New properties of the update operator “@®”

Mauricio Osorio! and Fernando Zacarias?

Universidad de las Américas, CENTIA.
Sta. Catarina Martir, Cholula, Puebla
72820 México
josorio@mail.udlap.mx
http://mailweb.udlap.mx/~josorio
2 fzflores@siu.buap.mx

1

Abstract. We have studied the update operator @ defined in [8] without
tautologies and we have observed that satisfies an interesting property.
This property is similar to one postulate proposed by AGM but, in this
case for nonmonotonic logic and that we called WIS. Also, we consider
other five additional basic properties about update programs and we
show that @ satisfies them. So, this work continues the analysis about
the AGM postulates with respect to operator @ under the refinated view
that includes knowledge and beliefs that we began in a recent previous
paper and that satisfies the WIS property for closed programs under
tautologies.

Keywords: Answer set programming; Nelson logic; Update programs;
Strong negation; AGM postulates; Properties.

1 Introduction

A-Prolog (Stable Logic Programming [10] or Answer Set Programming) is the
realization of much theoretical work on Nonmonotonic Reasoning and AT appli-
cations of Logic Programming (LP) in the last 15 years. This is an important
logic programming paradigm that has now great acceptance in the community.
Efficient software to compute answer sets and a large list of applications to
model real life problems justify this assertion. The two most well-known systems
that compute Answer sets are DLV [6] and SMODELS [22]. It has been recently
provided a characterization of answer sets by intuitionistic logic as follows: a
literal is entailed by a program in the stable model semantics if and only if it
belongs to every intuitionistically complete and consistent extension of the pro-
gram formed by adding only negated literals [19]. The idea of these completions
using in general intermediate logics is due to Pearce [21]. This logical approach
provides the foundations to define the notion of nonmonotonic inference of any
propositional theory (using the standard connectives) in terms of a monotonic
logic (namely intuitionistic logic), see [21,19,18]. The proposed interpretation
would be the following: Given a theory T, its knowledge is understood as the
formulas F' such that F is derived in T using intuitionistic logic. This makes

292 F. Zacarias et al.

sense, since in intuitionistic logic according to Brouwer, F' is identified with “I
knows F” (or perhaps some reader would prefer to understand the notion of
“knowledge” as “justified belief”). An agent whose knowledge base is the theory
T believes F' if and only if F' belongs to every intuitionistically complete and
consistent extension of T' by adding only negated literals (here “belief” could be
better interpreted as “coherent” belief). Take for instance: —a — b. The agent
knows —a — b, =b — ——a and so on and so forth. The agent does not know
however a. Nevertheless, one believes more than one knows, but a cautious agent
must have its beliefs consistent to its knowledge. This agent will then assume
negated literals to be able to infer more information. Thus, in our example, our
agent will believe —a and so he/she can conclude b. It also makes sense that
a cautious agent will believe —a or ——a rather than to believe a (recall that a
is not equivalent to ——a in intuitionistic logic). This view seems to agree with
a point of view by Kowalski, namely that “Logic and LP need to be put into
place: Logic within the thinking component of the observation-thought-action
cycle of a single agent, and LP within the belief component of thought” [13]. As
Pearce noticed, if we include strong negation we just have to move to Nelson
logics [21]. We select here N, the least constructive (strong negation) extension
of intuitionistic logic and because it is the minimum necessary to satisfy our
properties. Also, N is the nearest Intuitionistic logic. For this reason we don’t
need of N2. We say that two theories T} and T» are equivalent knowledge if they
are equivalent in V. We denote this fact by 77 =r T>. We say that 77 and T3
are equivalent if they have the same answer sets. We denote this fact by 71 = T5.

In this paper we address our approach to update nonmonotonic knowledge
bases represented as extended logic programs under the answer set semantics,
two very good recent reviews with many references are [3,8]. If new knowledge
of the world is somehow obtained, and it doesn’t have conflicts with the previous
knowledge then this new knowledge only expands knowledge. If by the contrary,
new knowledge is inconsistent with the previous knowledge, and we want knowl-
edge to be always consistent so that our agents can act in all moment, we should
solve this problem somehow. We point out that new information is incorporated
into the current knowledge base subject to a causal rejection principle, which
enforces that, in case of conflicts between rules, more recent rules are preferred
and older rules are overridden. Some well-known proposals are presented in [8]
and [2]. In particular [8] presents a complete analysis with respect to properties
that an update operator should have, with the purpose of obtaining a sure and
reliable update process for our agents. In this context, it is necessary to point
out that when one wants to choose a theory to develop its applications is very
important to know the properties that in the theory are held. It is in this sense
that we have focused to investigate the properties that are held under our theory,
and not to present properties that it doesn’t hold.

In this paper, we consider similar properties to the well-known AGM pos-
tulates. We think that is necessary to reinterpret them on the context of non-
monotonic reasoning via answer set programming. In addition, we pay particular
attention to our view that distinguishes beliefs from justified beliefs. As a be-

New properties of the update operator “@” 293

ginning, we only study Dalal’s principle of irrelevance of syntax, that according
to Dalal’s Principle [12] of Irrelevance of Syntax, the meaning of the knowledge
that results from an update must be independent of the syntax of the original
knowledge, as well as independent of the syntax of the update itself. In [8] the
authors analyze and interpret the AGM postulate corresponding to Dalal’s prin-
ciple as follows:

T, =T, implies Bel(K ©® T1) = Bel(K © T5).

Where T7 and T» are any theories, Bel(T') defines the set of answer sets of T,
@ is the revision operator, and understanding that equivalence means that both
programs (77 and T») have the same answer sets. This interpretation expresses
a very demanding principle of irrelevance of syntax, due to that the AGM postu-
lates were introduced for monotonic logics. We propose to reconsider the AGM
postulates [1] under our new interpretation that considers “justified beliefs” and
“belief”. To this aim we have introduced in [20] a new property, which we call
Weak Irrelevance of Syntax, as follows:

(WIS): Ty =k T implies Bel(K ® T}) = Bel(K © Ty).

We show that the proposal shown in [8] for updates almost satisfies this prin-
ciple. In fact we show that for programs without tautologies, this principle holds.
We should point out that this property is accepted as much in belief revision
as in updates, as it is shown in [8]. Also, [8] notes, however, that tautological
rules in updates are, as we believe, rare in practical applications and can be
eliminated easily.

Our paper is structured as follows: In section 2 we present the general syn-
tax of clauses, we also provide the definition of answer sets for augmented logic
programs as well as some background on logic, in particular on N logic. Section
3 contains the definition about update programs given in [8] and some related
concepts. Next, in section 4 we introduce our principal property called WIS and
introduce our main contribution in this respect. Section 5 contains some addi-
tional properties about update operator. Related work and some considerations
about our proposal are presented in 6. Finally, the conclusions are drawn in
section 7.

2 Background

In this section, we give some general definitions for our theory. We define our
theory about logic program, which consists of rules built over a finite set 4 of
propositional atoms, where these programs can only contain default negation.
Later, we introduce strong negation in similar form as in [15].

294 F. Zacarias et al.

2.1 Preliminary

Rules are built from propositional atoms and the 0-place connectives T and L
using negation as failure (not) and conjunction (,). A rule is an expression of
the form

Head + Body (1)

If Body is T then we identify rule 1 with rule Head. If a Head is L then we
identify rule 1 with a constraint. A program is a set of rules. An Interpretation
I is a set of atoms A such that I(A) = T. It allows us to establish the scenario to
determine if a complex rule is True or False. We define satisfaction of formulas
as I = Liff L € I, where L is an atom. We restrict our attention to finite logic
programs. For a program P, I is a model of P, denoted I |= P, if I = L for
all rules L € P. As it is shown in [5] the Gelfond-Lifschitz transformation says
that for a program P and a model N C Bp (Bp denotes the set of atoms that
appear in P) is defined by

PN = {rule" : rule € P}
where

(A< By,..., By, not Cy, ..., not C,)" is either:
a) A< Bi,...,Bpn,ifVj<n:C; € N;
b) T, otherwise.

Note that PV is always a definite program (i.e., a program consisting of pos-
itive atoms only). We can therefore compute its least Herbrand model (denoted
as Mpn) and check whether it coincides with the model N which we started
with.

Definition 1. (STABLE [5]) N is an stable model of P iff N is the minimal
model of PN.

2.2 Adding strong negation

With respect to strong negation, syntactically, the status of the strong negation
operator ~ is different from the status of the operator “not” the difference is
the following: not p can be denoted by p < L, i.e., we use “not” when evidence
doesn’t exist about p. And we use ~p when we know that p is false or it doesn’t
happen. We can say that answer sets are usually defined for logic programs pos-
sessing this second kind of negation, that as we mentioned previously expresses
the direct or explicit falsity of an atom. In [11] this second negation is called
“classical” and is denoted by ~ .

Let A be a set of propositional atoms where both default negation not
and strong negation ~ is available. For a set S of literals, we define ~S =

New properties of the update operator “@” 295

{~L | L € S}, and denote by Lita the set A U ~A for all literals over A. A
literal preceded by not is called a weakly negated literal.

Therefore, a rule is an expression of the form:

A+ By,...,By,notBy41, ...,notBy,. (2)

Where A and each B; are literals. A literal L is either an atom A (a positive
literal) or a strongly negated atom ~A (a negative literal), we call Extended
Logic Programs (ELP’s) to a set of type rules (2). For a rule r of this form we
define H(r) = {A} and B(r) = {B, ..., By, not By41, ..., not Bp}.

We denote by £ 4 the set of all constructible rules using the literals in Lit 4.
By S(P) we denote the collection of all answer sets of P. If S(P) # @, then P is
satisfiable. Following [8], we regard a logic program P as the epistemic state of
an agent. The given semantics are used for assigning a belief set to any epistemic
state P as follows.

Let I C Lit4 be an interpretation. Define Belg (I) = {re€ L4 | I =1}

Furthermore, for a class Z of interpretations, let Bel 4(Z)=NrezBel 4(I)

Definition 2. [8] For a logic program P, the belief set, Bel 4(P), of P is given
by Bel 4(P) = Bel 4(S(P)).

We write P =4 1 if r € Bel o(P), and for any program @Q, we write P =4 Q
if P =4 q for all ¢ € Q. Programs Py and Py are equivalent (modulo A), sym-
bolically Py =* Py, iff Bel4(P1) = Bel4(P). Since A is finite, then P, =4 P,
is equivalent to the condition that Py and P have the same answer sets modulo
A. We will drop the subscript “A” in Bel4(-), =4, and =4 if no ambiguity can
arise.

2.3 N Logic

Now, we give a brief description about N logic, because this gives an alterna-
tive interpretation of theoretical foundation to ASP [21]. Recall that a natural
deduction system for intuitionistic logic can be obtained from the corresponding
classical system by dropping the law of the excluded middle

Fv-F
from the list of postulates. N is the extension of Intuitionistic logic with
strong negation and axioms of Nelson logic. A formalization of Ny can be ob-

tained from intuitionistic logic by adding the axiom schema

FV(F > G)V~F

296 F. Zacarias et al.

The correspondence between the language of logic programs and the lan-
guage of propositional formulas in the presence of two negations is described in
[15]. The main theorem in [15] readily generalizes to the new setting: we can
show that two extended programs are strongly equivalent if and only if they are
equivalent in the Ny logic [15].

The next theorem is a simple corollary of results in [15]. However notice that
we do not require strong equivalence. Hence we just need N logic and not the
full power of N,.

Theorem 1. For any P, and Py programs, P, =x P, implies that for every P
program, P, U P and P, U P have the same answer sets.

We will write P kg « to denote the fact that P -y a. The idea for using K
instead of N is due to two reasons: First, to emphasize the reading P “knows”
a. Second, because strictly speaking we are translating the connective symbols.
Similarly we will write P, =k P» instead of P; =n Ps.

3 Update programs

In [8] the authors define an update sequence, P as a series of two programs (P,
P,) of extended logic programs (ELPs). We say that P is an update sequence
over A iff A represents the set of atoms occurring in the rules of the constituting
elements P; of P (1 <i < 2).

Giving an update sequence P = (P1, P3) over A, we assume a set A* ex-
tending A by new, pairwise distinct atoms rej(r) and A;, for each r occurring
in P, each atom A € A, and each i, 1 < ¢ < 2. We further assume an injective
naming function N(-,-), which assigns to each rule r in a program P; a distin-
guished name, N(r, P;), obeying the condition N(r,P;) # N(r', P;) whenever
i # j. With a slight abuse of notation we shall identify r with N(r, P;) as usual.
Finally, for a literal L, we write L; to denote the result of replacing the atomic
formula A of L by A;.

Let us consider the definition about the update sequence given by Eiter et al.
but only in the case of two programs and let us make a slight change of notation.
Also, our proposal can be extended to general case (Pi, Py, ..., P,) in the itera-
tive form as shown in [8]. Under certain conditions, which exclude possibilities
for local inconsistencies, the iterativity property holds.

Definition 3. [8] Giving an update of two programs Py = (P1, P2) over a set
of atoms A, we define the update program Pg = P; & Py over A* consisting of
the following items:

New properties of the update operator “@” 297

(i) all constraints in Py U Py;
(1) for each r € Py;

Ly « B(r), not rej(r). if H(r) = L;

rej(r) < B(r), =Ls. if H(r) = L;
(i¢) for each r € Pa;

Ly + B(r). if H(r) = L;
(iv) for each literal L occurring in P;

Ly «+ Ly L+ L.

Definition 4. [8] Let P = (Py, P2) be an update sequence over a set of atoms
A. Then, S C Lit 4 is an update answer set of P iff S = S' N A for some answer
set S’ of Pg. The collection of all update answer sets of P is denoted by U (P).

Consider the following example taken of [8].

Ezxample 1. Let P be: sleep < not tv-on.
night.
tv-on.
watch-tv < tv-on.

And let P; be ~tv-on < power-failure.

power-failure.

Applying definition 3 to both programs, we obtain:
The single answer set of P = (P, P;) using definition 4 is,

S = {power-failure, ~tv-on, sleep, night}, as desired,

since the only answer set of Pg is given by:

{sleepl, night1, rej-r3, ~tv-on2, power-failure, power-failure2, ~tv-onl, power-
failurel, sleep, night, ~tv-on}

Following the case of single programs, an update sequence P = (Pq, P») is
regarded as the epistemic state of an agent, and the belief set Bel(P) is given
by Bel(U(P)). The update sequence P is said to be satisfiable iff U (P) # 0, and
P = P’ iff Bel(P) = Bel(P’) (P’ some update sequence).

Definition 5. Let us call two rules r1 and ro conflicting iff H(ry) = ~H(rs).

Let us consider the definition given in [8] about the rejection set of S for two
programs (Rej(S, (P, P))), as follows:

Definition 6. [8] Given P = (Py, P»), over a set of atoms A and S C Lity
based on the principle of founded rule rejection, we define the rejection set of S
by Rej(S, P) = Reji(S, P) and Reji1(S,P) = {r € P, | Ir' € P, \ Reja(S, P)
such that r and r' are conflicting and S = B(r) U B(r')}.

Let us consider the definition given in [8] about the rejection set of S using a
weaker notion of rejection sets for two programs (Rej'(S, (P1, P2))), as follows:

298 F. Zacarias et al.

Definition 7. Given P = (P1,P,), then Rej'(S,P) = {re€ P, | 3 r’ € P, such
that r and r' are conflicting and S |= B(r) U B(r')}.

Note: We can see easily that Rej and Rej’ coincides in case for two programs,
that is, given P = (P, P»), Rej'(S,P) = Rej(S, P).

Lemma 1. Let P = (Py, P2) be an update sequence over a set of atoms A and
S C Lity a set of literals. Then, S is an answer set of P iff S is an answer set
of (P1 U P> \ Rej'(S,P))S.

Proof: Directly by theorem 4 given in [8] and the previous note.

It is necesary to point out that in the proposal [8], update programs do not
satisfy many of the properties defined in the literature. This is partly explained
by the nonmonotonicity of logic programs and the causal rejection principle em-
bodied in the semantics, which strongly depends on the syntax of rules.

Next, we present an example where the ”equivalence” between two programs,
P, and P; is not enough to preserve the equivalence when we update each one

of these programs with onother program P.

Let P; and Py be two equivalent programs and let P3 be a program then Py
@® P3 =P, @ P;3is false.

Let Py ={a+b.},let P, ={a+ a. ,b<« b. }andlet P3 = {b.}

We have that the stable models of P; and P» are empty, then applying the
update process we have

Sem(P; @ P3) = { a, b } and Sem(P2 & P3) = { b } therefore

{a,b}#{b}
Hence, P3 & P; = P3 @ Ps is false.

Also Sem(Ps @ P;) = { a, b } and Sem(P3 & P3) = { b } therefore

{ab}#{b}

4 'Weak Irrelevance of Syntax

Within our main results, we can see that the proposal presented in [8] satisfies
WIS considering programs without tautologies.

Let us see an example of our first approach.

New properties of the update operator “@” 299

Example 2. This example shows how WIS fails.

Let P be ~d.
d<h.

Let P, be h.
d«d.

Let P, be h.

Here, P, and P, are strongly equivalent.

However when we update P ® P; = {h, d} and
the update P @ P, doesn’t have stable models, therefore WIS fails.

Definition 8. P is tau-free w.r.t. a signature L if no rule of the form |l + La
belongs to P, where a. could be empty.

4.1 Main results

Lemma 2. Let P, U P> U {c} be a tau-free program, reP;, P» Ex ¢, M |=
B(r)AB(c), v and ¢ are conflicting rules, M |= P». Then 3 r'€Ps | r and r' are
conflicting rules and M = B(r) A B(r').

Proof: Let ¢ be the formula z < 8, P, Fx © < 6, as M models P, and M
models 6 then P, U {6} is consistent and P, U {6} Fx x. Hence, 3z « § € P,
such that P,U{0} Fx B (Also, because we are in Nelson Logic N). Since M = P,
and M = 6 then
M models P> U {6}, and so M |= 3. The rest of the proof follows directly.

Lemma 3. Let Py, P> and {c} be tau-free programs. If P» -k c then P, ® Py =
P1 D (Pz U {C})

Proof:
S is an answer set of P, @ P iff by lemma 1
S is an answer set of (Py U P2) \ Rej’(S, (P, P»)) iff by note a
S is an answer set of (P; \ Rej'(S, (P, P))) U Py iff by note b
S is an answer set of (P \ Rej'(S, (P1, P, U{c}))) U P» iff by note ¢

S is an answer set of (P, \ Rej'(S, (P1, P2 U{c}))) U (P2U{c}) iff by note a
S is an answer set of (P U (P2 U{c})\ Rej' (S, (P1, P, U{c})) iff by lemma 1
S is an answer set of P, & (P, U {c})

Hence P @ P, = P, & (P2 U {c}) as desired.
Note a: Since Rej’ only erase clauses from P; (not from Ps).

Note b: Rej'(S, (P1, P2)) = Rej'(S, (P1, P, U{c})) by lemma 2.
Note c: Since P, =g ¢, P, =x P, U {c}.

300 F. Zacarias et al.

Lemma 4. Let P, P, and R tau-free programs. Suppose, that Py Fx R then
PaeP =Pa (PUR).

Proof: By induction on the size of R.

Base case: Let R = (), then the result is immediate.
Induction Hypothesis: Let Py, R, and {c} be tau-free programs. We need
to show:
if P, Fg RU{c})
then P& P, = P® (P U (RU {c})).

But, we know that P, Fx R U {c} means that P, Fx R and P, Fg ¢ then
applying induction hypothesis
PoP =P®(PLUR) (I1)

By lemma 3, P, U R Fk ¢ then
Po»(PLUR)=Po (PLUR)U{c}) (111)

Now, from (I), (II), and (III) we have P® P, = P & ((P, UR) U {c})

Since P @ (PLUR)U{c}) =P @ (P, U(RU{c})) we obtain
Po P, =Pa@(PLU(RU{c})) as desired.

Theorem 2. Let P, P, and P, be tau-free programs, if Py =g P> then P& P, =
PoP
Proof: hPeP =P (PUPR) applying lemma 4
Besides, if Py =g P, then P» =g P; and applying lemma 4 to P & P> we have
i) PeoP=P®d(P,UP)
Also, Po(PUR)=Po (RUP) (module renaming)
Finally, by transitivity between i) and ii) we have P & P; = P @ P, as desired.
It is necessary to stand out that only lemma 3 depends on the properties of

the operator. Therefore, we can say that any operator satisfying lemma 3 would
have the WIS property, of course, assuming the answer set semantics.

5 Properties of update operator

As we have mentioned, the interpretation given in [8] of the AGM postulates
expresses a very demanding principle of irrelevance of syntax, because of the
AGM postulates were introduced for monotonic logics. After having revised sev-
eral proposals about update programs such as [3,8, 1], we have some interesting

New properties of the update operator “@” 301

properties of the style of the AGM postulates for update programs, but in our
context of answer set semantics that consider the two notions: Belief and Knowl-
edge. We call them BK-ASP properties.

Definition 9 (BK-ASP).
K1: P® x is a theory.
K2: PO xbk x.
K3:x =1 implies (P®x)=xLl.
Kj: P+xzbtg P .
K6: if P Fk R then (P®PL))UR=P& (PLUR).

We consider a theory as a logic program. As we can see, our second (K2)
property guarantees that the input sentence x is accepted in P & z.

With respect to our third property (K3&), it says that if z is inconsistent (at
the knowledge level) then (P @ z) can not be consistent.

With respect to our fourth property (K4), it says that an expansion always
knows more (or equal) than an update.

Our fifth (K¥&) property says that update should be analyzed on the knowl-
edge level and not on the syntactic level. For this reason, two logically equivalent
sentences (at the knowledge level) should lead to equivalent updates (at the be-
lief level). This is the most interesting property in our proposal and it is resolved
and supported by our theorem 2.

Next, we present our main result with respect to BK-ASP properties.

Theorem 3. The update operator @ satisfies the six BK-ASP properties for
tau-free programs.

Proof: Our first four properties follow directly by construction. The fifth
property follows by theorem 2. The last property can be proven as follows:
Under the assumption P; Fg R is easy to check that P® P, = (P® P,) UR, by
lemma 4 (P® Pi)UR= P& (P, UR), as desired.

6 Related work

With respect to related work we can point out that in this work we continue
the analysis about the AGM postulates begun in [20]. There, we have analyzed
the update operator “ @ ” defined in [8] under the refinated view that includes
knowledge and beliefs. In [20], we have defined the WIS property and we have
proven that it is satisfied for closed programs under tautologies. There, we have
presented a more simple definition about the update operator that satisfies the
WIS property for closed programs under tautologies and it is defined as follows:

302 F. Zacarias et al.

Definition 10. Given an update of two programs Pg, = (Pi, P3) over a set
of atoms A, we define the update program Pg = P; ® Py over A* consisting of
the following items:

() all constraints in P, U Ps;
(@) for each r € Py;
L «+ B(r), not ~L. if H(r) = L;
(#91) all rules r in Py.

In the definition 10 we have used “ ® ” as update operator. As we can see,
this alternative definition for closed programs under tautologies is simple and
practical for this class of programs. This definition is an interesting result that
can be used in practical applications due to its simplicity. Also, allows to the
agents to respond in a quick and opportune way.

Furthermore, we give some considerations about our presented work obtained
after having made an analysis on the proposals presented in [1-4,8,12]. In [§]
the authors analyze and interpret the AGM postulate corresponding to WIS and
define an update operator that almost satisfies this postulate. In [8] the authors
present an exhaustive analysis about the AGM postulates and about the different
interpretations that some other authors have presented of these postulates. It’s
as from this analysis that we have carried out our interpretation of the AGM
postulates considering the new results and extensions that, in ASP, have recently
arisen. In this reinterpretation we consider the AGM postulates from the non-
monotonic logic’s point of view via ASP. Besides, we use a new interpretation
about “justified beliefs” (also called knowledge) and “beliefs”, that in ASP, this
is done in a natural way. Also, we have used recent results obtained in [19, 15]
on intuicionistic logic and intermediate logics.

With respect to Nelson logics, we prefer only N logic, because N logic is
sufficient to satisfy our properties. Also, we want to keep up the closest possible
to intuitionistic logic, which, in knowledge representation is more accepted and
acknowledged by many authors. Due to this reason we prefer use IV logic since
it is the minimum constructive extension of intuitionistic logic sufficient for the
properties here presented to hold. If we considered N, as the theory to use, we
would have the next dilemma: N logic includes the following tautology: (a —
b) V (b — a) that means we know (a — b) or else (b — a). However, we really
don’t know neither (a — b) nor (b — a), moreover, we don’t know neither a
nor b. We may even consider a and b two disjointed sentences and though the
tautology holds (It can be proved making its true table). It is necessary to point
out that when one wants to choose a theory to develop its applications is very
important to know the properties that in the theory are held. It is in this sense
that we have focused on investigating the properties that are held under our
theory.

We remark that if we consider Theorem 7 presented in [8], we can see eas-
ily that this theorem allows us under certain conditions, which exclude such
posibilities for local inconsistencies, to uses the update operator iteratively. Fur-
thermore, the conditions of theorem 7 are simple syntactic criteria, which can

New properties of the update operator “@” 303

be easily checked [8]. Is worth to mention that a weaker version of this Theo-
rem 7 may be applied if updates should be incorporated instantaneously by only
considering condition (i4i) of the mentioned theorem. Also, we can incorporate
consecutive updates which obey assertion (ii¢) is equivalent to the update pro-
gram for the sequence of updates.

7 Conclusions

We studied new properties of the update operator. Different from other ap-
proaches we considered a view of answer sets based on Nelson logics. This al-
lowed us to reconsider the AGM postulates in a more solid framework. Our
main contribution is the proposal of six properties for an update operator and
the proof that @ satisfies all of them. However, we should continue working in
this line, since there are properties such as the following;:

PoPoQ=PoPoQ

for every program P and @), that are not always satisfied, due to our property
is just satisfied by the right.

8 Acknowledgements

We are grateful to Michael Fink for some discussions that helped us to clarify
our ideas around updates.

References

1. C.E. Alchourron, P. Gardenfors, and D. Makinson. On the logic of Theory Change,
Partial Meet Functions for Contraction and Revision Functions. Journal of
Symbolic Logic, vol. 50 pp. 510-530, 1985.

2. J. Alferes, J. Leite, P. Pereira, H. Przymusinska, and T. Przymusinski. Dynamic
Logic Programming. In A. Cohn and L. Schubert, editors. Proc. KR98, pp. 98-109.
Morgan Kaufmann, 1998.

3. J. J. Alferes, L. M. Pereira, Logic Programming Updating - a guided approach,
in: A. Kakas, F. Sadri (eds.), Computational Logic: From Logic Programming into
the Future - Essays in honour of Robert Kowalski, volume 2, pp. 382-412, Springer
LNAT 2408, 2002.

4. G. Brewka. Declarative Representation of Revision Strategies. In Proc. Fourteenth
European Conference on Artificial Intelligence (ECAI 2000), 2000.

5. G. Brewka, J. Dix, and K. Knonolige. Nonmonotonic Reasoning: An overview.
CSLI Publication Eds. Leland Stanford Junior University, 1997.

6. DLV System: http://www.dbai.tuwien.ac.at/proj/dlv/

7. A. Darwiche and J. Pearl. On the Logic of Iterated Belief Revision. Artificial
Intelligence, vol.89(1-2): pp. 1-29, 1997.

304

8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

F. Zacarias et al.

T. Eiter, M. Fink, G. Sabattini, and H. Thompits. Considerations on Updates of
Logic Programs. In M.O. Aciego, L.P. de Guzmn, G. Brewka, and L.M. Pereira, ed-
itors, Proc. Seventh European Workshop on Logic in Artificial Intelligence JELIA
2000, vol. 1919 in LNAI, Springer 2000.

P. Gardenfors. Belief Revision : An Introduction. Cognitive Science, Department
of Philosophy, Lund University, S-223, 50 Lund, Sweden, 1995.

M. Gelfond and V. Lifschitz. The stable model semantics for logic programs. Pro-
ceedings of the Fifth International Conference on Logic Programming 2 MIT Press.
Cambridge, Ma. pp.1070-1080.

M. Gelfond and V. Lifschitz. Clasical negation in logic programs and Disjunctive
databases. New Generation Computing. pp. 365-387, 1991.

H. Katsumo and A.O. Mendelzon. Propositional knowledge base revision and min-
imal change, Artificial Intelligence vol. 52, pp. 263-294, Elsevier, 1991.

R. Kowalski. Is logic really dead or just sleeping. In Proceedings of the 17th Inter-
national Conference on Logic Programming, pages 2-3, 2001.

J. A. Leite, J. J. Alferes and L. M. Pereira, Multi-dimensional Dynamic Logic
Programming, In F. Sadri and K. Satoh (eds.), Procs. of the CL-2000 Workshop
on Computational Logic in Multi-Agent Systems (CLIMA’00), London, England,
July 2000.

V. Lifschitz, D. Pearce, and A. Valverde. Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2:526-541, 2001.

V. Lifschitz and T.Y.C. Woo. Answer sets in general nonmonotonic reasoning. In
proc. Of IJCAI-91, 1991.

W. Marek and V. Subrahmanian. The relationship Between Logic Program Se-
mantics and Non-monotonic Reasoning, in G. Levi and M. Martelli (eds.), Proc.
of the 6. Int. Conf. on Logic Programming. MIT, 600617, 1989.

M. Osorio, J.A. Navarro, and J. Arrazola. Equivalence in Answer Set Programming
(extended version), Proceedings of LOPSTR 01, LNCS 2372, pp.57-75, Springer-
Verlag, Paphos, Cyprus, November 2001.

M. Osorio, J.A. Navarro, and J. Arrazola. Applications of Intuitionistic Logic in
Answer Set Programming, accepted in Journal of TPLP | 2003.

M. Osorio. and F. Zacarias. “Irrelevance of Syntaz in updating answer set pro-
grams”, to appear in Workshop on Logic and Agents into Proc. of Fourth Mexican
International Conference on Computer Science (ENC’ 03) Apizaco Tlaxcala, Mxico
2003.

D. Pearce. From Here to There: Stable negation in Logic Programming, in D. Gab-
bay, H. Wansing Eds. What is Negation? Kluwer Academic Publishers, Dordrecht,
forthcoming. 1999.

SMODELS System: http://saturn.hut.fi/pub/smodels/

