
 51

Robust Mouldable Scheduling Using Application
Benchmarking for Elastic Environments

Ibad Kureshi
University of Huddersfield

Queensgate, Huddersfield, HD1 3DH
United Kingdom

+44 (0) 148447 1855
i.kureshi@hud.ac.uk

Violeta Holmes
University of Huddersfield
Queensgate, Huddersfield

United Kingdom
+44 (0) 148447 3588

v.holmes@hud.ac.uk

David Cooke
University of Huddersfield
Queensgate, Huddersfield

United Kingdom
+44 (0) 148447 2703

d.j.cooke@hud.ac.uk

ABSTRACT
In this paper we present a framework for developing an intelligent
job management and scheduling system that utilizes application
specific benchmarks to mould jobs onto available resources. In an
attempt to achieve the seemingly irreconcilable goals of
maximum usage and minimum turnaround time this research aims
to adapt an open-framework benchmarking scheme to supply
information to a mouldable job scheduler. In a green IT obsessed
world, hardware efficiency and usage of computer systems
becomes essential. With an average computer rack consuming
between 7 and 25 kW it is essential that resources be utilized in
the most optimum way possible. Currently the batch schedulers
employed to manage these multi-user multi-application
environments are nothing more than match making and service
level agreement (SLA) enforcing tools. These management
systems rely on user prescribed parameters that can lead to over
or under booking of compute resources. System administrators
strive to get maximum “usage efficiency” from the systems by
manual fine-tuning and restricting queues. Existing mouldable
scheduling strategies utilize scalability characteristics, which are
inherently 2-dimensional and cannot provide predictable
scheduling information.

In this paper we have considered existing benchmarking schemes
and tools, schedulers and scheduling strategies, and elastic
computational environments. We are proposing a novel job
management system that will extract performance characteristics
of an application, with an associated dataset and workload, to
devise optimal resource allocations and scheduling decisions. As
we move towards an era where on-demand computing becomes
the fifth utility, the end product from this research will cope with
elastic computational environments.

Categories and Subject Descriptors
D.4.7 [Operating Systems]: Organization and Design – batch
processing systems, distributed systems

General Terms
Economics, Management, Performance

Keywords
Scheduler, mouldable, benchmarking, elastic system, cloud, HPC,
batch processing, cluster, grid

1. INTRODUCTION
Benchmarking Schemes have historically been used as marketing
and administration tools. Some schemes like Standard
Performance Evaluation Corporation (SPEC) [10] and Perfect
Benchmark [8] used “real” applications with generic datasets to
test a systems performance. This way a scientist looking for a
cluster computer could ask questions such as “How well will my
software run?” rather than “How many FLOPS can I get out of
this system?” If adapted to include an API to plug in any software
to benchmark and to pass results to other software, these toolkits
can be used for purposes other than sales and marketing.
Benchmarking schemes are inherently 2-dimentional as
scalability and performance is calculated using only cores versus
dataset sizes. To be truly useful for a scheduler a 3rd dimension –
workload size needs to be factored in. If a job scheduler can get
access to performance characteristic curves for every application
on the system, optimal resource allocation and
scheduling/queuing decisions can be made at submit time by the
system rather than the user. This would further improve the
performance of mouldable schedulers that currently follow the
Downey model [9]. Along with the decision-making regarding
resource allocation and scheduling, if the scheduler is able to
collect a historic record of simulations by the particular users,
then further optimization is possible. This would lead to better
and safer utilization of the system. Currently AI is used in some
decision making in mouldable schedulers. Given a user-inputted
variance of resources required, the scheduler makes a decision on
resource allocation by selecting from the available range. If the
user supplied range is incorrect, the scheduler is powerless to
adapt, and on a next run cannot learn from previous mistakes or
successes.

This research aims to overcome shortcomings of the existing
solutions, by proposing a design of a job scheduler that uses
artificial intelligence techniques, heuristic information and
application specific characteristics. Utilizing results from an
adapted open-framework benchmarking scheme, the scheduler
will be able to provide a mouldable and intelligent interface to a
batch queuing system, helping to increase the usage efficiency of
the system and provide a high quality of service to all end users.
The gathered heuristic data will support scheduling decisions to
optimize the resource allocation and the system utilization. This
work will be further expanded to include elastic or even shared
resource environments where the scheduler can expand the size of
its world based on either financial or SLA driven decisions.

BCI’12, September 16–20, 2012, Novi Sad, Serbia.
Copyright © 2012 by the paper’s authors. Copying permitted only for private and
academic purposes. This volume is published and copyrighted by its editors.
Local Proceedings also appeared in ISBN 978-86-7031-200-5, Faculty of Sciences,
University of Novi Sad.

 52

2. BACKGROUND
2.1 Benchmarking Schemes
Benchmarking Schemes, especially kernel benchmarks, are
mostly utilised by manufacturers to sell their products. For many
users of high-end High Performance Computer (HPC) systems,
predicting how their code or application will run is of more
pressing concern. Another aspect of evaluating machines is to
attempt a performance prediction for a family of code. These
predictions are based on the scalability models for the code.
Efforts by Allen B. Downey, outlined in a report titled “A model
for speedup of parallel programs” [9] have led to the
establishment of what others have referred to as the Downey
Model. The Downey model establishes “a family of speedup
curves that are parameterized by the average parallelism of a
program, A, and the variance in parallelism”. The performance
characteristic of a particular algorithm, like a CFD code, is
modelled to predict the run time if the cluster size is changed but
the dataset is kept the same. As this model utilizes observable and
measurable program characteristics, like run times for a particular
section of code and then creates an average, it at times falls short
when attempting to calculate averages. If the timings are linear or
near linear on any range of system size, for the particular dataset
size, the model cannot calculate an average. There is no guarantee
that at a different dataset size the algorithm keeps the same speed
up profile. While the Downey model has laid the foundations for
analysing the scalability of algorithms, it does not however
answer the question “If I buy this system how fast will my
particular code for my particular problem run?”

Further efforts, like that done by the San Diego Supercomputer
Center [sic] [19], attempt to create a multidimensional
benchmarking scheme which provides more information than
Cycle-accurate models (similar to the Downey model, only more
elaborate and detailed) and run times from real applications. Their
approach “attempts to see how much of the factors that affect
performance can be attributed to few parameters only adding
complexity as needed to explain observed phenomena.” This
approach sits between kernel benchmarks and real world
application testing. The authors are averse to benchmarking
schemes that collect many kernel benchmarks and algorithm
specific characteristics to generate a performance model. They
have found that this (very accurate) method is not feasible to
model full application packages on large-scale systems due to
time and monetary considerations.

The natural evolution from kernel benchmarks and then algorithm
performance modelling is real world application benchmarks. In
their paper “Measuring High-Performance Computing with Real
Applications” Sayeed et al. [17] make a case for the development
of a benchmark that uses actual applications to grade systems.
The paper is aimed at establishing an application-based
benchmark to assess performance of machines to influence
“buying time” decisions. Aside from the financial factors limiting
the development of real world application benchmarks, there are
also some technical limitations. The benchmarks discussed above
do provide developers with figures to help steer improvement of
the hardware infrastructure. Real applications are not suitable to
do this. Fine-tuning of components in a system, to improve the
performance of a particular application, is possible but if the
system runs more than one application then this approach is
detrimental. For manufacturers and hardware designers real
applications are not the best yardstick as “today’s real
applications might not be tomorrow’s.” Propriety applications

also cannot be fairly utilized as manufacturers and developers can
work together thus tainting the results. Real application
benchmarks appear to be in the same category as its predecessors
like LINPACK – just marketing devices sometimes leading to
fine tuning monitoring and measuring devices.

Work carried out by Simon et al. and Alam et al. [1] creates a
foundation for benchmarking HPC Systems and new generation
processors with real world applications. Their work outlines how
best to use such benchmarks to assess the new hardware
effectively before deployment. Alam et al. [1] work also includes
bringing together kernel benchmarks and application specific
benchmarking to create a complete picture of a systems
performance.

For the purpose of assisting in the procurement of a new system,
real application benchmarks are very effective. Our interest in real
application benchmarks stems from the question “For a given
application on a given system is it possible to create a metric of
performance versus dataset and problem size?” Benchmarking
suites like Perfect Benchmarks [8] and the Stanford Performance
Evaluation Corporation (SPEC) [10] are two real application
benchmarks that have withstood the test of time and are still up to
date, unlike many others from that era. The SPEC benchmarks are
a compilation of popular applications from each domain of
scientific research with associated workloads and datasets. Further
work has been carried out to include some level of kernel
benchmarks, though these are limited to the application. When
benchmarking, along with the turn-around-time (TaT) gathered by
SPEC, add-on components also provide information about the
inter-processor communication, instructions and flops per cycle
and the I/O calls and performance. Thus meeting some of the
shortfalls outlined above.

As a result of testing and evaluation of the above-mentioned
benchmarking suites, it was concluded that while the benchmarks
are able to provide information about an applications performance
the benchmarks are lacking an “open-framework” to allow a user
to put in his/her own workload and dataset into the mix. The
benchmarks, probably due to their maturity, are rigid in nature.

2.2 Scheduling Techniques
2.2.1 Traditional Scheduling Strategies
In parallel environments a job scheduler has two parts to consider
– the selection of the machine and the scheduling of the jobs over
time. Within the selection strategies there are two constants: a
number of nodes available in the execution environment and, at
the time of calculation, the number of free or available nodes/end
points/slots. A limited list of strategies a scheduler can follow for
resource allocation is Biggest Free, Random, Best Fit and Equal
Utilization [13].

While there are many popular algorithms for job scheduling First
Come First Served (FCFS), Backfill (Conservative, Aggressive)
and Pre-emptive are most commonly used [12, 13].

Schedulers can also take into account a jobs profile. There are
four types of profiles of jobs; these are Rigid Jobs, Mouldable
Jobs, Evolving Jobs and Malleable Jobs [11, 12].

Because most applications cannot accommodate Malleable jobs
and current production level schedulers have their own offline
mechanisms to handle Evolving jobs this paper will henceforth
only address the requirements of Rigid and Mouldable jobs.

 53

2.2.2 Mouldable Scheduling
To further expand the definition of a mouldable job given in
Traditional Scheduling Strategies, a mouldable job is where the
user provides some “recommendations” for resources required,
and possibly a deadline for the job. This is against the concept of
a rigid job where a user prescribes the requirements for the job
and the scheduler attempts to match the parameters exactly,
ignoring scheduling or other benefits, and fails if it cannot. The
scheduler then allocates resources to best decrease the turnaround
time (TaT) of the job. The quantity of allocated resources is
adjusted based on a constraint to help maximize the throughput.
This constraint can exist in the form of a variance provided by the
user or in some cases, if available, the decision can be based on
the scalability profiles of the application being run [4–6, 14, 16,
18, 20, 21].

These studies have shown that in comparison to rigid jobs in a
first come first served queue with backfilling (aggressive or
otherwise), mouldable jobs have lower average queued times.
Under other scheduling strategies, mouldable schedulers almost
always give the best result for the contradictory demands of
lowest response times and highest utilization rates [5, 6, 14].

Where most algorithms rely on users giving a recommendation of
required resources and then a variance, Srinivasan et al.’s [20]
approach uses algorithm scalability characteristics. Adopting the
Downey model as a framework, Srinivasan is able to show how
letting the scheduler decide the variance, and then allocating the
corresponding resources, improves the turn-around times for jobs
in a FCFS queue with conservative backfilling and a Fair Use
policy. The results also show improved usage efficiency and more
robustness on the part of the system.

3. CURRENT SYSTEM & LIMITATIONS
The following section analyses the University of Huddersfield
HPC cluster Eridani. Eridani is a 200-core Beowulf cluster that
caters to all research groups within the University. Primarily used
as an “entry” system, this machines’ main aim is to introduce
researchers to utilizing HPC in their research. This system
services all e-Science research groups within the University.
Quality of service is of the utmost importance as any lapse could
result in driving away a research group. Being an entry system
means this system gets a large workload from inexperienced users
who are not fully aware of the nuances of fine-tuning a job
submission script. The system utilizes TORQUE [7] as the batch
queuing system and MAUI [15] as the scheduler.

3.1 Fair Use Policies
Quality of service, as has been observed, is not always the fastest
throughput but the illusion that users jobs are running though
rather than sitting in a queue. With multiple users and a plethora
of applications, the system administrators formulate a fair use
policy (FUP) that dictates the scheduling decisions made by the
jobs management system. These fair-use policies tend to override
any other scheduling strategies.

The first constraint on jobs comes from restricting Job sizes.
When creating the fair use policy an administrator could make the
following decision:

If the queue is full, no user should be allowed to run more than:

• 5 large sized jobs, or

• 10 medium sized jobs, or

• 100 small sized jobs at a time.

This way the system would never appear to be completely locked
by a few users. Other users with jobs in a queue get the
impression that the system is working on their simulations as
well.

This brings in the need to define a problem size. Problem size for
a system of this configuration can be quantified in two variables –
resources required and time required. TORQUE has a switch
(flag) in the job file, which allows for both to be defined by users.
The users usually define resources but not time requirement. From
the system administrator’s perspective, it is important not to rely
on the users to provide all the information required, hence default
values need to be in place. Implementing the queues with the
factors hard coded in the script will force users to select an
appropriate queue. While this will not give the specific
requirements accurately it will provide enough information for a
job scheduler to make basic calculations.

Evidently, any queue requiring large resources or time will have a
lower priority weighting. This weighting is also considered in the
decisions making process by the scheduler, when planning out of
order runs. Beyond these factors, if two jobs are in the same
queue, no licensing factors are affect them, the submitting users
have not manually specified a run time, and the submitting user
has not exceeded his/her run quota, the jobs will be run on a first
come first served basis.

3.2 Scheduling Strategies
As the user base increases and the profiles of applications on the
system change proper scheduling based on the established fair use
policy has become essential. To force all jobs to provide and
adhere to a “ceiling” time multiple queues are deployed. Each
queue has a different set of Min, Default and Max Resources and
a different Max Wall Time. The queues themselves have a
priority weighting, which is factored in when making scheduling
decisions. Jobs requiring less resources and less time are given a
higher priority as outlined in the table of queues below. (srt is for
short; std is for standard; ‘ul’ is unlimited)

Table 1: A Sample Configuration of Typical Queue Values

Queue
Name

Min.
N/C

Default
N/C

Max
N/C

Default
Run
Time

Max
Run
Time

Weight

Serialsrt 1P 1P 1Nx4P 6 hr. 6 hr. 100

Serialstd 1P 1Nx4P 1Nx4P 48 hr. 48 hr. 70

Serialul 1Nx4P 1Nx4P 1Nx4P 14 d 416d 30

Parasrt 2Nx1P 2Nx4P 4Nx4P 12 hr. 12 hr. 50

Parastd 2Nx4P 2Nx4P 4Nx4P 48 hr. 48 hr. 40

Paraul 2Nx4P 2Nx4P 32Nx4P 14 d 416d 0

Once jobs are in the respective queues the MAUI scheduler makes
the run time scheduling decisions by including clauses from the
fair use policy (FUP). For the systems within the QGG the FUP
stipulates that when the resources are full:

1. Only 10 jobs per user will run (counting those that were
running before the system was full). If a user already
has more than 10 running no more can be scheduled
until the total running jobs by that user drop to 9,

2. Queue weightings will factor into the scheduling
decision,

3. If two jobs exist in the same queue and have been
submitted within +/- 1 hour of each other, then

 54

whichever jobs resource requirement is met first will
run. Otherwise it is first come first served,

4. If a job is de-prioritised in favour of another job, after
24 hours it will become the highest priority job. If
multiple jobs meet this criteria then the jobs with the
earliest submit time will be served first,

5. The de-prioritisation rule does not apply in the ‘ul’
queues if the user has requested more than the default
upper time limit,

6. All other conflicts and scheduling decisions will utilise
the first come first served rule.

3.3 Limitations
As the previous sections have shown, system administrators and
IT managers are constantly trying to maintain a balance between
system efficiency and quality of service. To meet the various
requirements of the user community running jobs on the system,
the system parameters have to be loosely configured to allow
flexibility. To get the maximum efficiency out of a system it must
be governed with stringent rules that would result in maximum
utilization. With rules too lax - wide jobs get stuck leading to
systems appearing to be idle. Also a single user can completely
consume the system with their jobs. With rules too strict - large
backlogs begin to be created as shorter and narrower jobs are
preferred leading to sometimes never ending wait times. Users
only see quality of service and find the system useful when the
right balance is struck. This balance depends on the applications
behaviour and characteristics.

As outlined in 2.2, scheduling techniques have some weaknesses
that are exposed by the performance characteristic of a particular
application or dataset. Whether the system is scheduled with an
aggressive backfilling strategy or a FCFS policy, based on user
prescribed resource parameters, the goals of the system
administrator are not fully met. In the first case, as identified
previously, under certain conditions the Quality of Service
afforded to the end user drops, with wide jobs getting stuck; in the
later case wide jobs can lock queues leading to poor system
utilization. These conditions are further exasperated if the users
prescribed parameters are incorrect. Incorrect parameters can lead
to over booking – leading to under utilization and large queues,
and under booking could lead to hardware failure.

Adopting a heuristic scheduler will make the scheduler intelligent
and then the system would be able to correct itself in future runs.
This configuration can also be broken if the user is using multiple
classes of workloads and datasets for the same application. A user
who has pre-processing, simulation and post-processing jobs will
still need to be careful when classifying the job. Misclassification
leads to bad heuristic information.

However, the benefits of a system that utilizes heuristic data and
aggressive backfilling stand. These systems fail when there is a
lack of information on application and dataset performance
characteristics, and when they rely on the users to properly assess
and reassess the jobs’ needs as they change the problem.

4. PROPOSED SYSTEM
To overcome the above limitations we are proposing the job
management system architecture as shown in Figure 1. This
system will request from users the following information at
submit time: an application name, job family name (simulation
name), dataset size and workload size. The job management

system includes not just the scheduler and batch queuing system
but also an open-framework real-application benchmarking suite.
The output of this suite will provide the workload manager with a
better understanding of the capabilities of the underlying system.
When installing a new applications on the systems, the system
administrator will run the benchmarking suite and the results of
the performance characteristics will be stored in the database.

The workload manager will use the benchmarking information to
determine a range of optimum resources to allocate to the job.
From the metadata it will also identify the estimated run times for
each combination of allocated resources. The limits estimated
from the application profile will determine the scheduling of the
job and the eventual position of the job in the queue.

Figure 1: The Proposed Mouldable Scheduler based on
Heuristic and Application Benchmarking information in a
fixed execution environment.

To make a decision on the run-time allocation the workload
manager takes into account two sources of information. The first
source of information is the current system status. The second
source is obtained from the heuristic database. This database is
populated with run time information returned from the batch
system log. The workload manager will use the simulation name
provided by the user to compare it with the heuristic information,
for fine-tuning the resource allocation.

AI techniques such as fuzzy logic and rules based systems will be
used to arrive at the resource allocation decisions. All resource
allocation decisions will be made keeping minimum Turn-around-
Time as the primary goal and maximum system utilization as the
secondary. With the estimated run time information also available
the scheduler can provide the user with the time to completion at
point of submission.

Though this proposed system architecture queries the user for
initial job parameters, it is capable of recovering from bad input.
Each user prescribed parameter has a counter check or a
correction mechanism on future runs. The user has to provide the
correct application name otherwise the job will fail immediately.
If the user gives the wrong dataset or workload size, cumulative
heuristic information will correct the resource allocation over

 55

time. If a user incorrectly specifies the simulation name and the
heuristic information is beyond the range specified by the
application profiler, the system could auto-correct itself.

4.1 Open-Framework Benchmarking
To provide information of the application performance on a
system we have designed a toolkit named Application and System
Performance Characterization toolkit (ASPC) [2]. Built using
Python and Bash script ASPC is itself very modular. The
program, at the time of writing, has two wrappers that allow it to
be used over Torque or SGE job management systems (see Figure
1 - OPEN-FRAMEWORK BENCHMARKING SUITE).

A system administrator needs to provide ASPC with a range of
models for a particular application and corresponding workloads.
In a configuration file the administrator needs to list the file
names of the models, where the file name matches the variant
variable between each model, and give an arbitrary classification
of the model. Rather than using standardized test models given by
manufacturers and developers, the administrator has the ability to
plug in models that a typical to their own institutions work load.
Figure 2 shows a sample configuration file for the application
Fluent, developed by ANSYS. Here ASPC gets valuable metadata
such as the fact that the users requirements will vary based on two
factors – iterations and elements. Both these labels maybe specific
to Fluent only, but it will make the job submission mechanism
more native to the user. For the mouldable scheduler these are the
two parameters against which it must search the database for
adequate resource allocation information and run times for
scheduling purposes. The additional ‘classification’ information
only helps ASPC to narrow resource allocations for the
benchmarking. For example, for the model classified as
VVLARGE, ASPC will not attempt to test it against one node.
Similarly ASPC will not test a VSMALL model against the whole
system. This helps to save time when benchmarking as the
number of combinations can be unmanageable in large systems.

The ranges that correspond to these ‘classification’ keywords are
all set in a separate configuration file. Keeping inline with the
philosophy of being an open-framework package, the
administrator can set any words as keywords. Additional
configuration files are available to pass any other parameters to
ASPC that may be specific to the runtime environment, e.g.
license information, library paths or environment modules.

Four nodes from the Eridani cluster were isolated to run ASPC for
the results presented here. Each node has a 4-core 2.33Ghz Intel
processor with 4GB of RAM. The nodes are configured as thin
clients. Upon execution, ASPC generated the multiple jobs as
described in Table 2: ASPC Job Breakdown for Benchmarking.

Once the jobs have terminated, ASPC goes through the job logs
and determines runtime information and whether any job failed
due to lack of resources. This information is then stored in a
MySQL database for the Job Schedule module to call on (see
Figure 1 – BENCHMARKING DATABASE). A visually
representation of the results from the above performance
characterization are shown in Figure 3.

From Figure 3 it can be seen that the LARGE dataset has only
two data points. This is because when the LARGE dataset is run
on 1 and 2 nodes it failed due to memory limitations. The other
two datasets, VLARGE and VVLARGE could not run on the
nodes utilised due to similar memory limitations. This data
defines the lower limit for the system and can warn the user
against overloading the nodes. This provides robustness in the
system.

Figure 2: Sample of ASPC benchmark configuration file for
the application fluent.

Table 2: ASPC Job Breakdown for Benchmarking

MODEL WORKLOADS MIN
RES.

MAX
RES.

NUMBER
OF JOBS

VSMALL 2 1 1 2

SMALL 2 1 3 6

AVERAGE 2 1 4 8

LARGE 2 1 4 8

VLARGE 2 2 4 6

VVLARGE 2 4 4 2

Figure 3: Performance curves for the different datasets.

 56

4.2 Resource Allocation
With the information stored in the database the workload manager
can begin to make resource allocation decisions. For the user this
feature is a major shift from the traditional mechanism of
submitting jobs. However this new process is more intuitive as the
user needs to be concerned only about the parameters that are
relevant to their domain. Figure 4 illustrates an example of a
submission script where a user provides a job name, selects the
application and defines relevant parameters. The parameters are
based on the metadata provided when the benchmarks were done
and the system was configured. The ‘jobname’ field is used to
track this particular job and, on its termination, the heuristics
module will use the job name with the run time information to
generate heuristic records.

Figure 4: Sample job file under the mouldable scheduler.

The workload manager will then decide on the resource allocation
for the job based on the status of the system. To evaluate the
mouldable allocation, currently the allocation component of the
workload manager translates the above custom job file into a
TORQUE specific job file as shown in Figure 5.

Figure 5: Resulting TORQUE submission script.

In initial trials this system performed well. Decisions on resource
allocation have been made opaque to the user. This makes the
system more adaptable and robust.

5. CONCLUSION AND FURTHER WORK
In this paper we have presented a review of existing
benchmarking schemes and scheduling techniques. We have
identified their strengths and limitations and proposed a new
robust mouldable scheduling system to address those limitations.
In addition, we have considered mapping the mould-ability of
jobs within the finite execution environment to elastic systems.

With distributed computing infrastructure turning towards “on
demand” elastic systems, the job schedulers have to be adapted to
cope with another changing variable. This variable, the size of the
cluster, has always remained the constant ‘K’ in scheduling
equations. While clouds are not generally utilized for HPC
applications they are being used more and more for high
throughput applications – especially in the commercial sector.
Within the realm of academia, sites like the University of
Huddersfield are moving towards shared resources, which are
scalable to a certain degree. The UK Government’s new approach
to a three-tiered infrastructure for eScience computing [3] also
sees many stakeholders coming together to utilize one system.

The well-defined prior demand notification mechanism, offered
by traditional service level agreements, cannot cope in such
settings. This mechanism makes the same oversight as all
computer workload schedulers do – they rely on the user to
predict their needs for the next accounting cycle. In an academic
world this put more stress on the “human workload manager” or
the user himself. Consequently, system administrators are given
more rescheduling tasks, as rules have to be adjusted and then
restored to meet the scalability requests.

An “intelligent” scheduling systems that utilizes application
performance data and a competitive algorithm, will be able to
maximize the efficiency of the system as well provide the users
with a quality of service. Adding a learning component, to help
fine tune user specific application and dataset characteristics, the
scheduler can be adapted to cope with elastic environment based
on the load. This will enforce new types of SLA’s without human
intervention. These are the requirements of workload management
systems as ‘Supercomputing’ moves into an era of austerity and a
Green IT compliant computing systems.

6. ACKNOWLEDGMENTS
The authors would like to acknowledge the use of the University
of Huddersfield computational grid known as the Queensgate
Grid in carrying out this work.

7. REFERENCES
[1] Alarm, S.R., Barrett, R.F., Kuehn, J.A., Roth, P.C. and

Vetter, J.S. 2006. Characterization of Scientific Workloads
on Systems with Multi-Core Processors. 2006 IEEE
International Symposium on Workload Characterization
(Oct. 2006), 225–236.

[2] ASPC Home: 2011.
http://hpc.hud.ac.uk/projects/ASPC/index.php/Main_Page.
Accessed: 2012-05-31.

[3] BIS 2011. Delivering the UK’s e-Infrastructure for
Research and Innovation. RCUK.

[4] Carroll, T.E. and Grosu, D. 2010. Incentive Compatible
Online Scheduling of Malleable Parallel Jobs with
Individual Deadlines. Parallel Processing (ICPP), 2010
39th International Conference on (2010), 516–524.

[5] Cirne, W. and Berman, F. 2001. A model for moldable
supercomputer jobs. Parallel and Distributed Processing
Symposium., Proceedings 15th International (2001), 8–pp.

[6] Cirne, W. and Berman, F. 2002. Using moldability to
improve the performance of supercomputer jobs. Journal
of Parallel and Distributed Computing. 62, 10 (2002),
1571–1601.

[7] Cluster Resources:: Products:
http://www.clusterresources.com/pages/products.php.
Accessed: 2012-02-07.

[8] Cybenko, G., Pointer, L. and Kuck, D. 1990.
Supercomputer Performance Evaluation and the Perfect
Benchmarks. IN PROCEEDINGS OF THE 1990 ACM
INTERNATIONAL CONFERENCE ON
SUPERCOMPUTING. (1990), 254–266.

[9] Downey, A.B. 1997. A model for speedup of parallel
programs. Computer. (1997).

[10] Eigenmann, R. and Hassanzadeh, S. 1996. Benchmarking
with real industrial applications: the SPEC High-
Performance Group. IEEE Computational Science &
Engineering. 3, 1 (Spring. 1996), 18–23.

 57

[11] Feitelson, D. and Nitzberg, B. 1995. Job characteristics of
a production parallel scientific workload on the NASA
Ames iPSC/860. Job Scheduling Strategies for Parallel
Processing (1995), 337–360.

[12] Feitelson, D., Rudolph, L., Schwiegelshohn, U., Sevcik, K.
and Wong, P. 1997. Theory and practice in parallel job
scheduling. Job Scheduling Strategies for Parallel
Processing (1997), 1–34.

[13] Hamscher, V., Schwiegelshohn, U., Streit, A. and
Yahyapour, R. Evaluation of Job-Scheduling Strategies for
Grid Computing. Grid Computing — GRID 2000. R.
Buyya and M. Baker, eds. Springer Berlin Heidelberg.
191–202.

[14] Hungershofer, J. 2004. On the combined scheduling of
malleable and rigid jobs. Computer Architecture and High
Performance Computing, 2004. SBAC-PAD 2004. 16th
Symposium on (2004), 206–213.

[15] Jackson, D.B. 2001. Maui scheduler: a multifunction
cluster scheduler. Beowulf Cluster Computing with
Windows (2001), 345–362.

[16] Saule, E., Bozdağ, D. and Catalyurek, U. 2010. A
moldable online scheduling algorithm and its application to
parallel short sequence mapping. Job Scheduling Strategies
for Parallel Processing (2010), 93–109.

[17] Sayeed, M., Hansang Bae, Yili Zheng, Armstrong, B.,
Eigenmann, R. and Saied, F. 2008. Measuring High-

Performance Computing with Real Applications.
Computing in Science & Engineering. 10, 4 (Aug. 2008),
60–70.

[18] Shih, P.C. and Chung, Y.C. 2009. Adaptive Processor
Allocation for Moldable Jobs in Computational Grid.
International Journal of Grid and High Performance
Computing. 1, 1 (2009), 10–21.

[19] Snavely, A., Carrington, L., Wolter, N., Labarta, J., Badia,
R. and Purkayastha, A. 2002. A Framework for
Performance Modeling and Prediction. Supercomputing,
ACM/IEEE 2002 Conference (Nov. 2002), 21–21.

[20] Srinivasan, S., Krishnamoorthy, S. and Sadayappan, P.
2003. A robust scheduling technology for moldable
scheduling of parallel jobs. 2003 IEEE International
Conference on Cluster Computing, 2003. Proceedings
(Dec. 2003), 92–99.

[21] Trystram, D. 2001. Scheduling parallel applications using
malleable tasks on clusters. Proceedings of the 15th
International Parallel & Distributed Processing
Symposium (2001), 199.

