in the third group are undefined in I. So ’H%(F(Ss,’s,)) = t. Consequently
’H%(tr(A)) =t.

(H?, <) Suppose that H%(A) = f. This means that there does not exist a multiset
M € [M, M) such that (M, d) € R which is equivalent to

VM € [w(s1),w(s2)]- (M,d) & R. (1)

Assume also that H%(tr(A)) = t. This means that there exists a disjunct Fey oy €
tr(A) such that Hfr(F(s ) = t. By definition of ¢r(A4) for this disjunct we have that

51,55)
(w(s)),w(sh),d) € R* or YM' € [w(s}), w(sh)]. (M',d) € R. Together with (1) this
implies
[31732] n [sllaSIQ] =0. (2)

The next step is to show the following:
(51 € 82) V(51 C 83) @)

Assume the opposite, i.e. s] C s2 and s; C s5 and let s’ = s1 U s{. Because s; C s9
and sj C s thenalso s’ C sq. Similarly, s" C s5. Thus, s’ € [s1, s2] and s' € [s], s5]
which is a contradiction with (2).
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Finally, we do a case analysis of (3). Suppose that s} € s2. This means that there
exists a weight literal L = w € s such that L = w ¢ s». For this literal we have
H%(L) = f and consequently H%(F(ss’l,sé)) = f which is a contradiction. Now, consider
the case when s; ¢ 5. This means that there exists a weight literal L = w € s; such
that L = w ¢ s5. Note that L = w € (s — s5) and for this literal #3(L) = t and
consequently #%(L) = f. Again, we arrive at a contradiction HUE o)) =t O

Proposition 3. tr(A) =3 trm(A) for every aggregate atom A.

Proof (Sketch). Fix a partial interpretation I. If F(; 52),F(SS,1 s) € tr(A) such that
(s1,82) <p (s1,sh) then Hf(F(SSI,SQ)) >y Hf(F(ss,l,s,Q)). Consequently, removing the

disjunct Fss,1 o) from tr(A) will not affect its truth value. O

The proofs of Proposition 4 and Proposition 6 are based on the following two lem-
mas.

Lemma 3. LetR(s,d) be an aggregate atom where R is a monotone aggregate relation.
Then

trm(R(s,d)) = \/{F&hs) | F(, s is @aminimal set of literals such that
s1 Csand F, y F R(s,d)}

As a consequence, all weight literals in the set expression s which are used in the
translation keep their sign.

Lemma 4. Let R(s,d) be an aggregate atom where R is an anti-monotone aggregate
relation. Then

trm(R(s,d)) = V{F(SQ,SZ) | Fp,s,) is @ minimal set of literals such that
s2 Csand Fj ..y E R(s,d)}.

As a consequence, all weight literals in the set expression s which are used in the
translation change their sign.

6 Redated Work

A closely related work is the extension of the stable semantics to programs with weight
constraint rules [14]. A weight constraint is an expression of the form I < s < u where
s is a set expression and [ and v are real numbers or one of the symbols —oo, +00. In
our syntax such expression corresponds to the formula SUM > (s,1) A SUM<(s,u). The
precise relationship between the stable semantics of weight constraint rules and exact
stable models of aggregate programs as defined in [11] and in the present paper has
been studied in [11]. We have shown that for weight constraints without upper bound,
i.e. u = 400, the two semantics coincide. However, for weight constraints with upper
bound, the two semantics may be different.
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Example 6. Consider the weight constraint program P,,. = {a + {not a} < 0}. Intu-
itively, the rule expresses the fact that a is true if not a is false or equivalently, a is true if
a is true. The aggregate program corresponding to P, is P = {a <~ CARD<({not a =
1},0).}. According to Definition 3 this is a definite aggregate program with a monotone
Tp%%" operator. Its least fixpoint is the empty set. By Proposition 5 this is also the single
stable model. This can also be seen by the translation to a normal logic program which
is tr(CARD< ({not a = 1},0)) = a and tr(P) = {a + a.}.

However, under the semantics of weight constraints a rule with an upper bound is
translated to a rule with a lower bound by introducing an intermediate atom:

a « not b.
b+ 1< {nota=1}.

This program is equivalent to the program P’ = {a < not b. b < not a.} which has
two stable models {a} and {b}. So the stable models of the original program are {a}
and @, contrary to intuition. O

A translation of weight constraints to nested expressions which preserves the set
of answer sets is given in [6]. The semantics of weight constraints and consequently
the translation of [6] is defined only for set expressions with non-negative weights. For
multisets of such numbers, the aggregate relation sum> is monotone. For weight con-
straints of the form [ < s, the translation of [6] is exactly the same as ¢rm. However,
because of the different semantics of weight constraints with upper bounds the transla-
tion which we give and the one from [6] are different.

7 Conclusion

If a stratified aggregate program has a two-valued well-founded model according to the
semantics of [11] then any other semantics of aggregate programs which is more precise
(according to Approximation Theory) also has a two-valued well-founded model. In
particular this holds for the ultimate semantics of aggregate programs [5].

Our definition of stratification can also be applied to other languages and seman-
tics in which one can make a distinction between monotone, anti-monotone, and non-
monotone aggregates. For example weight constraints with lower bounds [14] are mono-
tone® while weight constraints with upper bounds are anti-monotone.

In this paper the proof that stratified aggregate programs have a two-valued well-
founded model was done by a translation to a normal logic program. We believe that it
is possible to define standard model of stratified aggregate programs in the same way
as [1] and perfect model in the same way as [13] thus giving a semantics of stratified
aggregate programs which is independent of [11].
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