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Abstract. We compare the affordances of two visual logics, one from
the Euler family of notations, spider diagrams, and one which takes a
significantly different approach to representing logical concepts, existen-
tial graphs. We identify strengths and weaknesses of each notation and
present these features as being related to the idea that each notation is,
to a greater or lesser degree, biased towards objects or predicates, and
that such biases make a notation more or less effective in a given con-
text. We then introduce a framework for understanding and predicting
those affordances, which can help guide us towards better use of exist-
ing graphical notations and the design of more effective new notations.
The framework links research in semiotics and linguistics with insights
provided by the HCI and diagrams communities.

1 Introduction

A fundamental premise of the diagrams community is that graphical notations
have, by some set of metrics which is not always made entirely clear, certain
advantages over symbolic notations. These advantages relate to intuitive under-
standing and to the ability for new information to arise spontaneously within
diagrams. Gurr [10] wrote that the effectiveness of a graphical notation arises
from its being “well matched to meaning”, which is to say that the syntax of the
notation is naturally connected to its semantics. Hammer and Shin [11] showed
that Euler diagrams do possess these advantages, and that while the changes
made to Euler’s notation by Venn and Peirce remove ambiguity and increase
formal expressiveness, they also reduce its visual clarity.

If these advantages exist, and can be categorised and measured, the poten-
tial exists to design more effective graphical notations and to make better use of
existing ones. Shin [23] undertook the latter task in her reevaluation of Peirce’s
system of existential graphs, in which she argued that if the diagrammatic prop-
erties of existential graphs were better understood and exploited in the design of
reading procedures and inference rules, then they would be considered more use-
ful as a tool for reasoning. Indeed, and in contrast to Euler diagrams, existential
graphs have often been considered a cumbersome and non-intuitive system. In
the same work, Shin shows, however, that Peirce consciously designed his system
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to take advantage of distinctively diagrammatic properties, but that his insights
were largely ignored in the way existential graphs were subsequently understood.

In this paper we will compare the affordances of two visual logics, spider
diagrams [13] and existential graphs, analysing some of the strengths and weak-
nesses of each system. In this context, we use the term affordance to refer to the
possible meanings of a piece of diagrammatic syntax, as perceived by an actor.
The starting point for our comparison is the observation, made by Blackwell
and Green [2], that “every notation highlights some kinds of information, at the
cost of obscuring other kinds.” We focus on the affordances arising from the
spatial conditions of diagrams from each system with the same meanings. Thus,
we consider the static properties of the notations and how those properties sup-
port comprehension, rather than any dynamic properties exhibited when either
notation is used as a reasoning system. This work is a precursor to a planned
empirical study in which we will test our findings. Our goal is not to show that
one notation is superior to the other. In fact, existential graphs are consider-
ably more expressive than spider diagrams. To enable the comparison, we will
consider the fragment of existential graphs with monadic predicates only, which
is equivalent to the spider diagram system. We choose the two systems for the
comparison because we take them to be representative of two distinct families
of visual logics: those based on Euler diagrams, such as spider diagrams and
constraint diagrams [24], and logical graphs, such as existential graphs and con-
ceptual graphs [5]. Spider diagrams and existential graphs are concerned with
the same domain and have common features. For instance, both represent exis-
tential quantification directly. Neither system has an explicit way of representing
universal quantification but both can do so implicitly. However, the two systems
take fundamentally different approaches to representing information.

In sections 2 and 3 we examine the notational strengths and weaknesses of
spider diagrams and existential graphs. We do so informally, introducing only
so much of each notation as is necessary to make our argument. In section 4 we
introduce Coppin’s framework for visual affordances and show that it can be used
to explain and predict the affordances described in the previous sections. The
framework exposes general principles which we believe can be used to design
effective visual notations, formal or otherwise. We show that the framework
synthesises understandings gained from the fields of semiotics, neurolinguistics
and diagrammatic reasoning. In section 5 we discuss the predictive power of the
framework and the ways in which the principles of the framework may enable
us to make more effective use of existing systems, such as spider diagrams and
existential graphs, by understanding and exploiting their strengths.

2 Spider diagrams

Spider diagrams (SD) were introduced by Howse et al. in 2001 [13]. They are a
sound and complete visual logic, equivalent in expressiveness to monadic first-
order logic with equality [25]. Figure 1 shows a spider diagram, consisting of
labelled curves, spiders and shading. Curves represent sets and their placement
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makes assertions about relations between sets: figure 1 tells us that the sets Bird ,
Plane and Sman are disjoint. Spiders are trees placed in the diagram, where the
nodes are called feet and the edges are called legs. Each spider represents a single
element that exists in one of the regions in which its feet is placed. The diagram
in figure 1 includes a single spider, telling us that there is something which is
either a bird, a plane, or Superman. Shading is used to represent the emptiness
of regions. So, the shading in figure 1, considered alongside the information
provided by the spider, tells us that Sman contains either one element or no
elements.

Fig. 1. Is it a bird, is it a plane...? Fig. 2. A cluttered spider diagram.

The spider diagrams in figures 1 and 2 are unitary diagrams. SD allows us
to use conjunction and disjunction to join together unitary diagrams to form
compound diagrams. This is done by placing the usual symbols from symbolic
logic in part of the diagram: see Howse et al. [13] for details.

As well as statements about sets, we can construct the meaning of a spider
diagram as a series of logical assertions. From this point of view the diagram
in figure 1 states, among other things, that ∃x (Bird(x) ∨Plane(x) ∨ Sman(x)),
and ∀x (Bird(x) ⇒ ¬Plane(x)).

SD extends the Euler diagram notation which, as noted in the previous sec-
tion has been identified as being intuitive or fit-for-purpose as the basis of dia-
grammatic reasoning by several authors (see for, instance, chapter 6 of Shin [22],
where the discussion focuses on Venn diagrams but also considers Euler dia-
grams). In summary, Euler diagrams represent relations between sets – intersec-
tion, disjointness, and so on – in a way that users can read quickly and intuitively
because the spatial conditions “resemble”, in some sense, the properties they rep-
resent. Although a circle does not have any literal resemblance to the abstract
notion of a set, a circle encloses a region of space and any point is either inside
or outside of that region, just as any object is either inside or outside of a set.
Thus, placing two circles so that they overlap or are disjoint leads the viewer
to the obvious inferences about the relationship between the sets in question.
Similarly, the fact that SD represents the existence of an element in a set by
placing a spider foot in the region of the diagram that represents that set is
well matched to meaning, and allows for intuitive understanding. Hammer and
Shin [11] noted that the additions to Euler’s original notation do not always
provoke the same natural associations in the reader. Shading, for instance, first
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introduced by Venn, bears no resemblance to the emptiness of a set and has a
purely conventional meaning (apart from a slightly tenuous connection between
shading, darkness and the emptiness of a void). Similarly, although spiders with
a single foot may be well matched to meaning, the meaning of spiders with sev-
eral feet is purely conventional. Thus, our first approach to understanding the
intuitive power of diagrams might be to consider a spectrum from resemblance
to conventionality. However, Shin [22] argues that resemblance is not, in fact,
inversely proportional to conventionality. Two cognitive properties of diagrams
which are inversely proportionate to each other, however, are conventionality
and the use of perceptual inferences. That is, the less a notation relies on con-
vention, the more perceptual inferences are introduced. Furthermore, she points
out that several of the conditions we might want to represent are incapable of
depiction without convention, particularly disjunctive and negative information.
It is not possible to depict a situation that resembles the ones described by the
formulae A ∨ B and ¬A. So, any graphical notation that conveys this type of
information must do so by importing symbolic features. In SD, disjunction is
shown using the symbolic device of spiders’ legs and, in the full system, the log-
ical symbol ∨. SD can depict some negative information by resemblance but not
all. For instance, we can depict the situation reflected by the formula ∃x(¬A(x))
by placing a spider outside of a curve labelled A, but to show ¬∃x(A(x)), we
must use the symbolic device of shading.

As well as inheriting the benefits of Euler diagrams, SD inherits some lim-
itations: an Euler diagram can quickly become cluttered [15]. The diagram in
figure 2 shows all possible intersections of four curves. We can see that this di-
agram has lost some of the readability of simpler examples, and the problem
escalates quickly with the addition of more curves. If we want to add a new
curve, say A, to figure 2 without adding any new information, we must do so
such that A intersects every region, resulting in a diagram which is very difficult
to draw and understand. The same problem applies to symbolic logic, however.
A sentence from first-order logic that contains four or more predicate symbols
or, worse, four or more variables, could also take considerable effort to read.
Thus, SD, and visual logics generally, are not alone in suffering from clutter.
There are ways of reducing this clutter, but these means, such as the use of
discontinuous curves or overlapping edges [26], do so at the cost of some of the
intuitive properties of Euler diagrams.

As a final observation about the diagram in figure 2, we note that we could
produce this diagram from 1 by discarding three pieces of information about the
disjointness of sets, as well as making other changes. Discarding this information
requires us to add syntax to the diagram (the region representing Bird ∩Plane),
and makes the resulting diagram harder to read as a result.

In summary, spider diagrams, at least in the case of unitary diagrams, pre-
serve and extend much of the effective and intuitive power of the underlying
Euler notation. However, the rapid accumulation of regions in a diagram can
mean that SD doesn’t scale well, although this lack of scalability also affects
symbolic languages.
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3 Existential graphs

Existential graphs were introduced by Peirce [17] at the end of the 19th cen-
tury, at the same time as his seminal work on symbolic systems. There are two
variations of the notation, α graphs and the more expressive β graphs, which
are as expressive as first-order logic with equality [19]. Unlike SD, β graphs can
represent predicates with any number of places. In order to make a meaningful
comparison between the systems, we will consider Peirce’s β graphs with the
restriction that all predicates are monadic, and call this system EG. An graph
in EG is composed of predicate symbols, lines of identity (LIs) and cuts. A predi-
cate symbol is a label representing a predicate; since our predicates are monadic
we can equally well consider the labels to represent sets as predicates. An LI is a
network of lines which may have any number of branches and which represents
an individual (there is an exception to this rule, which we explain below). A cut
is a closed curve drawn on the diagram which represents the negation of that
information inside it. The final syntactic device is juxtaposition: placing graphs
G1 and G2 next to each other creates a new graph whose meaning is the con-
junction of the meanings of G1 and G2. Figure 3 shows an existential graph. The
parts of the graph labelled G1 to G5 we call subgraphs (note that these labels
are added for convenience and are not part of the notation). The subgraph G1

has one LI, three predicate labels and four cuts.

Fig. 3. An existential graph equivalent to figure 1

Interpreting existential graphs has often been seen as a difficult task, and this
is one of the main points of criticism of the system. Shin [23] proposed a new
reading procedure which is both more regular than earlier procedures and which
exploits the diagrammatic properties of existential graphs. However, the reading
procedure which is arguably easiest to describe informally is the endoporeutic
reading proposed by Peirce himself. Informally, we read a graph from the “outside
in”, or from the region of the graph which is least enclosed by cuts towards the
most enclosed part. Thus, reading subgraph G2 in figure 3, we first encounter
a cut, so we know that some piece of information is to be negated. Next, we
encounter an LI, so we know that a statement concerning some individual will
be made. Finally, the predicate labels Bird and Sman are at the ends of the LI,
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and we construct the meaning “it is not the case that there is some thing for
which Bird and Sman are true”, or “nothing is a bird and a Superman”. More
formally, we construct the formula ¬∃x(Bird(x)∧Sman(x)). So, the subgraph G2

in figure 3 conveys a subset of the information given in figure 1 by the placement
of the curves labelled Bird and Sman. The conjunction of the meanings of the
subgraphs G2, G3 and G4 provides the same information as the placement of
curves in figure 1. Reading G1 from the outside in, we encounter an LI, denoting
an individual, say x, so the constructed meaning begins with the fragment ∃x . . ..
Next, we encounter a cut, and so we have ∃x¬(. . .). Next, we encounter three
nested cuts, and we construct the fragment

∃x¬(¬(. . .) ∧ ¬(. . .) ∧ ¬(. . .)).
Inside these cuts are predicate labels attached to the ends of the LI, and we have

∃x¬(¬(Bird(x)) ∧ ¬(Plane(x)) ∧ ¬(Sman(x))).

Shin’s reading gives the equivalent but neater formula ∃x(Bird(x) ∨ Plane(x) ∨
Sman(x)). Thus, subgraph G1, figure 3, demonstrates how disjunction is con-
veyed in EG. Compare this to figure 1, where the spider conveys the same infor-
mation.

Subgraph G5, figure 3, tells us that it is not the case that there are two things,
say x and y, for which Sman is true and where x �= y. That is, there is at most
one Superman. This is the same information as is conveyed in figure 1 by the
combination of the shading and spider foot in the curve labelled Sman. Inequality
between objects in EG is shown by an LI which crosses an otherwise empty cut,
indicating that the two (or more) extremities of the LI do not represent the same
object; this is the exception to the way we read an LI mentioned above.

Thus, the spider diagram in figure 1 expresses the same meaning as the
existential graph in figure 3. We note that figure 1 is much more compact than
figure 3, demonstrating the expressive power of Euler diagrams and showing that,
in this case, SD preserves and extends that power. Recall that spider diagrams
assert information by the use of spiders, shading and the relative placement of
curves. Figure 1 includes one spider, one shaded region and three curves placed
so as not to intersect every region: five pieces of information. An existential graph
representing the same information must include five subgraphs. Given a spider
diagram, d, with n regions which are shaded or not represented in d, an existential
graph, G, requires n − 1 subgraphs to represent the same information. The
mapping between the spiders in d and subgraphs in G is not so straightforward,
since several spiders which each have a single foot and which are placed in the
same region can be represented by a single LI which crosses an other wise empty
cut. The subgraphs of G will contain duplicated predicate labels, as is the case
with figure 3, and distinct LIs which may refer to the same individual, whereas
this duplication is not necessary in SD. This is one sense in which SD is more
compact and elegant than EG. Like SD, the syntax of EG contains conventional
or symbolic features: notably, cut bears no resemblance to negation. As discussed
previously, however, any notation that represents negation or disjunction must
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do so symbolically. In comparison with Euler diagrams, it may seem that EG
uses only symbolic features, with the exception of the LI. Even in this case,
in which it seems reasonable to say that a line resembles, in some sense, an
individual, the effect is marred by the special case of an LI that passes through
an otherwise empty cut.

Fig. 4. An existential graph equivalent to figure 2

Similarly to the relationship between figures 1 and 3, the diagram in figure
4 has an equivalent meaning to the spider diagram in figure 2: informally, there
is something which is either a bird, a plane, or is Superman and is wearing a
cape. In this case, comparing the two diagrams leads us to the conclusion that
EG is relatively effective in this context, since the intuitive properties of SD are
hampered in figure 2 by clutter. In order to avoid asserting information about
the relationship between two sets, S1 and S2, a spider diagram must include
an unshaded region which contains no spiders and which represents S1 ∩ S2. In
figure 2, this leads to a diagram which is difficult to read (and draw). In EG, there
is no need to avoid making claims about the relationship between S1 and S2.
Adding more curves to the spider diagram would render it very difficult to read,
whereas adding another predicate symbol to the existential graph in figure 4
would not have that effect. Furthermore, at the end of section 2 we noted that
spider diagrams may require more syntax to represent less information. This is
not the case with EG: the graph in figure 4 can be produced from the graph
in figure 3 by adding one piece of information (that if a particular individual is
Superman, it is also wearing a cape) and discarding three pieces of information
regarding the relationships between the predicates (given by subgraphs G2 to
G4 in figure 4). Discarding this information results in less syntax appearing in
the graph in figure 4.

Remarkably, EG does not introduce specialised syntax to represent disjunc-
tion, conjunction or implication: all these properties are represented as a by-
product of the spatial relations of predicate symbols, LIs, cuts and juxtaposi-
tion. Despite the fact that EG was almost entirely ignored by logicians until
the 1960s, Peirce considered his graphical system superior to his own symbolic
system [17]. Peirce categorised diagrammatic features as icons, indices and sym-
bols. An icon represents something by its resemblance to that thing. An index
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represents something by “pointing it out”, much as a signpost does. A symbol
represents some fact or condition merely by convention. Peirce’s aim was to cre-
ate a system which was as iconic as possible. As discussed, this effort can be
considered successful with respect to lines of identity, which “resemble” individ-
ual identity, but the use of cut is symbolic. Furthermore, the regularity of using
LIs to represent individuals is disturbed by the special case of LIs which cross
an empty cut, in which case a single LI represents two or more objects which
are not the same. In contrast, the symbolic device of shading used in SD seems
to us to pose less of a cognitive challenge, since the shading is deployed within
the relatively iconic context of Euler circles.

Before describing Coppin’s framework in the next section, we note a final im-
portant syntactic similarity between SD and EG. Both systems feature node-link
diagrams, which are lines of identity and spiders respectively. In EG the edges
of the node-link diagrams represent identity and do so iconically, or by resem-
blance, while the nodes represent predicates, and do so symbolically. In SD the
edges of the node-link diagrams represent disjunction and do so symbolically,
whilst the nodes provide an iconic representation of individuals. In a recent eye
tracking study [4], Burch et al. investigate the impact of the orientation and
format of node-link diagrams on comprehension tasks; amongst other things,
their results show that readers of node-link diagrams prioritise giving attention
to nodes over links – these are the information-rich parts of the diagram. Thus,
when comprehending the node-link component of a spider diagram, attention is
first paid to a series of assertions about objects, making this an object-centric
notation. When comprehending an existential graph, information about predi-
cates is given prominence for the same reason, making EG predicate-centric. For
our purposes, the relative efficiency of representation is of less importance than
this bias towards objects (SD) or predicates (EG), accompanied by the fact that
the nodal information is represented iconically by SD and symbolically by EG.

4 A framework for affordances

In this section we describe a framework that explains the fact that the differing
approaches of SD and EG may each be more effective than the other in a given
context.3

4.1 Pictorial and Symbolized Information

Our aim is to work towards an understanding of perception-recognition that can
be used to distinguish pictorial and symbolized information. Throughout this
development, it will be important to remember that perception of visual rep-
resentations necessarily and simultaneously always involves both pictorial and
symbolized information to various degrees. At the core of the argument is the

3 The majority of the ideas in this section are attributed to author Coppin and will
form part of his forthcoming PhD thesis [6].
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claim that these two types of information closely correspond to two aspects of
perception-recognition that we categorise as emulation and simulation. Indeed,
it is via their relative engagements of these two aspects that we will be able to
distinguish between symbolic and pictorial visual representations: pictorial rep-
resentations engage relatively more of the aspects or perception that we char-
acterize as emulation, while symbolic representations (that is, representations
which contain relatively more symbolic information) engage relatively more of
the aspects of perception we characterize as simulation. In order to proceed, we
need to establish what is involved in these two key aspects of perception.

What we refer to as emulation can loosely be described as the aspect of
perception-recognition that is most closely coupled with the proximal stimuli
and sensations that impinge upon an organism. With respect to vision, emu-
lation would include the near isomorphic response of retinal receptors to the
aspects of the optic array [9] to which they are specifically tuned to respond.
As information gets further from this “surface interface” and is processed by
higher level aspects of the perceptual-cognitive system, it becomes less accurate
to characterize the process as emulation. The key characteristic of this aspect
of perception-recognition is that there is a structural relationship between the
organism’s response and the proximal stimulus (change) to which that response
is a reaction.

What we refer to as simulation is alluded to by various terms in the cognitive
science literature, such as“filling in” [18] and “prediction” [3]. This is the aspect
of perception that allows us to see distal things as three-dimensional objects,
even when only some subset of two-dimensional surfaces are reflecting light to
our eyes. In order to achieve this, our visual systems must be able to simulate
things and events in the world, in some spatio-temporal sense. This has been
shown to rely on experience/memory and learning [12]. Because of this, the range
of possibilities for a simulation that is a response or reaction to an external
change or variation is greater than for the emulated aspects. Unlike emulation,
because structural correspondence (between the proximal stimuli/change and
the reaction) is not a defining characteristic of simulation, it is not easy or even
possible to directly map back from the reaction to the structure of the stimuli.
Emerging from all of this, the key characteristic of simulation is (subjective)
extrapolation from the proximal structure of stimuli to the recognition of the
distal structure of the world.

As described above, the distinction between these complementary modes of
perception-recognition is noted at several points in the literature, and the modes
are given various names. Hurford [14] identifies the modes with dorsal and ventral
neural pathways, respectively. He notes the precedence of the dorsal/emulated
mode and argues for the importance of this on the sense-making activities of our
pre-linguistic ancestors and, ultimately, on our own development of language.
Dorsal pathways make an initial categorisation of a stimulus that Hurford likens
to a series of evaluations of predicate statements, whereas ventral pathways
supply further environmental detail used to locate the stimulus in context. Thus,
we use emulation to learn what a stimulus represents, before using simulation
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to learn where it is, how it stands in relation to its environmental context, and
so on. To borrow terms from philosophy, we discover quiddity, the whatness
or initial categorisation of a stimulus, then haecceity, the thisness or refined
categorisation4.

Fig. 5. From pictorial to symbolic representation.

At this point, an example is required. Figure 5 shows, from left to right, a
realistic picture of an apple, successively less realistic depictions, the logo of the
Apple company, and finally the (purely symbolic) name of that company. Emu-
lation occurs when the viewer recognises that the apple picture on the far left is
structurally similar to the emulation that occurs when looking at a real apple.
Meanwhile, the activity that occurs when the viewer sees the Apple logo is less
easily mapped back onto proximal stimuli and therefore more in the realm of
simulation. Furthermore, the type and degree of learning required for perceiving-
recognizing the Apple logo is greater than and different in quality from that re-
quired for perceiving-recognizing a photograph of an Apple. Together these two
perceptual-cognitive distinctions justify distinguishing between the two repre-
sentations such that we label one as being more pictorial and the other as being
more symbolic.

Figure 6 presents these distinctions in grid form, and shows the mixture of
emulation and simulation required to process content in a heterogeneous no-
tation. To relate this to earlier sections, both SD and EG may be considered
heterogeneous systems from this point of view, containing relatively pictorial
and relatively symbolic elements. A good example of this is the differing se-
mantics assigned to closed curves in each notation. In SD, the use of curves
is strongly pictorial/emulated, whilst in EG it is strongly symbolic/emulated.
Conversely, disjunction is symbolic/emulated in both notations. In particular,
the node-link diagrams that feature in each notation are heterogeneous, and
each notation mixes pictorial and symbolic information in opposite ways. In SD,
nodes, which are spiders’ feet, use the pictorial device of placement within a re-
gion, whilst edges, spiders’ legs, are symbolic. In EG, nodes, which are predicate
labels, are purely symbolic, whilst edges, lines of identity, are relatively pictorial.

4 In Coppin’s thesis the roles of memory and recognition are developed extensively
in this context and these processes are posited as intermediaries between the two
modes.
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Fig. 6. A perceptual-cognitive framework for graphic representation.

The Emulative and simulative modes are engaged, therefore, when processing
node-link diagrams in either notation. Because priority is given to the nodes of
those diagrams, however, the order in which the cognitive modes are engaged
differs.

4.2 Affordances of Graphic Representation Types

The framework enables predictions regarding the perceptual-cognitive affordances
of the graphic representation types described in this paper. We build on the idea
that capabilities for emulation and simulation share a common, and limited, re-
source: attention and working memory [1, 8, 16]. Presented at a high level, the
predictions we make are as follows.

1. Pictured object relations or attributes interfere with, or hinder, mental sim-
ulation of object relations or attributes, intended by an author.

2. Pictured object relations or attributes can support a mental emulation in-
tended by an author.

3. Combinations of pictured and symbolized information can
(a) free resources for mental simulation of symbolized objects, and
(b) symbolized information affords mental simulations that are difficult, or

impossible, to emulate.

We will first consider item 1. The “free rides” provided by Euler diagrams
(and by other notations), noted by several authors and named by Shimojima [21],
occur when information arises in a diagram as a by-product of its syntax. In
figure 7, the Euler diagram on the left tells us that all jets are planes, and no
birds are planes. We can read immediately from this, as a free ride, that no jets
are birds. Free rides accumulate: we can produce the diagram on the right of
figure 7 by adding the curve labelled Sings to the diagram on the left; as well
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as adding the information that everything that sings is a bird we also learn, as
a free ride, that no planes can sing and neither can any jets sing.

Fig. 7. Pictorial representations depict an entire state of affairs.

Free rides are a powerful component of the effectiveness of a graphical nota-
tion. They come about when a notation is well matched to meaning, allowing the
viewer to use their intuition to make valid inferences for themselves. They also
depend on a situation where a single piece of relatively pictorial syntax depicts
several things at once, and this can become a significant distraction when com-
prehending a cluttered diagram. This point is related to the authors’ previous
work on constraint diagrams [7], in which we argue that generalized constraint
diagrams possess the advantage over the original constraint diagram notation of
being less diffuse; constructing the meaning of an individual piece of syntax can
be done with reference to relatively fewer diagrammatic elements. However, the
features that make generalized constraint diagrams less diffuse may also reduce
the number of free rides available.

To consider cases in the current context where free rides may be counterpro-
ductive, recall that figures 2 and 4 display equivalent information. In figure 2,
a relatively pictorial device is used to depict sets but since every possible set
intersection is depicted, no information about the sets is conveyed by the curves
in isolation. The informational content of the diagram relates to upper and lower
bounds on set cardinality, and includes disjunctive information. This in forma-
tion is provided by shading and a spider, although the interpretation of the
information depends on the relative position of curves. In the context of Cop-
pin’s framework, processing this information requires, predominately, simulation,
and the framework predicts that a less pictorial approach may be effective. This
is stated as item 1 above: pictured object relations or attributes interfere with
mental simulation. In figure 4, we saw that EG conveys the same information
as SD, figure 2, and we claimed that it did so relatively effectively. The frame-
work predicts this effect, since in figure 4 the information requiring simulation
is conveyed by predominately symbolic means.

On the other hand, consider figures 1 and 3. In figure 1, several pieces of
information about relations between sets are conveyed simultaneously: no birds
are planes, no birds are superman, and so on. Although this spider diagram also
includes disjunctive information, the majority of the content is conveyed via the
spatial relations of curves, and the viewer benefits from a natural mapping from
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these relations to relations between sets. The process of comprehending figure 1
is relatively emulative. We can see that a pictorial approach is effective by consid-
ering an existential graph with equivalent meaning to figure 1, shown in figure 3.
In this figure no free rides occur and so each set relation is given explicitly using
a symbolic representation. This is an example of the effect we state in item 2
above: pictured object relations or attributes can support emulation.

Figure 8 shows a spider diagram in which “uncertainty”, or disjunctive infor-
mation, is removed from figure 1 whilst figure 9 shows an existential graph with
an equivalent meaning. The information conveyed by figures 8 and 9 is emulated,
consisting of a series of initial categorisations: there are sets of birds, planes and
supermen, there is a superman. Comparing the two representations shows that
the pictorial approach of SD is certainly less cluttered and, we believe, more
effective.

Fig. 8. It’s Superman!
Fig. 9. Symbolic representation of emu-
lated content.

Items 3a and 3b in our list of assertions on page 57 can be seen as corollaries
to items 1 and 2. As we have seen, although the curves used in SD (and in Euler
diagrams) to represent sets or predicates are more pictorial than the predicate
labels of EG, the use of curves can reduce the effectiveness of the notation by
causing clutter. This calls to mind Peirce’s stated goal for EG ([17], quoted in
Shin [23]) that a diagram should be “as iconic as possible”: perhaps we should
add to this the caveat “but not more”. When something cannot be depicted,
an approach that represents that information using a relatively symbolic device
may be easier to comprehend and more scalable than one that uses a metaphor
of resemblance.

5 Conclusion

Our comparison of the affordances of SD and EG is not undertaken in order to
conclude which system is the most effective. Instead, we have shown that the
interaction of pictorial and symbolic features can promote or hinder certain cog-
nitive processes, which we call emulation and simulation. Using the framework,
we have explained the fact there are certain tasks for which EG is surprisingly
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effective, although EG is (we believe) more cumbersome and less intuitive than
SD. We have considered static comprehension tasks only, but SD and EG are
reasoning systems. In further work, we intend to use the framework to evalu-
ate the two notations when used to construct and comprehend proofs, and to
conduct empirical studies which test the validity of the findings.

A more finely grained version of the predictions in section 4.2 is part of Cop-
pin’s thesis. Using these predictions in a consideration of emulated and simulated
features in existing notations could lead to a principled approach to generating
effective diagrams. The same problem is addressed, though using quite different
means to our own, by Rodgers et al. [20] in their definition of well-formedness
criteria for Euler diagrams and the effect of the criteria on readability. The fine
grained principles could also be used by designers of new notations, through
a consideration of the informational domain of the notation and the cognitive
processes implied.

We also believe the framework can be used to investigate “layers” of informa-
tion within graphical notations. As we have discussed, both SD and EG include
node-link diagrams, and we believe the balance of pictorial/symbolic information
at the nodes of these diagrams must be appropriate to the task in question. We
conjecture that the node-link diagrams form part of an upper layer or “cognitive
foreground” of the notations. Both SD and EG have a series of nested curves
as a “background” layer, though only SD has a background layer which can be
interpreted independently of other diagrammatic content. We intend to study
the existence of layers of content and the effect of their degrees of independent
coherence by conducting eye tracking studies that investigate the ways in which
users pay attention to the syntactic elements of diagrams that include node-link
diagrams amongst other syntax.

Acknowledgements: The authors would like to thank Steve Hockema and Gem
Stapleton for helpful discussions around the topics in this paper.
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