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ABSTRACT 
In this paper we present a framework for developing an intelligent 
job management and scheduling system that utilizes application 
specific benchmarks to mould jobs onto available resources. In an 
attempt to achieve the seemingly irreconcilable goals of 
maximum usage and minimum turnaround time this research aims 
to adapt an open-framework benchmarking scheme to supply 
information to a mouldable job scheduler. In a green IT obsessed 
world, hardware efficiency and usage of computer systems 
becomes essential. With an average computer rack consuming 
between 7 and 25 kW it is essential that resources be utilized in 
the most optimum way possible. Currently the batch schedulers 
employed to manage these multi-user multi-application 
environments are nothing more than match making and service 
level agreement (SLA) enforcing tools. These management 
systems rely on user prescribed parameters that can lead to over 
or under booking of compute resources. System administrators 
strive to get maximum “usage efficiency” from the systems by 
manual fine-tuning and restricting queues. Existing mouldable 
scheduling strategies utilize scalability characteristics, which are 
inherently 2-dimensional and cannot provide predictable 
scheduling information.  

In this paper we have considered existing benchmarking schemes 
and tools, schedulers and scheduling strategies, and elastic 
computational environments. We are proposing a novel job 
management system that will extract performance characteristics 
of an application, with an associated dataset and workload, to 
devise optimal resource allocations and scheduling decisions. As 
we move towards an era where on-demand computing becomes 
the fifth utility, the end product from this research will cope with 
elastic computational environments. 

Categories and Subject Descriptors 
D.4.7 [Operating Systems]: Organization and Design – batch 
processing systems, distributed systems 

General Terms 
Economics, Management, Performance 

Keywords 
Scheduler, mouldable, benchmarking, elastic system, cloud, HPC, 
batch processing, cluster, grid 

1. INTRODUCTION 
Benchmarking Schemes have historically been used as marketing 
and administration tools. Some schemes like Standard 
Performance Evaluation Corporation (SPEC) [10] and Perfect 
Benchmark [8] used “real” applications with generic datasets to 
test a systems performance. This way a scientist looking for a 
cluster computer could ask questions such as “How well will my 
software run?” rather than “How many FLOPS can I get out of 
this system?” If adapted to include an API to plug in any software 
to benchmark and to pass results to other software, these toolkits 
can be used for purposes other than sales and marketing. 
Benchmarking schemes are inherently 2-dimentional as 
scalability and performance is calculated using only cores versus 
dataset sizes. To be truly useful for a scheduler a 3rd dimension – 
workload size needs to be factored in. If a job scheduler can get 
access to performance characteristic curves for every application 
on the system, optimal resource allocation and 
scheduling/queuing decisions can be made at submit time by the 
system rather than the user. This would further improve the 
performance of mouldable schedulers that currently follow the 
Downey model [9]. Along with the decision-making regarding 
resource allocation and scheduling, if the scheduler is able to 
collect a historic record of simulations by the particular users, 
then further optimization is possible. This would lead to better 
and safer utilization of the system. Currently AI is used in some 
decision making in mouldable schedulers. Given a user-inputted 
variance of resources required, the scheduler makes a decision on 
resource allocation by selecting from the available range. If the 
user supplied range is incorrect, the scheduler is powerless to 
adapt, and on a next run cannot learn from previous mistakes or 
successes.  

This research aims to overcome shortcomings of the existing 
solutions, by proposing a design of a job scheduler that uses 
artificial intelligence techniques, heuristic information and 
application specific characteristics. Utilizing results from an 
adapted open-framework benchmarking scheme, the scheduler 
will be able to provide a mouldable and intelligent interface to a 
batch queuing system, helping to increase the usage efficiency of 
the system and provide a high quality of service to all end users. 
The gathered heuristic data will support scheduling decisions to 
optimize the resource allocation and the system utilization. This 
work will be further expanded to include elastic or even shared 
resource environments where the scheduler can expand the size of 
its world based on either financial or SLA driven decisions. 
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2. BACKGROUND 
2.1 Benchmarking Schemes 
Benchmarking Schemes, especially kernel benchmarks, are 
mostly utilised by manufacturers to sell their products. For many 
users of high-end High Performance Computer (HPC) systems, 
predicting how their code or application will run is of more 
pressing concern. Another aspect of evaluating machines is to 
attempt a performance prediction for a family of code. These 
predictions are based on the scalability models for the code. 
Efforts by Allen B. Downey, outlined in a report titled “A model 
for speedup of parallel programs” [9] have led to the 
establishment of what others have referred to as the Downey 
Model. The Downey model establishes “a family of speedup 
curves that are parameterized by the average parallelism of a 
program, A, and the variance in parallelism”. The performance 
characteristic of a particular algorithm, like a CFD code, is 
modelled to predict the run time if the cluster size is changed but 
the dataset is kept the same. As this model utilizes observable and 
measurable program characteristics, like run times for a particular 
section of code and then creates an average, it at times falls short 
when attempting to calculate averages. If the timings are linear or 
near linear on any range of system size, for the particular dataset 
size, the model cannot calculate an average. There is no guarantee 
that at a different dataset size the algorithm keeps the same speed 
up profile. While the Downey model has laid the foundations for 
analysing the scalability of algorithms, it does not however 
answer the question “If I buy this system how fast will my 
particular code for my particular problem run?” 

Further efforts, like that done by the San Diego Supercomputer 
Center [sic] [19], attempt to create a multidimensional 
benchmarking scheme which provides more information than 
Cycle-accurate models (similar to the Downey model, only more 
elaborate and detailed) and run times from real applications. Their 
approach “attempts to see how much of the factors that affect 
performance can be attributed to few parameters only adding 
complexity as needed to explain observed phenomena.” This 
approach sits between kernel benchmarks and real world 
application testing. The authors are averse to benchmarking 
schemes that collect many kernel benchmarks and algorithm 
specific characteristics to generate a performance model. They 
have found that this (very accurate) method is not feasible to 
model full application packages on large-scale systems due to 
time and monetary considerations. 

The natural evolution from kernel benchmarks and then algorithm 
performance modelling is real world application benchmarks. In 
their paper “Measuring High-Performance Computing with Real 
Applications” Sayeed et al. [17] make a case for the development 
of a benchmark that uses actual applications to grade systems. 
The paper is aimed at establishing an application-based 
benchmark to assess performance of machines to influence 
“buying time” decisions. Aside from the financial factors limiting 
the development of real world application benchmarks, there are 
also some technical limitations. The benchmarks discussed above 
do provide developers with figures to help steer improvement of 
the hardware infrastructure.  Real applications are not suitable to 
do this. Fine-tuning of components in a system, to improve the 
performance of a particular application, is possible but if the 
system runs more than one application then this approach is 
detrimental. For manufacturers and hardware designers real 
applications are not the best yardstick as “today’s real 
applications might not be tomorrow’s.” Propriety applications 

also cannot be fairly utilized as manufacturers and developers can 
work together thus tainting the results. Real application 
benchmarks appear to be in the same category as its predecessors 
like LINPACK – just marketing devices sometimes leading to 
fine tuning monitoring and measuring devices. 

Work carried out by Simon et al. and Alam et al. [1] creates a 
foundation for benchmarking HPC Systems and new generation 
processors with real world applications. Their work outlines how 
best to use such benchmarks to assess the new hardware 
effectively before deployment. Alam et al. [1] work also includes 
bringing together kernel benchmarks and application specific 
benchmarking to create a complete picture of a systems 
performance. 

For the purpose of assisting in the procurement of a new system, 
real application benchmarks are very effective. Our interest in real 
application benchmarks stems from the question “For a given 
application on a given system is it possible to create a metric of 
performance versus dataset and problem size?”  Benchmarking 
suites like Perfect Benchmarks [8] and the Stanford Performance 
Evaluation Corporation (SPEC) [10] are two real application 
benchmarks that have withstood the test of time and are still up to 
date, unlike many others from that era. The SPEC benchmarks are 
a compilation of popular applications from each domain of 
scientific research with associated workloads and datasets. Further 
work has been carried out to include some level of kernel 
benchmarks, though these are limited to the application. When 
benchmarking, along with the turn-around-time (TaT) gathered by 
SPEC, add-on components also provide information about the 
inter-processor communication, instructions and flops per cycle 
and the I/O calls and performance. Thus meeting some of the 
shortfalls outlined above.  

As a result of testing and evaluation of the above-mentioned 
benchmarking suites, it was concluded that while the benchmarks 
are able to provide information about an applications performance 
the benchmarks are lacking an “open-framework” to allow a user 
to put in his/her own workload and dataset into the mix. The 
benchmarks, probably due to their maturity, are rigid in nature. 

2.2  Scheduling Techniques 
2.2.1 Traditional Scheduling Strategies 
In parallel environments a job scheduler has two parts to consider 
– the selection of the machine and the scheduling of the jobs over 
time. Within the selection strategies there are two constants: a 
number of nodes available in the execution environment and, at 
the time of calculation, the number of free or available nodes/end 
points/slots. A limited list of strategies a scheduler can follow for 
resource allocation is Biggest Free, Random, Best Fit and Equal 
Utilization [13].  

While there are many popular algorithms for job scheduling First 
Come First Served (FCFS), Backfill (Conservative, Aggressive) 
and Pre-emptive are most commonly used [12, 13].  

Schedulers can also take into account a jobs profile.  There are 
four types of profiles of jobs; these are Rigid Jobs, Mouldable 
Jobs, Evolving Jobs and Malleable Jobs [11, 12].  

Because most applications cannot accommodate Malleable jobs 
and current production level schedulers have their own offline 
mechanisms to handle Evolving jobs this paper will henceforth 
only address the requirements of Rigid and Mouldable jobs. 
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2.2.2 Mouldable Scheduling 
To further expand the definition of a mouldable job given in 
Traditional Scheduling Strategies, a mouldable job is where the 
user provides some “recommendations” for resources required, 
and possibly a deadline for the job. This is against the concept of 
a rigid job where a user prescribes the requirements for the job 
and the scheduler attempts to match the parameters exactly, 
ignoring scheduling or other benefits, and fails if it cannot. The 
scheduler then allocates resources to best decrease the turnaround 
time (TaT) of the job. The quantity of allocated resources is 
adjusted based on a constraint to help maximize the throughput. 
This constraint can exist in the form of a variance provided by the 
user or in some cases, if available, the decision can be based on 
the scalability profiles of the application being run [4–6, 14, 16, 
18, 20, 21]. 

These studies have shown that in comparison to rigid jobs in a 
first come first served queue with backfilling (aggressive or 
otherwise), mouldable jobs have lower average queued times. 
Under other scheduling strategies, mouldable schedulers almost 
always give the best result for the contradictory demands of 
lowest response times and highest utilization rates [5, 6, 14]. 

Where most algorithms rely on users giving a recommendation of 
required resources and then a variance, Srinivasan et al.’s [20] 
approach uses algorithm scalability characteristics. Adopting the 
Downey model as a framework, Srinivasan is able to show how 
letting the scheduler decide the variance, and then allocating the 
corresponding resources, improves the turn-around times for jobs 
in a FCFS queue with conservative backfilling and a Fair Use 
policy. The results also show improved usage efficiency and more 
robustness on the part of the system. 

3. CURRENT SYSTEM & LIMITATIONS 
The following section analyses the University of Huddersfield 
HPC cluster Eridani. Eridani is a 200-core Beowulf cluster that 
caters to all research groups within the University. Primarily used 
as an “entry” system, this machines’ main aim is to introduce 
researchers to utilizing HPC in their research. This system 
services all e-Science research groups within the University. 
Quality of service is of the utmost importance as any lapse could 
result in driving away a research group.  Being an entry system 
means this system gets a large workload from inexperienced users 
who are not fully aware of the nuances of fine-tuning a job 
submission script. The system utilizes TORQUE [7] as the batch 
queuing system and MAUI [15] as the scheduler. 

3.1 Fair Use Policies 
Quality of service, as has been observed, is not always the fastest 
throughput but the illusion that users jobs are running though 
rather than sitting in a queue. With multiple users and a plethora 
of applications, the system administrators formulate a fair use 
policy (FUP) that dictates the scheduling decisions made by the 
jobs management system. These fair-use policies tend to override 
any other scheduling strategies.  

The first constraint on jobs comes from restricting Job sizes. 
When creating the fair use policy an administrator could make the 
following decision:  

If the queue is full, no user should be allowed to run more than: 

• 5 large sized jobs, or  

• 10 medium sized jobs, or  

• 100 small sized jobs at a time.  

This way the system would never appear to be completely locked 
by a few users. Other users with jobs in a queue get the 
impression that the system is working on their simulations as 
well.  

This brings in the need to define a problem size. Problem size for 
a system of this configuration can be quantified in two variables – 
resources required and time required. TORQUE has a switch 
(flag) in the job file, which allows for both to be defined by users. 
The users usually define resources but not time requirement. From 
the system administrator’s perspective, it is important not to rely 
on the users to provide all the information required, hence default 
values need to be in place. Implementing the queues with the 
factors hard coded in the script will force users to select an 
appropriate queue. While this will not give the specific 
requirements accurately it will provide enough information for a 
job scheduler to make basic calculations. 

Evidently, any queue requiring large resources or time will have a 
lower priority weighting. This weighting is also considered in the 
decisions making process by the scheduler, when planning out of 
order runs. Beyond these factors, if two jobs are in the same 
queue, no licensing factors are affect them, the submitting users 
have not manually specified a run time, and the submitting user 
has not exceeded his/her run quota, the jobs will be run on a first 
come first served basis. 

3.2 Scheduling Strategies 
As the user base increases and the profiles of applications on the 
system change proper scheduling based on the established fair use 
policy has become essential. To force all jobs to provide and 
adhere to a “ceiling” time multiple queues are deployed. Each 
queue has a different set of Min, Default and Max Resources and 
a different Max Wall Time. The queues themselves have a 
priority weighting, which is factored in when making scheduling 
decisions. Jobs requiring less resources and less time are given a 
higher priority as outlined in the table of queues below.  (srt is for 
short; std is for standard; ‘ul’ is unlimited) 

Table 1: A Sample Configuration of Typical Queue Values 

Queue 
Name 

Min. 
N/C 

Default 
N/C 

Max 
N/C 

Default 
Run 
Time 

Max 
Run 
Time 

Weight 

Serialsrt 1P 1P 1Nx4P 6 hr. 6 hr. 100 

Serialstd 1P 1Nx4P 1Nx4P 48 hr. 48 hr. 70 

Serialul 1Nx4P 1Nx4P 1Nx4P 14 d 416d 30 

Parasrt 2Nx1P 2Nx4P 4Nx4P 12 hr. 12 hr. 50 

Parastd 2Nx4P 2Nx4P 4Nx4P 48 hr. 48 hr. 40 

Paraul 2Nx4P 2Nx4P 32Nx4P 14 d 416d 0 

 
Once jobs are in the respective queues the MAUI scheduler makes 
the run time scheduling decisions by including clauses from the 
fair use policy (FUP). For the systems within the QGG the FUP 
stipulates that when the resources are full: 

1. Only 10 jobs per user will run (counting those that were 
running before the system was full). If a user already 
has more than 10 running no more can be scheduled 
until the total running jobs by that user drop to 9, 

2. Queue weightings will factor into the scheduling 
decision, 

3. If two jobs exist in the same queue and have been 
submitted within +/- 1 hour of each other, then 
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whichever jobs resource requirement is met first will 
run. Otherwise it is first come first served, 

4. If a job is de-prioritised in favour of another job, after 
24 hours it will become the highest priority job. If 
multiple jobs meet this criteria then the jobs with the 
earliest submit time will be served first, 

5. The de-prioritisation rule does not apply in the ‘ul’ 
queues if the user has requested more than the default 
upper time limit, 

6. All other conflicts and scheduling decisions will utilise 
the first come first served rule. 

3.3 Limitations 
As the previous sections have shown, system administrators and 
IT managers are constantly trying to maintain a balance between 
system efficiency and quality of service. To meet the various 
requirements of the user community running jobs on the system, 
the system parameters have to be loosely configured to allow 
flexibility. To get the maximum efficiency out of a system it must 
be governed with stringent rules that would result in maximum 
utilization. With rules too lax - wide jobs get stuck leading to 
systems appearing to be idle. Also a single user can completely 
consume the system with their jobs. With rules too strict - large 
backlogs begin to be created as shorter and narrower jobs are 
preferred leading to sometimes never ending wait times. Users 
only see quality of service and find the system useful when the 
right balance is struck. This balance depends on the applications 
behaviour and characteristics. 

As outlined in 2.2, scheduling techniques have some weaknesses 
that are exposed by the performance characteristic of a particular 
application or dataset.  Whether the system is scheduled with an 
aggressive backfilling strategy or a FCFS policy, based on user 
prescribed resource parameters, the goals of the system 
administrator are not fully met. In the first case, as identified 
previously, under certain conditions the Quality of Service 
afforded to the end user drops, with wide jobs getting stuck; in the 
later case wide jobs can lock queues leading to poor system 
utilization. These conditions are further exasperated if the users 
prescribed parameters are incorrect. Incorrect parameters can lead 
to over booking – leading to under utilization and large queues, 
and under booking could lead to hardware failure.  

Adopting a heuristic scheduler will make the scheduler intelligent 
and then the system would be able to correct itself in future runs. 
This configuration can also be broken if the user is using multiple 
classes of workloads and datasets for the same application. A user 
who has pre-processing, simulation and post-processing jobs will 
still need to be careful when classifying the job. Misclassification 
leads to bad heuristic information. 

However, the benefits of a system that utilizes heuristic data and 
aggressive backfilling stand. These systems fail when there is a 
lack of information on application and dataset performance 
characteristics, and when they rely on the users to properly assess 
and reassess the jobs’ needs as they change the problem.  

4. PROPOSED SYSTEM 
To overcome the above limitations we are proposing the job 
management system architecture as shown in Figure 1. This 
system will request from users the following information at 
submit time: an application name, job family name (simulation 
name), dataset size and workload size. The job management 

system includes not just the scheduler and batch queuing system 
but also an open-framework real-application benchmarking suite. 
The output of this suite will provide the workload manager with a 
better understanding of the capabilities of the underlying system. 
When installing a new applications on the systems, the system 
administrator will run the benchmarking suite and the results of 
the performance characteristics will be stored in the database. 

The workload manager will use the benchmarking information to 
determine a range of optimum resources to allocate to the job. 
From the metadata it will also identify the estimated run times for 
each combination of allocated resources. The limits estimated 
from the application profile will determine the scheduling of the 
job and the eventual position of the job in the queue. 

 

Figure 1: The Proposed Mouldable Scheduler based on 
Heuristic and Application Benchmarking information in a 
fixed execution environment. 

To make a decision on the run-time allocation the workload 
manager takes into account two sources of information. The first 
source of information is the current system status. The second 
source is obtained from the heuristic database.  This database is 
populated with run time information returned from the batch 
system log. The workload manager will use the simulation name 
provided by the user to compare it with the heuristic information, 
for fine-tuning the resource allocation.  

AI techniques such as fuzzy logic and rules based systems will be 
used to arrive at the resource allocation decisions. All resource 
allocation decisions will be made keeping minimum Turn-around-
Time as the primary goal and maximum system utilization as the 
secondary. With the estimated run time information also available 
the scheduler can provide the user with the time to completion at 
point of submission. 

Though this proposed system architecture queries the user for 
initial job parameters, it is capable of recovering from bad input. 
Each user prescribed parameter has a counter check or a 
correction mechanism on future runs. The user has to provide the 
correct application name otherwise the job will fail immediately. 
If the user gives the wrong dataset or workload size, cumulative 
heuristic information will correct the resource allocation over 
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time. If a user incorrectly specifies the simulation name and the 
heuristic information is beyond the range specified by the 
application profiler, the system could auto-correct itself. 

4.1 Open-Framework Benchmarking 
To provide information of the application performance on a 
system we have designed a toolkit named Application and System 
Performance Characterization toolkit (ASPC) [2]. Built using 
Python and Bash script ASPC is itself very modular. The 
program, at the time of writing, has two wrappers that allow it to 
be used over Torque or SGE job management systems (see Figure 
1 - OPEN-FRAMEWORK BENCHMARKING SUITE).  

A system administrator needs to provide ASPC with a range of 
models for a particular application and corresponding workloads. 
In a configuration file the administrator needs to list the file 
names of the models, where the file name matches the variant 
variable between each model, and give an arbitrary classification 
of the model. Rather than using standardized test models given by 
manufacturers and developers, the administrator has the ability to 
plug in models that a typical to their own institutions work load. 
Figure 2 shows a sample configuration file for the application 
Fluent, developed by ANSYS. Here ASPC gets valuable metadata 
such as the fact that the users requirements will vary based on two 
factors – iterations and elements. Both these labels maybe specific 
to Fluent only, but it will make the job submission mechanism 
more native to the user. For the mouldable scheduler these are the 
two parameters against which it must search the database for 
adequate resource allocation information and run times for 
scheduling purposes. The additional ‘classification’ information 
only helps ASPC to narrow resource allocations for the 
benchmarking. For example, for the model classified as 
VVLARGE, ASPC will not attempt to test it against one node. 
Similarly ASPC will not test a VSMALL model against the whole 
system. This helps to save time when benchmarking as the 
number of combinations can be unmanageable in large systems. 

The ranges that correspond to these ‘classification’ keywords are 
all set in a separate configuration file. Keeping inline with the 
philosophy of being an open-framework package, the 
administrator can set any words as keywords. Additional 
configuration files are available to pass any other parameters to 
ASPC that may be specific to the runtime environment, e.g. 
license information, library paths or environment modules.  

Four nodes from the Eridani cluster were isolated to run ASPC for 
the results presented here. Each node has a 4-core 2.33Ghz Intel 
processor with 4GB of RAM. The nodes are configured as thin 
clients. Upon execution, ASPC generated the multiple jobs as 
described in Table 2: ASPC Job Breakdown for Benchmarking. 

Once the jobs have terminated, ASPC goes through the job logs 
and determines runtime information and whether any job failed 
due to lack of resources. This information is then stored in a 
MySQL database for the Job Schedule module to call on (see 
Figure 1 – BENCHMARKING DATABASE). A visually 
representation of the results from the above performance 
characterization are shown in Figure 3. 

From Figure 3 it can be seen that the LARGE dataset has only 
two data points. This is because when the LARGE dataset is run 
on 1 and 2 nodes it failed due to memory limitations. The other 
two datasets, VLARGE and VVLARGE could not run on the 
nodes utilised due to similar memory limitations. This data 
defines the lower limit for the system and can warn the user 
against overloading the nodes. This provides robustness in the 
system. 

 

Figure 2: Sample of ASPC benchmark configuration file for 
the application fluent. 

 

Table 2: ASPC Job Breakdown for Benchmarking 

MODEL WORKLOADS MIN 
RES. 

MAX 
RES. 

NUMBER 
OF JOBS 

VSMALL 2 1 1 2 

SMALL 2 1 3 6 

AVERAGE 2 1 4 8 

LARGE 2 1 4 8 

VLARGE 2 2 4 6 

VVLARGE 2 4 4 2 

 

 
Figure 3: Performance curves for the different datasets. 
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4.2 Resource Allocation 
With the information stored in the database the workload manager 
can begin to make resource allocation decisions. For the user this 
feature is a major shift from the traditional mechanism of 
submitting jobs. However this new process is more intuitive as the 
user needs to be concerned only about the parameters that are 
relevant to their domain. Figure 4 illustrates an example of a 
submission script where a user provides a job name, selects the 
application and defines relevant parameters. The parameters are 
based on the metadata provided when the benchmarks were done 
and the system was configured. The ‘jobname’ field is used to 
track this particular job and, on its termination, the heuristics 
module will use the job name with the run time information to 
generate heuristic records.  

 

Figure 4: Sample job file under the mouldable scheduler. 

The workload manager will then decide on the resource allocation 
for the job based on the status of the system. To evaluate the 
mouldable allocation, currently the allocation component of the 
workload manager translates the above custom job file into a 
TORQUE specific job file as shown in Figure 5.  

 

Figure 5: Resulting TORQUE submission script. 

In initial trials this system performed well. Decisions on resource 
allocation have been made opaque to the user. This makes the 
system more adaptable and robust. 

5. CONCLUSION AND FURTHER WORK 
In this paper we have presented a review of existing 
benchmarking schemes and scheduling techniques. We have 
identified their strengths and limitations and proposed a new 
robust mouldable scheduling system to address those limitations. 
In addition, we have considered mapping the mould-ability of 
jobs within the finite execution environment to elastic systems. 

With distributed computing infrastructure turning towards “on 
demand” elastic systems, the job schedulers have to be adapted to 
cope with another changing variable. This variable, the size of the 
cluster, has always remained the constant ‘K’ in scheduling 
equations. While clouds are not generally utilized for HPC 
applications they are being used more and more for high 
throughput applications – especially in the commercial sector. 
Within the realm of academia, sites like the University of 
Huddersfield are moving towards shared resources, which are 
scalable to a certain degree. The UK Government’s new approach 
to a three-tiered infrastructure for eScience computing [3] also 
sees many stakeholders coming together to utilize one system. 

The well-defined prior demand notification mechanism, offered 
by traditional service level agreements, cannot cope in such 
settings. This mechanism makes the same oversight as all 
computer workload schedulers do – they rely on the user to 
predict their needs for the next accounting cycle. In an academic 
world this put more stress on the “human workload manager” or 
the user himself. Consequently, system administrators are given 
more rescheduling tasks, as rules have to be adjusted and then 
restored to meet the scalability requests. 

An “intelligent” scheduling systems that utilizes application 
performance data and a competitive algorithm, will be able to 
maximize the efficiency of the system as well provide the users 
with a quality of service. Adding a learning component, to help 
fine tune user specific application and dataset characteristics, the 
scheduler can be adapted to cope with elastic environment based 
on the load. This will enforce new types of SLA’s without human 
intervention. These are the requirements of workload management 
systems as ‘Supercomputing’ moves into an era of austerity and a 
Green IT compliant computing systems. 
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