
CR-Prolog � : CR-Prolog with Ordered Disjunction

Marcello Balduccini and Veena Mellarkod

Computer Science Department
Texas Tech University

Lubbock, TX 79409 USA�
balduccini, mellarko � @cs.ttu.edu

Abstract. We present CR-Prolog � , an extension of CR-Prolog with an improved
semantics, and allowing ordered disjunction in the head of both regular rules and
consistency-restoring rules. The new semantics yields intuitive conclusions in
cases when CR-Prolog would give unintuitive results. The use of ordered disjunc-
tion often allows for a more concise, easier to read, representation of knowledge.
We also show how CR-Prolog � can be used to represent preferences intended
both as strict preferences (like in CR-Prolog), and as desires (like in LPOD,
where ordered disjunction was initially introduced). Finally, we show how the
new language can be used to represent complex knowledge and to perform fairly
sophisticated reasoning tasks.

1 Introduction

In recent years, A-Prolog – the language of logic programs with the answer set seman-
tics [9] – was shown to be a useful tool for knowledge representation and reasoning
[8]. The language is expressive and has a well understood methodology of representing
defaults, causal properties of actions and fluents, various types of incompleteness, etc.
The development of efficient computational systems [16,6,12,15] has allowed the use
of A-Prolog for a diverse collection of applications [10,14,17,13].

It seems however that A-Prolog lacks the ability to gracefully perform the reasoning
needed for certain types of conflict resolution, e.g. for finding the best explanations of
unexpected observations. To solve the problem, in [2] the authors introduced CR-Prolog
– an extension of A-Prolog by consistency-restoring rules (cr-rules) with preferences.

In this paper we present CR-Prolog � , an extension of CR-Prolog with an improved
semantics, and allowing ordered disjunction [5] in the head of both regular rules and
consistency-restoring rules (cr-rules). The new semantics yields intuitive conclusions in
cases when CR-Prolog would give unintuitive results. The use of ordered disjunction,
when the preference order on a set of alternatives is total, allows for a more concise,
easier to read, representation of knowledge. The flexibility of the preference relation
in CR-Prolog � is such that meta-preferences from LPOD [5] can be encoded in CR-
Prolog � using directly its preference relation, rather than requiring the definition of a
new type of preference. We show how CR-Prolog � can be used to represent preferences
intended both as strict preferences (like in CR-Prolog), and as desires (like in LPOD).

CR-Prolog � : CR-Prolog with Ordered Disjunction 99

The paper is structured as follows. We start with the syntax and semantics of CR-
Prolog � . Next, we compare the new language with CR-Prolog and LPOD, and show
how the new language can be used to represent complex knowledge and to perform
fairly sophisticated reasoning tasks. Finally, we summarize the paper and draw conclu-
sions.

2 Syntax and Semantics

Let � be a signature containing symbols for constants, variables, functions, and pred-
icates (denoted by ���������
	��
� , ������	��
� , ��������	��
� and ��������	��
� , respectively). Terms,
atoms, and literals are defined as usual. Literals and terms not containing variables are
called ground. The sets of ground terms, atoms and literals over � will be denoted by��� ��!"��	��
� , ������!#��	��
� , and $&%��
	��
� .
Definition 1. A head expression is either an epistemic disjunction of literals ('�(or ' � or)�)�) or '�* , with +-,/.) or an ordered disjunction of literals ('�(102' �30))�) 02'�* , with+5476).

Definition 2. A regular rule of CR-Prolog � is a statement of the form:

�98;:=<>$?(�@)�)) @A$CBD@
not $ BFEG(@))�) @ not $CH (1)

where : is a head expression, $ (@))�) @I$CH are literals, and � is a term representing the
name of the rule. If : is an epistemic disjunction, the intuitive reading of the rule is
as usual. If : is an ordered disjunction, the intuitive meaning of the rule is [5]: if the
body of the rule is satisfied by the agent’s beliefs, then the agent must believe the first
(leftmost) element of : , if possible; otherwise it must believe the second element, if
possible;))�) otherwise, it must believe the last element of : .

For example, program J
or KML not N�O

yields two possible conclusions: PI��Q and PSR�Q . On the other hand, programJ
T KUL not N O
forces the agent to believe � , and programJ
T KVL not N OW L not WSX J X not N O
forces the agent to believe R (since believing � is made impossible by the second rule).

Definition 3. A cr-rule is a statement of the form:

�98;: E<>$ (@)�)) @A$ B @
not $ BFEG(@))�) @ not $CH (2)

where � is the name of the rule, : is a head expression, and $�(�@)�)) @A$ H are literals. The
rule says that if $?(�@)�)) @I$CB belong to a set of agent’s beliefs and none of $?BMEY(S@))�) @A$ H

100 Marcello Balduccini,Veena Mellarkod

belongs to it then the agent “may possibly” believe one of the elements of the head
expression. This possibility is used only if the agent has no way to obtain a consistent
set of beliefs using regular rules only. If : is an ordered disjunction, the preference
order that the agent uses to select an element from the head expression goes from left
to right, as for regular rules. If : is an epistemic disjunction, then all the elements are
equally preferable.

For example, program J
or K��L not NW O

only forces the agent to believe � (the cr-rule need not be applied, since the program
containing only the second rule is consistent). On the other hand, programJ

or K �L not NW OL not
J X not K�O

forces the agent to believe either P�� @ ��Q or P�� @AR�Q . If finally we want the agent to prefer
conclusion � to conclusion R when possible, we writeJ
T K��L not NW OL not

J X not K�O
which yields a unique set of beliefs, P�� @?��Q . Notice though that adding new information
to the above program, for example a new rule < � , forces the agent to retract the
previous conclusions, and believe P�� @IR�Q .

We will use the term rule to denote both regular rules and cr-rules. As usual, non-ground
rules are intended as schemata for their ground counterparts.

Definition 4. Preferences between cr-rules are expressed by atoms of the form������� � � 	?� (@ � � � . If all preferences in a program are expressed as facts, we say that the
program employs static preferences. Otherwise, preferences are dynamic.

Definition 5. A CR-Prolog � program,
�

, is a pair ��� @���� consisting of signature � and
a set � of rules of form (1) or (2). We require that ��������	��
� does not contain � '���% �
� , and
that ��������	��
� contains ������� � � and does not contain �S� ��$, ��%������ , and %�� ������� � ������� .
Signature � is denoted by � %	� 	 � � ; �
����� �
	 � � , ��������	 � � , ��������	 � � , ������!"� 	 � � and$&%��
	 � � are shorthands for �
����� �
	 � %	� 	 � � � , ��������	 � %	� 	 � �A� , ��������	�� %
� 	 � � � , ������!#��	 � %	� 	 � �A�
and $&%��
	 � %	� 	 � � � , respectively. Let � be a set of predicate symbols from � . By ������!#��	 � @��3�
we denote the set of all atoms from ������!#��	 � � formed by predicate symbols from � .
(Whenever possible we drop the first argument and simply write � ����!"��	��3�). The set
of rules of

�
is denoted by �S� $?����	 � � . If
 is a rule of

�
then '�������	�
���� : , and� ����� 	�
���� PS$?(�@)�)) @A$CB9@ not $CBMEY(�@)�)) @ not $ H Q .

Programs of CR-Prolog � are closely related to abductive logic programs [11,7] – pairs
� � @���� where

�
is a program of A-Prolog and � is a set of atoms, called abducibles1.

1 Recall that the semantics of an abductive program is given by the notion of generalized answer
set – an answer set ������� of ��� � where �"!$# ; ������%��'&(����� �)� if ��%+*�� � . We
refer to an answer set as minimal if it is minimal with respect to this ordering.

CR-Prolog � : CR-Prolog with Ordered Disjunction 101

The semantics of the language is based on a transformation '�� 	 � � of its programs into
abductive programs.

Definition 6. The hard reduct '���	 � � � � ��� @A������!"� 	 ��� @�PS�S� ��$ Q���� is defined as fol-
lows:

1. let � be a set of new constant symbols, such that every element of � is uniquely
associated with an atom from � %	� 	 � � . We will denote the constant associated with
atom � by ��� ;

2. ��%	� 	 � � � extends � %	� 	 � � so that: �
����� �
	 � � � � ���������
	 � �	�
� , ��������	 � � � �������� 	 � ��� PS� '���% �
� Q , and �����S��	 � � ��� ��������	 � ��� PS�S� ��$�@ ��%�������@ %�� ������� � ������� Q .
3. let � � be set of rules obtained from

�
by replacing every cr-rule,
 , with a rule:

N
��������� ��� � L�������� ��� � X � J�J � �CN �
where � is the name of
 . Notice that � � contains only regular rules;

4. the set of rules of
� �

is obtained from � � by replacing every rule,
 , such that'�������	
 ��� ' (0 ' � 0)�)) 0#'�* , with the following rules: (� is the name of rule
)
(a) ��!�L"������� ��� � X � J�J � �$#%����&'#%� �CN X)(+*�, � � for -/.0&1.
2 ;
(b) 3�&&N4�5� �CN ��L"� J�J � �$#%����&'#%� �CN X)(+*�, � � for -/.0&�.62 ;
(c)

J N4��3�� N �$#����4&'#�� �CN X7(8*5, � X #%����&'#%� �CN X9(8*�,;:�< � � for -=.0& &62 ;
(d) L>������� ��� � X not 3�&&N���� �CN � .

5.
���

also contains the following set of rules, denoted by
�@?

:
ABBBBBBBBBBBBC BBBBBBBBBBBBD

% transitive closure of predicate preferE %'F ��& W J N���3�� N N4��� �'G
- X G=H � L J N4�43�� N��'G
- X G=H �AOE %JI �K& W J N���3�� N N4��� �'G
- X G=H � L J N4�43�� N��'G
- X G/L � X& W J N4��3��
N�N4�5� �'GML X G=H �AO
% no circular preferencesE � � L>& W J N4�43�� N�N���� �'G X G �AO
% prohibit application of G
- and G=H if
% GN- is preferred to G=HE�O � L>� JSJ � �'G
-)� X � J�J � �'G/H � X & W J N���3�� N�N���� �'G
- X G=H �AO

Let us compute the hard reduct of the following program:

� %

ABBBC BBBD
N % � J L not K�ON � ��N L not W ON O ��K LQPAON5RM� W LQPAO

N�SM� L J X N�O
N5T/��K T W �L O
N�UM�VP �L O

� � < � �XW� < � � ? , where
�0W� < is:

ABBBBBBBBC BBBBBBBBD

N % � J L not K ON �M� N L not W ON O � K LQPION5R/� W LQPIO
N S � L J X N�O

N %TYF � K LZ� J�J � �$#�����&J#�� �CN T X7(\[� � X � J�J � �CN T �AON �TYF � W LZ� J�J � �$#�����&J#�� �CN T X7(K] � � X � J�J � �CN T �AON %T7I �^3�&&N4�5� �CN5T �GLZ� J�J � �$#�����&J#�� �CN5T X7([� � X � J�J � �CN5T��AON �T7I �^3�&&N4�5� �CN5T �GLZ� J�J � �$#�����&J#�� �CN5T X7(] � � X � J�J � �CN5T �AON TY_ � J N4��3�� N �$#����4&'#�� �CN T X7(\[� X #%����&'#%� �CN T X7(K] � �AON TY` � LZ� J�J � �CN T � X not 3�&&N���� �CN T �AON�aU � PGLZ� J�J � �CN�U��AO

102 Marcello Balduccini,Veena Mellarkod

The generalized answer sets of '���	 � (S� are: (we omit the atoms formed by % � ������� �S�������
and ��%������):

� %�� � J N4��3��
N��$#%� �4&'#%� �CN5T XY([� X #%����&'#%� �CN5T X7(] � � X� J�J � �CN T � X � J�J � �$#�����&J#�� �CN T X7(\[� � X K X N �� � � � J N4��3��
N��$#%� �4&'#%� �CN T XY(K[� X #%����&'#%� �CN T X7(K] � � X� J�J � �CN5T�� X � J�J � �$#�����&J#�� �CN5T X7(] � � X WSX J �� O � � J N4��3��
N��$#%� �4&'#%� �CN T XY(K[� X #%����&'#%� �CN T X7(K] � � X� J�J � �CN U � X P X K X W �

� R � � J N4��3��
N��$#%� �4&'#%� �CN5T XY([� X #%����&'#%� �CN5T X7(] � � X� J�J � �CN T � X � J�J � �$#�����&J#�� �CN T X7(\[� � X K X N X� J�J � �CN U � X P X�W �� S � � J N4��3��
N��$#%� �4&'#%� �CN5T XY([� X #%����&'#%� �CN5T X7(] � � X� J�J � �CN T � X � J�J � �$#�����&J#�� �CN T X7(K] � � X K X� J�J � �CN U � X P X�W �
Intuitively, not all the generalized answer sets appear equally appealing w.r.t the prefer-
ences expressed in the program. The following definition formalizes this idea.

Definition 7. Let
�

be a CR-Prolog � program, and � , � W be generalized answer sets
of '�� 	 � � . We say that � dominates � W (and write ����� W) if:

� �S� ��$ 	&��(
�	�
� @A�S� ��$?� ������� W s.t.%�� ������� �S��������	?��(@ � � �	�
��
�� W) (3)

To see how this definition works, let us apply it to the generalized answer sets of pro-
gram

� (above. According to Equation (3), � (��� � . In fact �S� ��$?� '���% �
��	&����@A���
� �
belongs to � (, �S� ��$ 	 ��'���% �
��	?����@A��� � � belongs to � � , and ������� �S��	 ��'���%�����	?��� @A����� @��'���% �
��	?����@A��� � � belongs to � 6 and ��� . In a similar way, ��������� .
If a generalized answer set is dominated by another, it means that it is not as “good” as
the other w.r.t. some preference contained in the program. Consider � � , for example:
since it is dominated by � (, the intuition suggests that � � should be excluded from the
belief sets of the agent. Generalized answer sets that are equally acceptable w.r.t. the
preferences are called candidate answer sets, as stated by the next definition.

Definition 8. Let
�

be a CR-Prolog � program, and � be a generalized answer set of' � 	 � � . We say that � is a candidate answer set of
�

if there exists no generalized
answer set, � W , of '�� 	 � � such that � W ��� .

Hence, � � and � � above are not candidate answer sets of
� (, while �U(, ��� , and � �

are. Now let us compare �U(and � � . Set �V(is obtained by abducing �S� ��$A	&� � � and� � ��$A	?��'���% �
��	&� � @ � � �A� . Set � � is obtained by abducing � � ��$A	&� � � , � � ��$A	?��'���% �
��	&� � @ � � � �
and �S� ��$ 	&��� � . According to the intuition, �S� ��$A	&� � � is abduced unnecessarily, which
makes � � less acceptable than �V(. We discard belief sets such as � � by applying a
minimality criterion based on set-theoretic inclusion on the abducibles present in each
set. The remaining sets are the answer sets of the program.

Definition 9. Let
�

be a CR-Prolog � program, and � be a candidate answer set of
�

.
We say that �!
 $&%��
	 � � is an answer set of

�
if there exists no candidate answer set,

� W , of
�

such that � W
 ������!#��	 P��S� ��$�Q��#"�� .

Since � (
 ������!"��	 PS�S� ��$ Q��$"���� , �#��
5$?%��
	 � (� is not an answer set of
� (. In conclu-

sion, the answer sets of
� (are � (
 $&%��
	 � (� and � �
 $&%��
	 � (� .

Let us apply the above definitions to compute the answer sets of some sample programs.

CR-Prolog � : CR-Prolog with Ordered Disjunction 103

Example 1. Consider the following program:

� �
AC D N % �

J L N X not K�ON �M��N O
N O � W �L N O

Intuitively, ��� should not be applied, since program
� ���VP ��� Q is consistent. Hence, the

only answer set of
� � should be PI��@A� Q . Let us check that this intuition is captured by

our definition. The first element of '���	 � � � is
� ��� � �XW� � � � ? , where

�0W� � is:

� a� �
AC D N % �

J L N X not K ON � ��N�ON aO � W L N X � J�J�� �CN O �AO
The generalized answer sets of '�� 	 � � � are � (� PA�Y@ ��Q and � � � PI��@A��@I� @A�S� ��$?� � � Q .
Since the program does not contain preferences, � (and � � are the candidate an-
swer sets of

� � . Notice that � �
 $?%��
	 � � � is not an answer set of
� � , since � (
� ����!"��	 P�� � ��$�Q��#"�� � . Hence, � (is the only answer set of

� � .

Example 2. Consider the following program:

� O
ABBC BBD
N % ���3L J ON � ���3L N ON O ���3L K�ON5RM���3L W O

N S F � L not � ON S I ��L not ��O N5T/� J T K��L O
N�UM��N T W �L O

The generalized answer sets of '���	 � � � are:
� %�� � J N4��3��
N��$#%� �4&'#%� �CN5T XY(�� � X #�����&J#�� �CN5T X7([� � XJ N4��3��
N��$#%� �4&'#%� �CN U XY(� � X #%����&'#%� �CN U X7(K] � � X� J�J � �$#�����&J#�� �CN T X7(� � � X� J�J � �$#�����&J#�� �CN�U X7(] � � X J X WSX � X � �

� � � � J N���3�� N �$#�����&J#�� �CN5T X7(
� � X #%����&'#%� �CN5T X7([� � XJ N���3�� N �$#�����&J#�� �CN U X7(�� � X #%� �4&'#%� �CN U X7(K] � � X� J�J�� �$#%����&'#%� �CN U X7(�� � � X� J�J�� �$#%����&'#%� �CN5T X7([� � X N X K X � X � �
Since �V(��� � and � � ���V(, � � has no answer sets.

As the reader may have noticed, the names of rules can be safely omitted when they
are not used to specify preferences. In the rest of the paper, we will omit them when
possible.

3 CR-Prolog � and CR-Prolog

CR-Prolog � has two main advantages over CR-Prolog: the availability of ordered dis-
junction and the improved semantics, which solves some problems present in the se-
mantics of CR-Prolog.

Ordered disjunction allows for a more concise, easier to read, representation of knowl-
edge when the preference order on a set of alternatives is total. Consider the following
program: ABBBBBC BBBBBD

N % ������P�� E ����P � �L O
N � ������P��CN4&'#�� � �L O
N O ������P��$#IN���#%2^�
N � �L OJ N4�43�� N��CN % X N � �AOJ N4�43�� N��CN � X N O �AO

����P L ����P ��
 �AOW PY��N����FL ��� (�� N�� X not ����PIOL W PY��N�����O

104 Marcello Balduccini,Veena Mellarkod

Since the preference order between the cr-rules is total, the program can be quite sim-
plified by introducing ordered disjunction:

ABBC BBD
����P � E �5��P � T ����P �CN�&'#%� � T ����P �$#AN4��#�2 � N � �L O����PYL ����P ��
 �AOW PY��N����FL � � (�� N4� X not ����PIOL W P)� N�����O

Moreover, ordered disjunction can be used to concisely represent a set of alternatives
among which one must be chosen. It may be instructive to compare how A-Prolog, CR-
Prolog, and CR-Prolog � can be used in this context. Suppose we want to encode the
statement

“normally, hard-working graduate students
receive A in the courses they take.”

(4)

We might simply represent it with a default:

N4�5#���& ����� � � X � X � � L � � N�� � ��N42^& (�� � � � X PY����2 � � X � � X
not � N4��#%��& ����� � � X � X � �AO

Consider now the additional information “Frank is an hard-working student, but he
took AI, and did not receive A”. It would seem natural to conclude that Frank probably
received a B, but our simple representation of (4) does not yield this conclusion. Writing
in A-Prolog a set of defaults that embodies the common-sense knowledge about this
domain can prove tedious. A possible solution is:ABBBBBBBBC BBBBBBBBD

�%�%P)PY� N � N������ �$� X �)�AO �%�%P P7� N � N������ �$� X # �AON���#��5& ����� � � X�� - X � � L ����N4� � � N42�& (�� � � � X P)�4�42 � � X � � X
not � N���#��5& ����� � � X�� - X � � X�%�%P)PY� N � N������ � � H X�� -)� X
� N���#%��& ����� � � X�� H X � �AON4��#%��& ����� � � X � X � � L ����N4� � � N42�& (�� � � � X P)�4�42 � � X � � X
not � N���#��5& ����� � � X � X � �AO

(5)

The first rule says that, normally, an hard-working student takes grade �
6 in the courses
he attends, unless he takes a better grade. The second rule is needed because the previ-
ous statement does not apply to grade A, as there is no better grade than that. 2 Given
the information: AC D ����N4� � � N42^& (�� �J3�N�� (2 �AOPY����2 �J3�N4� (2 X ��&	�AO

� N4��#%��& ����� �J3�N4� (2 X � X ��&	�AO (6)

the program correctly concludes �����
�S%�������	������ ��+ @ � @I� %�� . On the other hand, if infor-
mation is represented as: AC D � � N�� � ��N�2�& (�� �J3�N4� (2 �AOP)�4�42 �J3�N4� (2 X ��&
�AOL;N���#��5& ����� �J3�N�� (2 X � X ��&
�AO (7)

the program still fails to yield the intuitive conclusion.
2 Several options are possible in order to avoid writing the second default, but none of them

seems completely satisfactory.

CR-Prolog � : CR-Prolog with Ordered Disjunction 105

A better way to solve the problem is offered by CR-Prolog. Consider the following
program: ABBBBBBBBC BBBBBBBBD

N � � X�� X � � � N���#��5& ����� � � X�� X � � �LQPY����2 � � X � �AOJ N4�43�� N��CN � � X � X � � X N � � X � X � � ��LQ����N�� � ��N�2�& (�� � � �AOJ N4�43�� N��CN � � X � X � � X N�� � X # X � � ��LZ� � N�� � ��N42^& (�� � � �AO
����� � N4����� � � X � ��L N4�5#���& ����� � � X�� X � �AOL>P)�4�42 � � X � � X not � �^� � N������ � � X � �AO

(8)

This program yields the expected conclusion with both (6) and (7).

Now let us consider a possible CR-Prolog � representation of (4):

AC D N4�5#���& ����� � � X � X � �
T

N4�5#���& ����� � � X � X � � TN4�5#���& ����� � � X # X � ��L PY����2 � � X � � X ����N�� � � N42�& (�� � � �AO (9)

It is easy to see that this program yields the desired conclusion independently of whether
the extra information is given in form (6) or (7). Moreover, the program is, in our opin-
ion, easier to understand than the previous ones.3

Not only CR-Prolog � is often more concise than CR-Prolog: it also allows to derive the
correct conclusions in cases when CR-Prolog returns unintuitive conclusions. To under-
stand when CR-Prolog may give unintuitive results, consider the following situation:

“We need to take full-body exercise. Full-body exercise is achieved
either by combining swimming and ball playing, or by combining
weight lifting and running. We prefer running to swimming and ball
playing to weight lifting, but we are willing to ignore our preferences,
if that is the only way to obtain a solution to the problem.”

(10)

According to the intuition, the problem has no solution unless preferences are ignored.
In fact, we can either combine weight lifting and running, or combine swimming and
ball playing, but each option is at the same time better and worse than the other ac-
cording to different points of view.4 If preferences are ignored, both combinations are
acceptable.

3 It is worth noticing that, although ordered disjunction provides a concise representation, it can-
not entirely replace the use of cr-rules. For example, (8) allows us to derive the grade received
by graduate students who are not hard-working, while (9) does not yield any conclusion about
them.

4 Both alternatives are valid if we intend preferences as desires, instead of strict preferences. See
the next section for a discussion on this topic.

106 Marcello Balduccini,Veena Mellarkod

Statement (10) can be encoded by the following program,
� � :

ABBBBBBBBBBBBBBBBBBBBC BBBBBBBBBBBBBBBBBBBBD

N � ��N�� (�L O
N] � W � & E �L O
N � � J � ��� ��� ��� �L O
N�� � � & 3 P � �5& � � P W �L O
3�� ��� ������� � � � N�#�& W � L � & 3 P �M��& � � P W�X N � (O3�� ��� ������� � � � N�#�& W � L W � & E X J � ��� ��� ��� OL not 3�� �;� � �4��� � � � N4# & W ��OJ N4�43�� N��CN � X N] �YL not & ��(� N4� J N4��3 W OJ N4�43�� N��CN ��X N � ��L not & ��(� N4� J N���3 W O
N�� ��& ��(��N4� J N4��3 W �L O

The generalized answer sets of '���	 � ��� are: (we show only the atoms formed by ����� ,��� %�! , ��$?� � � ��$ $, $&%���� � �S%	� '�� � , %	��������� ������� � , and ������� � �)

� % � � � &)3 P � ��& � �^P WSX N�� (X J N4��3��
N��CN ��X N] � X J N4��3�� N �CN � X N�� � �� �M� � W � & E X J � �^� ��� ��� X J N4�43�� N��CN � X N] � X J N4��3��
N��CN ��X N � � �� O � � & ��(��N�� J N���3 WSX � &)3 P � ��& � � P WSX N�� (�� R/� � & ��(��N�� J N���3 WSX�W � & E X J � �^� ��� ��� �� S � � & ��(��N�� J N���3 WSX � &)3 P � ��& � � P WSX N�� (X W � & E �� T/� � & ��(��N�� J N���3 WSX � &)3 P � ��& � � P WSX N�� (X J � ��� ��� ��� �� U � � & ��(��N�� J N���3 WSX�W � & E X J � �^� ��� ��� X � & 3 P �M��& � � P W �� U � � & ��(��N�� J N���3 WSX�W � & E X J � �^� ��� ��� X N � (���� � � & ��(��N�� J N���3 WSX � &)3 P � ��& � � P WSX N�� (X W � & E5X J � ��� ��� ��� �

Under the semantics of CR-Prolog, �9(and � � are the only minimal generalized answer
sets. Since �9(� � � and � ��� �D(, � � has no answer sets.

Under the semantics of CR-Prolog � , �D(and � � dominate each other, which leaves
only ��� @)�)) @ �	� as candidate answer sets. Since � � and � � are both minimal w.r.t. the
abducibles present in each candidate answer set, they are both answer sets of

� � , like
intuition suggested.

The reason for this difference is that, in the semantics of CR-Prolog, set-theoretic min-
imization occurs before the comparison of belief sets w.r.t. the preferences. In CR-
Prolog � , on the other hand, generalized answer sets are first of all compared w.r.t. the
preference relation, and only later set-theoretic minimization is applied. In our opinion,
giving higher relevance to the preference relation is a better choice (as confirmed by the
previous example), since preferences are explicitly given by the programmer.

4 Comparison with LPOD

In [4], the author introduces logic programs with ordered disjunction (LPOD). The
semantics of LPOD is based on the notion of preferred answer sets. In a later paper [5],
the authors introduce the notion of Pareto-preference between belief sets and show that

CR-Prolog � : CR-Prolog with Ordered Disjunction 107

this criterion gives more intuitive results that the other criteria described in [4,5]. In this
section, we compare LPOD (under Pareto-preference) and CR-Prolog � .

Consider program
� � < from [5]:ABBBBBBC BBBBBBD

% Have ice cream, if possible; otherwise, have cake.N % ��&'#%� #IN4��� E T # � 2^��O
% Have coffee if possible, otherwise, have tea.N � ��# �V3 3��5� T P7��� O
% It is impossible to have ice cream and cake together.L>&J#�� #AN���� E X #���3 3�����O

The preferred answer sets of
� � < in LPOD are:

P % �
� � ������!-@A���S��Q and P��
� + ��@A�
��� � ��� Q) (11)

There are no answer sets of
� � < according to the semantics of CR-Prolog � . The differ-

ence between the two semantics depends on the fact that Pareto optimality was intro-
duced to satisfy desires and it looks for a set of solutions that satisfy as many desires
as possible. On the other hand, our preference criterion corresponds to a more strict
reading of the preferences.

In order to make it easy to understand the relationship between the two types of prefer-
ence, we restate the Pareto criterion in the context of CR-Prolog � .

Definition 10. Let
�

be a CR-Prolog � program, and � , � W be generalized answer sets
of '�� 	 � � . We say that � Pareto-dominates � W (written as � � ? � W), if

� � J�J � �CN % ��� � X � J�J�� �CN � ��� � a s.t.& W J N4��3��
N�N4�5� �CN % X N � ��� ��� � a X and

� � � J�J�� �CN O ��� � X � JSJ � �CN R ��� � a s.t.& W J N4��3��
N�N4�5� �CN5R X N O ��� ��� � a&O
(12)

Definition 11. Let
�

be a CR-Prolog � program, � be a generalized answer set of' � 	 � � . We say that � is a Pareto-candidate answer set of
�

if there exists no gen-
eralized answer set, � W , of '���	 � � such that � W � ? � .

(Notice that Pareto-domination is essentially a restatement of the Pareto criterion, in
the context of CR-Prolog � . Also, Pareto-candidate answer sets essentially correspond
to preferred answer sets.)

Now, to see the difference between Definitions 7 and 10, consider a program,
�

, and
generalized answer sets, �U(and � � , such that �U(dominates � � and vice-versa. Notice
that they do not Pareto-dominate each other. Under our semantics, none of them is a
candidate answer set of

�
. However, using Pareto-domination, � (and � � are incom-

parable and thus, both are eligible as Pareto-candidate answer sets (whether they really
are Pareto-candidate answer sets, depends on the other generalized answer sets).

In a sense, Definition 7 enforces a clearer representation of knowledge and of prefer-
ences. However, that does not rule out the possibility of representing desires in CR-
Prolog � . The defeasible nature of desires is represented by means of cr-rules. For ex-
ample, the program

� � < can be rewritten as follows,
� � � :

108 Marcello Balduccini,Veena Mellarkod

ABBBBBBBBBBBBBBBBBC BBBBBBBBBBBBBBBBBD

N %'F ��&'#%� #AN���� E �L O
N %JI �K#��^2^� �L O
N �)F ��#���3 3��5���L O
N �YI �\P7��� �L OL &'#%� #AN���� E X #���3 3�����O
N O � J N4�43�� N��CN %'F X N %JI ��L not �

J N���3�� N �CN %'F X N %JI �AON5R=� J N4�43�� N��CN �)F X N �YI ��L not �
J N���3�� N �CN �)F X N �YI �AO

N�S/� �
J N���3�� N��CN %'F X N %JI � �L O

N T � �
J N���3�� N��CN �)F X N �YI � �L O

W � � &'� L>&'#%� #AN���� E OW � � &'� L>#��^2^��O� &&K���&'� L>#���3 3��5��O� &&K���&'� L P7��� OL not W � � &'��OL not
� &&K ��&J��O

In
� � � , the desire to have ice cream over cake is represented by:

– a cr-rule, � � , that says that, “the agent may possibly give up his preference for
ice cream over cake”.

– a default, ��� , saying that, “the agent normally prefers ice cream over cake”.

In a similar way, we represent the desire for coffee over tea. The answer sets of the
above program are (we show only the atoms from cr-rules � (� - � ���) P % �
� � ���S��! @ ������Q
and PS�
� + ��@A����� � �S� Q , which correspond to (11).

Now suppose that we are more inclined to give up the preference about coffee and
tea rather than the preference about ice cream and cake. In the language of LPOD,
such priorities over rules are represented by the meta-preference relation 4 .5 The above
information is represented by adding to

� � < the rule ��� 4 ��� , which says that � � is
preferred to ��� .
Adding the same type of knowledge using CR-Prolog � is, in our opinion, more straight-
forward, because it does not require the introduction of a new type of preference rela-
tion in the language.6 The above information is represented in CR-Prolog � by adding
to
� � � the rule ������� �S� 	&� � @ � � � , which says that belief sets obtained by giving up the

preference on coffee and tea are more acceptable than the belief sets obtained by giving
up the preference on ice cream and cake.

There are also some programs for which the semantics of LPOD seems to yield un-
intuitive results, while the semantics of CR-Prolog � gives results that agree with the
intuition. Consider the following example:7

Example 3. “John wants to go to the movies, if possible; otherwise, he will watch tv. If
he goes to the movies then wants to have popcorn if possible; otherwise, he will have

5 The connective used in [5] is � . In this paper we replace � by � to avoid confusion with the
symbol introduced in Definition 7.

6 It is still not sure if the two approaches are entirely equivalent. A thorough comparison is under
way.

7 We thank Richard Watson for noticing the problem with LPOD and suggesting the example.

CR-Prolog � : CR-Prolog with Ordered Disjunction 109

candy. Now popcorn is not available.”

ABBBBBBC BBBBBBD

% John prefers to go to a movie over watching tv.E ����& � T P ��O
% At the movies, he prefers eating popcorn over candy.J � J #���N (T # � (��� L E � ��&J��O
% Popcorn is not available.
�
J � J # � N (O

Intuitively, John should prefer going to the movies. Since popcorn is not available, he
will eat candy. Watching tv seems a less acceptable option. Under the LPOD semantics,
however, the above program has two answer sets: P !#����%���@I�
��������Q and P � ��Q , in contrast
to the intuition. The same program under CR-Prolog � semantics gives only one answer
set, P !#��� % ��@A��� ��� ��Q , which corresponds to the intuitive result. (The unintuitive result
by LPOD, we believe, may be caused by the fact that degree 1 is assigned to rules whose
body is not satisfied.)

5 Applications of CR-Prolog �
CR-Prolog � can be used to encode types of common-sense knowledge which, to the
best of our knowledge, have no natural formalization in A-Prolog. In this section, we
give an example of such use, and show how the alternative formalization in CR-Prolog
is less elegant and concise.

In the example that follows we consider a diagnostic reasoning task performed by an
intelligent agent acting in dynamic domains in the sense of [3]. Since space limitations
do not allow us to give a complete introduction on the modeling of dynamic systems in
A-Prolog and its extensions, we refer the reader to [1,2] for details on the formalization
used.

Example 4. “A car’s engine starts when the start key is turned, unless there is a failure
with some equipment responsible for starting the engine. There can be electrical fail-
ures, such as battery down or fuse burnt; or mechanical failures, such as clutch sensor
stuck or belt loose. In general, the electrical failures are more likely than the mechani-
cal failures. Among the electrical failures, battery down is more likely than fuse burnt.
Among the mechanical failures, clutch sensor stuck is more likely than belt loose.”

The knowledge contained in this story can be represented by the following action de-
scription,

���
:

ABBBBBBBBC BBBBBBBBD

% normally, a car’s engine starts when the start key is turned,
% unless there is a failure in start equipment.� �'� (�� & (� � (X���� -)� LZ����P ��N (2^��� X�� � X

� � �$��� � W P)� N5P � K���& J � X�� �AO
% battery being down causes failure in start equipment.� �$��� � W PY��N5P � K ��& J � X�� �GL � �$� ��P)P7� N�� ��� � (X�� �AO

110 Marcello Balduccini,Veena Mellarkod

ABBC BBD

% fuse being burnt causes failure in start equipment.� �$��� � W PY��N5P � K ��& J � X�� �YL � �J3�� W � � ��N (P X�� �AO
% clutch sensor stuck causes failure in start equipment.� �$��� � W PY��N5P � K ��& J � X�� �YL � � W � (�W ��N W P ��#%2 X�� �AO
% belt being loose causes failure in start equipment.� �$��� � W PY��N5P � K ��& J � X�� �YL � �$��� � P � ��� W � X�� �AO
% sometimes, battery is down or fuse is burnt,
% the former being more likely than the latter

N������ _ � � ��� � �$����P)PY� N4� ��� � (X�� � T � �J3�� W � � ��N (P X�� � �L O
% sometimes, clutch sensor is stuck or belt is loose,
% the former being more likely than the latter

N�� � _ * � � ���^� � W � (�W ��N W P ��#�2 X�� � T � �$�%� � P � ��� W � X�� � �L O
% electrical failures are more likely than mechanical failuresN � � � � � J N���3�� N��CN������ _ � � � X N � � _ * � � � �AO
% INERTIA� � � X�� � - ��LQ� � � X�� � X not � � � � X���� - �AO

� � � � X���� - ��L � � � � X�� � X not � � � X���� -)�AO
% REALITY CHECKSL"��� W � � X�� � X not � � � X�� �AOL"��� W � � � X�� � X not � � � � X�� �AO
% AUXILIARY AXIOMS� ��� X�� � LZ� J � ��� X�� �AO� � � X
	 ��L"��� W � � X
	 �AO

� � � � X�	 ��L"��� W � � � X�	 �AO
Let us add the following history to the action description:AC D �4� W � � � (�� & (� � (X�	 �AO� J � ��P ��N (2^�5� X
	 �AO�4� W � � � (�� & (� � (X - �AO

% CWA on initial observations��� W � � � X
	 ��L not ��� W � � X
	 �AO
The observation at time 6 is unexpected, and causes the program to be inconsistent
(because of the reality checks), unless at least one cr-rule is applied; because of the
preference encoded by � ? 	�� � , the preferred way to restore consistency is by applying��
���
 � 	?.�� ; of the two options contained in the head of ��
���
 � 	 . � , 'Y	 � ��� ���S� � ��� �U� @I. � is
the preferred one. Clearly, adding the belief 'Y	 � ��� ���S� � ��� �U� @A.�� restores consistency
of the program, and explains the unexpected observation.

It is worth noticing that the statements encoded by rules �
���
 ��� 	�� � , �SB
 ��� 	�� � and � ? 	�� �
of
� �

can be also represented without ordered disjunction. The three rules are replaced
by: ABBBC BBBD

N IJF���� � � � � � �$����P)PY� N4� ��� � (X�� � �L � � J � � ��# � � �AO
N����] � � � ���^� �J3�� W � � ��N (P X�� � �L � � J � � ��# � � �AO
N] ���] � � ���K� � W � (�W ��N W P ��#�2 X�� � �L � � J E ��#%� � � �AO
N I ��� � � � � � � �$�%� � P � �4� W � X�� � �L � � J E ��#%� � � �AO

CR-Prolog � : CR-Prolog with Ordered Disjunction 111

ABBBBBBC BBBBBBD

J N4��3�� N �CN I'F���� � � � X N����] � � � � �AOJ N4��3�� N �CN] ���] � � � X N I ��� � � � � �AO
N������ _ � � � � ��� J � � ��# � � � �L O
N � � _ * � � ���^��� J E �5#�� � � � �L OJ N4��3�� N �CN������ _ � � � X N � � _ * � � � �AO

The new program has (essentially) the same answer sets as the previous one. This shows
that the rules with ordered disjunction allow for a more concise and elegant representa-
tion of knowledge.

6 Conclusions

In this paper, we extended CR-Prolog by ordered disjunction and an improved seman-
tics, gave the semantics of the new language, and demonstrated how it differs from CR-
Prolog and LPOD. We also showed how CR-Prolog � can be used to formalize various
types of common-sense knowledge and reasoning. We could not find natural A-Prolog
formalizations for some of the examples in the paper, and formalizations in CR-Prolog
were often less elegant and concise (besides giving sometimes unintuitive results). In
comparison with CR-Prolog, we believe that the new features of CR-Prolog � make it
possible to write formalizations that are more natural, and reasonably elaboration tol-
erant. In comparison with LPOD, CR-Prolog � appears more expressive (because of the
availability of cr-rules and epistemic disjunction), and, in some cases, yields more intu-
itive results than LPOD.

7 Acknowledgments

The authors are very thankful to Michael Gelfond for his suggestions. This work was
partially supported by United Space Alliance under Research Grant 26-3502-21 and
Contract COC6771311, and by NASA under grant NCC9-157.

References

1. Marcello Balduccini and Michael Gelfond. Diagnostic reasoning with a-prolog. Journal of
Theory and Practice of Logic Programming (TPLP), 3(4–5):425–461, Jul 2003.

2. Marcello Balduccini and Michael Gelfond. Logic programs with consistency-restoring rules.
In Patrick Doherty, John McCarthy, and Mary-Anne Williams, editors, International Sympo-
sium on Logical Formalization of Commonsense Reasoning, AAAI 2003 Spring Symposium
Series, Mar 2003.

3. Chitta Baral and Michael Gelfond. Reasoning agents in dynamic domains. In Workshop on
Logic-Based Artificial Intelligence. Kluwer Academic Publishers, Jun 2000.

4. Gerhard Brewka. Logic programming with ordered disjunction. In Proceedings of AAAI-02,
2002.

5. Gerhard Brewka, Ilkka Niemela, and Tommi Syrjanen. Implementing ordered disjunction
using answer set solvers for normal programs. In Sergio Flesca and Giovanbattista Ianni,
editors, Proceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002),
Sep 2002.

112 Marcello Balduccini,Veena Mellarkod

6. Francesco Calimeri, Tina Dell’Armi, Thomas Eiter, Wolfgang Faber, Georg Gottlob, Giovan-
battista Ianni, Giuseppe Ielpa, Christoph Koch, Nicola Leone, Simona Perri, Gerard Pfeifer,
and Axel Polleres. The dlv system. In Sergio Flesca and Giovanbattista Ianni, editors, Pro-
ceedings of the 8th European Conference on Artificial Intelligence (JELIA 2002), Sep 2002.

7. Michael Gelfond. Epistemic approach to formalization of commonsense reasoning. Techni-
cal Report TR-91-2, University of Texas at El Paso, 1991.

8. Michael Gelfond. Representing knowledge in a-prolog. In Antonis C. Kakas and Fariba
Sadri, editors, Computational Logic: Logic Programming and Beyond, Essays in Honour of
Robert A. Kowalski, Part II, volume 2408, pages 413–451. Springer Verlag, Berlin, 2002.

9. Michael Gelfond and Vladimir Lifschitz. Classical negation in logic programs and disjunc-
tive databases. New Generation Computing, pages 365–385, 1991.

10. K. Heljanko. Using logic programs with stable model semantics to solve deadlock and
reachability problems for 1-safe petri nets. Fundamenta Informaticae, 37(3):247–268, 1999.

11. Antonis C. Kakas and Paolo Mancarella. Generalized stable models: a semantics for abduc-
tion. In Proceedings of ECAI-90, pages 385–391. IOS Press, 1990.

12. Fangzhen Lin and Yuting Zhao. Assat: Computing answer sets of a logic program by sat
solvers. In Proceedings of AAAI-02, 2002.

13. Monica Nogueira. Building Knowledge Systems in A-Prolog. PhD thesis, University of Texas
at El Paso, May 2003.

14. Monica Nogueira, Marcello Balduccini, Michael Gelfond, Richard Watson, and Matthew
Barry. An a-prolog decision support system for the space shuttle. In Alessandro Provetti and
Son Cao Tran, editors, Answer Set Programming: Towards Efficient and Scalable Knowledge
Representation and Reasoning, AAAI 2001 Spring Symposium Series, Mar 2001.

15. Enrico Pontelli, Marcello Balduccini, and F. Bermudez. Non-monotonic reasoning on be-
owulf platforms. In Veronica Dahl and Philip Wadler, editors, PADL 2003, volume 2562 of
Lecture Notes in Artificial Intelligence (LNCS), pages 37–57, Jan 2003.

16. Patrik Simons. Computing Stable Models, Oct 1996.
17. Timo Soininen and Ilkka Niemela. Developing a declarative rule language for applications

in product configuration. In Proceedings of the First International Workshop on Practical
Aspects of Declarative Languages, May 1999.

