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Abstract—Network Functions Virtualization (NFV) implements
virtual network functions (such as firewall, IDS, etc.) as service
chains over a cloud computing infrastructure to provide dynamic,
scalable, and cost-efficient network services. This layered design
of NFV is a double-edged sword that may also lead to unique
security concerns for NFV tenants including the breach of the
integrity of their service chains through various attacks (e.g.,
VNF bypassing, packet injection, etc.). To make things worse, the
underlying infrastructure-level data is typically owned by third-
party cloud providers, which renders such data unavailable to
NFV tenants to directly examine the actual deployment of their
service chains. In this work, we propose a blackbox approach,
namely, artificial packet-pair dispersion (APPD), which can work
around this limitation of unavailable infrastructure-level data to
still allow NFV tenants to verify the integrity of service chains.
To that end, APPD first estimates the throughput of incoming
NFV traffic based on inter-packet delay by creating an artificial
congestion (as natural congestion may not always be present in
a high bandwidth environment involving cloud and NFV) for a
short period of time. APPD then verifies service chain integrity
by comparing this estimated throughput with the throughput
of the actual traffic flowing through the service chains. Our
experimental results with both real and synthetic datasets confirm
the effectiveness and negligible overhead of APPD.

I. INTRODUCTION

Network Functions Virtualization (NFV) is considered as

one of the cornerstones of the emerging 5G technology due

to its various benefits such as cost efficiency and greater

flexibility [1]. NFV allows virtual network functions (VNF),

such as firewall, IDS, and DPI to be implemented as service

chains over a third-party cloud infrastructure, such that the

network service providers (i.e., NFV tenants) can leverage

the benefits of NFV without having to deploy and manage

their own infrastructures [2]–[4]. However, such outsourcing

of VNFs might limit the capability of an NFV tenant to

know whether their VNFs have been properly deployed in

the underlying cloud infrastructure, as the third party cloud

providers would typically not allow the NFV tenant to access

the infrastructure-level resources (e.g., SDN switches) and data

(e.g., logs and configuration).

On the other hand, enabling the above-mentioned verifica-

tion capability for NFV tenants is becoming more important

with the growing security concerns in NFV infrastructure,

especially those involving various types (e.g., VNF bypassing,

packet dropping, fake packet injection) of integrity breach

of VNF service chains [5]–[8]. Such integrity breaches are

mainly caused by misconfigured (e.g., [9]) or compromised

(e.g., [10]–[12]) components of the underlying infrastructure

(e.g., SDN switches), which could lead to severe security

consequences, such as circumventing security mechanisms

(e.g., virtual firewall or IDS) inside a service chain. Therefore,

an interesting research challenge is to enable the verification
of service chain integrity for NFV tenants without requiring
the access to infrastructure-level resource or data.

Most existing efforts (e.g., [5]–[8], [13]–[15]) fall short to

fulfill this need. Specifically, some existing works (e.g., [13]–

[15]) rely on the infrastructure-level data (e.g., flow rules and

flow statistics in SDN switches) to verify service chain in-

tegrity. Other existing works (e.g., [5]–[8]) aim to reduce the re-

quirement of infrastructure-level data by using a cryptographic

tagging mechanism at the VNF-level. Nonetheless, those works

require modifications (such as reprogramming the firmware) to

infrastructure-level devices (e.g., SDN controller), which may

not be practical with third-party providers. Moreover, those

works are not designed to detect all types of integrity breaches

(e.g., bypassing the last VNF, or all VNFs, in the service

chain). To the best of our knowledge, there does not exist

a blackbox approach (where tenant-level data along with the

available side-channel data would be sufficient to verify service

chain integrity).

In this paper, we propose a blackbox approach, namely,

artificial packet-pair dispersion (APPD), to allow NFV ten-

ants to verify service chain integrity without requiring any

infrastructure-level data. Our key idea is twofold. First, if we

could somehow enable the VNFs to estimate the throughput

of incoming traffic to NFV (i.e., traffic flowing into the

service chain), then by comparing this throughput to the

actual throughput observed by each VNF along the service978-1-5386-4633-5/18/$31.00 ©2021 IEEE
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Fig. 1: An example of integrity breaches in NFV (top) and a possible solution and its key challenge (bottom)

chain, the VNFs could then identify any integrity breach all

by themselves (e.g., an increased throughput may indicate

bypassing). Second, to address the key challenge of allowing

VNFs to estimate the incoming traffic throughput, we rely on

the fact that the inter-packet delay could be increased by (and

thus indicate) congestion in a link. Specifically, our proposed

approach consists of two major steps. First, APPD estimates

incoming traffic throughput to NFV from the inter-packet delay

by creating an artificial congestion (as a natural congestion is

rare in an NFV-like high-bandwidth infrastructure). Second,

it detects service chain integrity breaches by comparing the

estimated incoming traffic throughputs with the actual traffic

throughput using a machine learning (clustering) approach. We

will further elaborate on our motivation and idea through an

example in Section II.

In summary, our main contributions are the following:

• As per our knowledge, this is the first blackbox approach

that eliminates the need for infrastructure-level data for

verifying common integrity breaches (e.g., bypassing, fake

packet injection, and packet dropping) in NFV service

chains.

• We are the first to introduce a novel method of artificial

packet-pair dispersion (APPD), which allows to create

artificial congestion in a high-bandwidth network like

in an NFV infrastructure (where a natural congestion is

rare, if not impossible) for estimating incoming traffic

throughputs to NFV. We believe this novel method for

estimating throughput may find other applications beyond

service chain integrity verification.

• As a proof of concept, we integrate APPD with Open-

Stack/Tacker, a popular choice for NFV deployment, and,

through extensive experiments in a real network environ-

ment, we demonstrate both effectiveness and efficiency

(i.e., negligible overhead) of APPD.

The remainder of this paper is organized as follows. Sec-

tion II provides preliminaries. Section III presents detailed

methodology of APPD. Section IV describes the implemen-

tation details of APPD. Section V presents our obtained

experimental results. Section VI describes the literature review.

Finally, Section VII concludes the paper.

II. PRELIMINARIES

This section first presents a motivating example. Then it

defines our threat model and assumptions.

A. Motivating example
The top of Fig. 1 depicts a simplified NFV deployment, with

different integrity breaches (indicated by the red dashed lines),

as well as the main challenge (the red stop sign). The bottom

of Fig. 1 illustrates a potential solution and its key challenge.

NFV Deployment. The top slice of Fig. 1 shows an example of

an NFV environment where VNFs are running on a third-party

cloud provider’s infrastructure. As shown in blue dashed lines,

the incoming traffic is planned to pass through the service chain

consisting of several VNFs, such as Firewall (FW), Intrusion

Detection System (IDS), and Deep Packet Inspection (DPI) as

well as their underlying cloud infrastructure (Switch1, ...,
SwitchN ).

Integrity Breach in NFV Service Chains. The middle slice of

Fig. 1 shows various integrity breaches including injection of

fake packets, dropping legitimate packets, and bypassing one

or more VNFs due to misconfigurations (e.g., [9]) by a cheap-

/lazy provider or attacks by exploiting compromised resources

(e.g., [10]–[12]). As a result, traffic may follow an entirely

different path (as shown in the red lines) than planned paths.

An NFV tenant cannot easily verify such integrity breach, due

to the limited access to the underlying infrastructure-level data

(including the flow rules of Switch1, ..., SwitchN ).

Potential Blackbox Solution and Its Challenge. The bottom

slice of Fig. 1 shows a potential blackbox solution that could

avoid the need for infrastructure-level data. The solution com-

pares the incoming traffic throughput (i.e., the traffic flowing

into NFV to be processed by the service chain) and the

traffic throughput actually observed at a VNF. However, it

is not feasible for the VNFs to measure the incoming traffic

throughput due to the fact that the VNFs are not directly

connected to the incoming traffic. Therefore, the key challenge

to this blackbox solution is: “How to know the incoming traffic
throughput?”.
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B. Main Idea

Fig. 2 illustrates our main ideas as follows.

Idea 1: Estimation of Incoming Traffic Throughput. Our

first idea is to estimate (instead of measuring) the tenants

network traffic throughput by extending the concept of Packet-

Pair Dispersion (PPD) [16], where a traffic throughput can be

estimated from inter-packet delay by causing a momentary

congestion in a network. Particularly, the concept of PPD

indicates that if two packets (e.g., the two yellow envelopes

in Fig. 2) are transmitted at a rate that can cause a congestion

in a link, then this will lead to an increase in the inter-packet

delay (IPD) between these two packets. Conversely, from the

increase in the IPD, it is possible to estimate the network traffic

throughput. However, in our context, it is almost impossible to

directly apply natural PPD, as a natural congestion in NFV-

based networks is rare due to their high-bandwidth nature.

Idea 2: Artificial Packet-Pair Dispersion. To overcome the

above-mentioned NFV-specific issue, our second idea is to

artificially create a PPD using probing packets such that we

no longer rely on natural PPD to estimate traffic throughput.

Particularly, to generate artificial PPD, we send probing packets

from multiple hosts (via different ingress links) for a short

period of time (to ensure that there will be no significant

overhead on the NFV environment or on any tenant resources,

as also validated by our experimental results in Section V).

Afterwards, we estimate the tenants network traffic through-

put by leveraging a machine learning (i.e., clustering) based

approach, and verify service chain integrity without requiring

any infrastructure-level data. Section III will further elaborate

on these ideas.

C. Threat Model and Assumptions

This work considers integrity breaches of service chains that

may be caused when (i) a malicious attacker compromising any
of the underlying forwarding devices (e.g., SDN switches [10]–

[12]), or (ii) a cheap-and-lazy cloud provider [9] is misconfig-

uring (intentionally or by mistake) the underlying forwarding

devices.

We consider a stronger threat model in comparison to

existing works (e.g., [5]–[8]) by including a wide range of

attacks and attacker capabilities as follows. (i) VNF bypassing:
Compromised or misconfigured switches may bypass one or

more VNFs in the service chain; compromised switches may

also collaborate with each other [17] to bypass a combination
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Fig. 3: A high-level overview of APPD

of VNFs (e.g., the entire service chain). (ii) Packet dropping:
Compromised or misconfigured switches may drop packets at

any switch (e.g., first switch) instead of forwarding as planned.

(iii) Packet injection: Attackers may inject fabricated packets

to overwhelm the VNFs at any position (e.g., before the first

VNF). Many of these possibilities are deemed hard to detect

and avoided by most existing works [17].

As the NFV tenant has access to the VNFs to deploy

any security mechanism (i.e., there is no need for blackbox

verification for VNFs), we exclude any attack on VNFs from

our threat model. Similar to SDN switches in the cloud

infrastructure, we consider that the tenants’ gateway router can

also be compromised by attackers [18]. However, as the tenant

has access to the logs and configuration data of the gateway

router, we consider that any changes in the forwarding rules

in the gateway router can be verified by the tenant admin.

Therefore, we only consider violation of confidentiality (e.g.,

communication between the gateway router and NFV may not

be trusted due to compromised secret keys) of the gateway

router. We assume a hierarchical structure of the Internet

bandwidth where links closer to the edge (e.g., NFV tenant)

have lower capacity compared to the links closer to the core

(e.g., NFV/cloud infrastructure) [19].

III. METHODOLOGY

This section presents APPD methodology.

A. Overview

Fig. 3 shows an overview of our methodology, which

contains two major stages. Stage 1 performs incoming traffic

throughput estimation (detailed in Section III-C), and Stage 2

performs integrity verification (detailed in Section III-D). In

Stage 1, APPD first sends probing packets to create artificial

congestion in tenants’ last-mile link and then relies on the

received packets at the VNF (affected by artificial congestion)

to estimate the incoming traffic throughput. In Stage 2, APPD

performs integrity verification of the service chain by com-

paring the incoming traffic throughput with throughput of the

received traffic at a VNF in a service chain.

B. The APPD Effect

The APPD effect refers to the formation of distinguishable

cluster of IPD values due to the artificial congestion created by

APPD (as shown in Fig. 4). These clusters are distinguishable

by their high density in the data space as shown in Fig. 4b.

Moreover, they have a very specific shape of being spread in

horizontal direction and having a very small height. Although
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the cluster in Fig. 4b is easy to identify visually in this par-

ticular case, the clusters may not be easy to identify manually

in general. To this end, we exploit the high spatial density of

the clusters to identify them using a density-based clustering

algorithm, which will be detailed in the next section.

C. Stage 1: Estimation of Incoming Traffic Throughput

This stage consists of the following three steps: (Step

1.1) artificial congestion generation, (Step 1.2) received traffic

capture, and (Step 1.3) throughput estimation using clustering.

Step 1.1: Artificial Congestion Generation. This step is to

create an artificial congestion at the tenants’ last-mile link for

a very small duration (e.g., 50ms). To do so, APPD generates

probing packets that will enter the tenants’ gateway router

through multiple ingress ports. To achieve this, probe request

traffic is generated from the VNFs using a request/response

protocol (e.g., HTTP get request, ICMP echo request, etc.)

to different hosts that are connected through different ingress

ports of the tenants’ gateway router. Thus, when the reply pack-

ets come back to the tenants’ gateway router, the accumulated

last-mile link traffic will experience an artificial congestion.

Example 1: As shown in the road-junction analogy in Fig. 5,

the junction (i.e., router) connecting roads (i.e., ingress links)

L1, L2, L3 and the egress link L4 is tenants’ gateway router.

Probe traffic, shown in gray/orange/golden envelopes (each

color for a different ingress port), are sent to this router as

a response to requests sent from NFV (specifically from the

first VNF in the service chain) through ingress links L1, L2

and L3. As a result, an artificial congestion is created, and

the traffic leaves the last-mile link L4 experiencing the APPD

effect.

The probe traffic generation module is designed to ensure

there will be artificial congestion to cause the APPD effect

on the traffic at the last-mile link. To achieve this, the APPD

adjusts the probe throughout based on the actual received traffic

throughput at VNF (which should be same as the last-mile

link traffic when there are no integrity breaches) such that the

combined throughput of probe traffic and tenants’ traffic will be

equal to the last-mile link capacity. As a result, the APPD effect

will induce distinguishable patterns in terms of the inter-packet

delay, as discussed in Section III-B and evaluated in Fig. 8.

More formally, for last-mile link capacity C, probe rate TP ,

received traffic throughput TVNF and the last-mile link traffic

throughput λ, clusters will be found when TP + λ ≥ C.
Now, considering the last-mile link throughput to be equal to

the received throughput (i.e., λ = TVNF), the combined traffic

will be equal to last-mile link capacity (i.e., TP +λ = C) when

probe throughput is set to,

TP = C − TVNF (1)

Sending only one round of probing packets with the throughput

calculated above may result in false estimation if the last-mile

link throughput is more than received traffic throughput (i.e.,

in case of fake traffic injection). To avoid this possibility of

false estimation, two rounds of probing packets are sent. One

at probe throughput TP1 and another at probe throughput TP2

as given in the following equations,

TP1 = C − TVNF − δT (2)

TP2 = C − TVNF (3)

Here, the parameter δT is a small number that can be config-

ured by the tenant admin. Computing this parameter automat-

ically by using an efficient binary search approach will be an

interesting future work. The number of clusters generated at

probe throughput TP1 is denoted as NC1 and the number of

clusters generated at probe throughput TP2 is denoted as NC2.

Step 1.2: Received Traffic Capture. In this step, APPD first

collects attributes of each packet (e.g., timestamp, size in bytes

etc.) by sniffing packets from the network interface, and then

calculates IPD values from the timestamps.
Example 2: As shown in Fig. 5, 1,000 probe response

packets are generated and received at the first VNF having

timestamps P1→tP1, P2→tP2, P3→tP3, ..., P1000→tP1000.

Now, the packet capture step at the first VNF will output the

following to the next module: tP1, tP2, tP3, ..., tP1000. IPD

values will then be calculated as follows: D1 = tP2 − tP1,

D2 = tP3 − tP2, D3 = tP4 − tP3, ..., D999 = tP1000−tP999
.

Step 1.3: Throughput Estimation (Clustering). This step is

mainly responsible for two operations,
(i) Clustering the inter-packet delay (IPD) values: This

step performs clustering on each data window. It uses data

points comprising inter-packet delay and timestamp as input.

As mentioned in Section III-A, under APPD effect, inter-packet

delay values form clusters. We use the extended DBSCAN

algorithm as the clustering algorithm and CityBlock distance

metric. The use of CityBlock distance metric allows us to

select only those clusters that are spread horizontally and have

a very small height. For a real example of the clusters, see

Fig. 8. After clustering, if the number of clusters is non-zero

(i.e., at least one cluster is formed), then artificial congestion

is confirmed for the current round of probing.



Example 3: As shown in Fig. 4b, clustering algorithm on IPD

values: D1 = tP2 − tP1, D2 = tP3 − tP2, D3 = tP4 − tP3,

..., D999 = tP1000−tP999
finds zero clusters for the first round

(i.e., NC1 = 0) and two clusters for the second round (i.e.,

NC2 > 0). Then artificial congestion is not confirmed for the

first round but confirmed for the second round.

(ii) Throughput estimation: This step estimates traffic

throughput based on the clustering result. When artificial

congestion is confirmed, received throughput is equal to the

last-mile link throughput, that is, λ = TNFV. Replacing this in

Equation 1 and replacing λ with estimated throughput λ′ we

have,

λ′ = C − TP (4)

Example 4: Suppose, the clustering result is “NC1 = 0 and

NC2 > 0”, C = 1Gbps and TP2 = 500Mbps. Since, artificial

congestion is confirmed for the second round of probing, we

have λ′ = C − TP2 = 1Gbps− 500Mbps = 500Mbps.

Once λ′ is known, an expected value of incoming traffic

throughput is calculated by subtracting reportedly dropped or

otherwise rerouted traffic throughput by each previous VNF.

The information update process by which a VNF obtains

dropped or otherwise rerouted traffic throughput of each pre-

vious VNF is described in the following paragraph. Now,

for V NFN , the expected incoming traffic throughput (TE) is

calculated as given in Equation 5.

TE = λ′ −
N−1∑
i=1

DVNFi (5)

Every VNF periodically provides updates (e.g., incoming

traffic throughput and dropped/rerouted traffic throughput) to

the next VNF(s) in the service chain. These information up-

dates can be encrypted and digitally signed for confidentiality

and integrity protection. As such updates comprise aggregate

information of many packets (i.e., not on a per-packet basis),

the use of encryption and digital signatures would not introduce

additional communication overhead to tenants.

D. Stage 2: Verification of Service Chain Integrity

Depending on the position of the VNF in the service chain,

integrity verification is done using one of the following two (as

shown in Fig. 6) approaches: (i) cluster-based verification, and

(ii) throughput-based verification. The first approach is used

only for the first VNF in the service chain whereas the second

approach is used for the remaining VNFs in the service chain.

These two steps are mainly concerned with three variables: (i)

number of inter-packet delay (IPD) clusters for each round

of probing, (ii) actual received traffic throughput, and (iii)

expected traffic throughput. In the following, we detail these

two approaches of integrity verification.

Step 2.1: Cluster-based Verification. For the first VNF in the

service chain, verification is performed based on probe round

for which clusters were found in Step 1.1. This is because,

firstly there are no preceding VNFs that can legitimately

drop/reroute traffic. Therefore, estimating expected throughput

(which is a way to take dropped/rerouted traffic into account) is

not necessary. Secondly, if artificial congestion is not confirmed

(i.e., no inter-packet delay clusters are formed for Equation 4 to

be valid) throughput estimation cannot be performed. In fact,

knowing the number of clusters indirectly reveals incoming

traffic throughput. The cluster-based integrity verification logic

is given below,

Integrity =

⎧⎪⎨
⎪⎩

Normal, if NC1 = 0 and NC2 > 0

Drop/Bypass, if NC1 > 0

Injection, if NC2 = 0

Step 2.2: Throughput-based Verification. For the remaining

VNFs in the service chain, the expected throughput (TE) is

compared with actual received traffic at the VNF (TV NF ) to

verify the service chain integrity and classify the result of the

verification according to the detection logic, which is shown

in the equation below,

Integrity =

⎧⎪⎨
⎪⎩

Normal, if TE = TV NF

Drop/Bypass, if TE > TV NF

Injection, othewise

The rationale behind using expected traffic throughput (TE) for

all other VNFs (except the first) in the service chain is, there are

preceding VNFs which may legitimately drop/re-route traffic.

Since (TE) is calculated using the dropped/re-routed traffic

information, using (TE) will give accurate verification result

even when some traffic is legitimately dropped/re-routed by

preceding VNFs as part of those preceding VNF’s functionality.

Example 5: Suppose, λ′ = 500Mbps, at VNF 2, TV NF2 =

400Mbps and VNF 1 reported no packet drop/rerouting. Then,

TE = λ′ − DV NF1 = 500Mbps. So, the condition TE =
TV NF is not satisfied implying integrity violation. Since, in

this case, TE > TV NF , detected integrity violation is classified

as “Drop/Bypass”.

It is noteworthy that, the estimated incoming traffic through-

put may differ from the actual throughput by δT . Which

means, the expected throughput may also differ from the actual

throughput by δT .

IV. IMPLEMENTATION

This section presents the implementation of APPD.

APPD Architecture. There are four major components of

APPD (Fig. 7): (i) the APPD daemon for orchestrating the

other modules, (ii) the incoming traffic throughput estimation

module for estimating incoming traffic throughput, (iii) the

integrity verification module for conducting service chain

integrity verification, and (iv) the configuration database for

storing parameters (e.g., δT ) for different modules of APPD.

The incoming traffic throughput estimation module is further

divided into three components. (i) the probe generator is peri-

odically started by the APPD daemon to send probing request

packets, (ii) the packet collector is periodically started by the

APPD daemon to capture received traffic at the VNF, and

(iii) the clustering and throughput estimator performs clustering
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on inter-packet delay (IPD) data and estimates incoming traffic

throughput.

Implementation Details. We implement APPD as a Linux

service using systemd [20]. We choose Linux because it is

the most popular operating system in the cloud [21]. However,

APPD can also be deployed in any other operating system

following a similar architecture as described in this section.

APPD is deployed on each VNF, started as soon as the

VNF operating system (OS) is booted and continues to run

as long as the VNF OS is running. All of the modules of

APPD are developed using C programming language. The

packet collector invokes a packet capture program (i.e., the

tcpdump command-line packet analyzer [22]), prepares input

for the clustering and throughput estimator by reading capture

file (.pcap) generated by the packet capture program, starts

the clustering and throughput estimator, and receives update

messages from previous VNF. An in-memory storage is used

to pass captured packets from tcpdump to the packet collector.

Clustering is done using DBSCAN Lite (our extended ver-

sion of DBSCAN algorithm, which is detailed below). We

use SQLite [23], a fast database engine, to implement the

configuration database.

Extending DBSCAN. We extended the DBSCAN algorithm to

guarantee fast execution time. We call the resulting algorithm

DBSCAN Lite. To that end, our main extensions are: (i) re-

ducing search space by sorting and axis trimming, (ii) reducing

search space by dividing data into blocks, and (iii) reducing

number of searches by using convex hull. The details of these

extensions are not included due to the space constraint.

V. EXPERIMENTS

This section presents our experimental results.

A. Experimental Settings

To conduct our experiments, we build our NFV testbed using

Tacker [24] and OpenStack [25], where OpenStack is a very

popular infrastructure-as-a-service (IaaS) software and Tacker

is an official OpenStack [27] project that provides a VNF

Manager (VNFM) and an NFV Orchestrator (NFVO) that can

be used to deploy and manage VNFs. Our testbed includes one

controller node and up to 80 compute nodes, each with 8 CPUs

and 12 GB RAM running Ubuntu 20.04 server. We have used

Mininet-2.3.0 [26] to set up the tenant network and Internet

links (between tenant network and NFV) with virtual hosts,

virtual links and Open vSwitch (OVS) [27] virtual switches

on a dedicated server. To connect the tenant network to the

service chains, the server where the tenant network is set up is

then connected to the NFV testbed using a 10Gbps local area

network (LAN). Also, similar to real ISP, we set up a traffic

shaper to limit the bandwidth (to 1Gbps) from tenant network

to NFV using the Linux traffic control module NetEm [28]. We

also set up 10 virtual hosts inside the tenant network and 10

additional virtual hosts connected to the Internet switches. The

virtual hosts either act as video servers (using ffserver [29]) or

video clients (using MPlayer [30]). On one hand, to generate

tenant network traffic, hosts inside the tenant network act as

video clients to stream video from video servers in the Internet.

On the other hand, to generate cross-traffic [31], hosts outside

tenant network act as video clients to stream video from video

servers on the Internet.

B. Experimental Results

We present our experimental results to evaluate the effec-

tiveness and overhead of APPD as follows.

Effectiveness in Verifying Service Chain Integrity. Table I

demonstrates the effectiveness of APPD through six different

scenarios (including different attacks such as bypass, drop,

injection, as well as normal behavior at different VNFs)

where APPD could correctly detect all existing breaches.

We emulate the attacks by modifying the flow rules of the

SDN switches. This table reports the results corresponding to

the first two VNFs. The first VNF is shown to demonstrate

cluster-based verification, whereas the second VNF illustrates

throughput-based verification. Any remaining VNFs in the

service chain can perform integrity verification in the same

way (i.e., throughput-based) as the second VNF; however,

we do not report their result due to the space limitation. In

the following, we explain the scenarios listed in Table I. In

these scenarios, the tenant is sending traffic at a throughput

λ = 500Mbps at the time of verification, capacity C = 1Gbps

and δT = 60Mbps. APPD is running on each VNF of the

service chain FW-IDS-...-VNF N that is receiving the

tenants’ traffic. The first three scenarios are for the first VNF

(i.e., FW) whereas the last three scenarios are for the second

VNF (i.e., IDS).

• First scenario: The actual throughput received at FW
is TV NF = 500Mbps. Two rounds of probe requests

are sent from FW, the first having response throughput

TP1 = C−TV NF−δT = 440Mbps and the second having

response throughput TP2 = C−TV NF = 500Mbps. Now,

since λ = 500Mbps, at TP1 = 440Mbps the clustering

algorithm doesn’t find any clusters in the IPD values,
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TABLE I: Applying APPD in real network setting shows that it could correctly verify all the experimental scenarios
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APPD Result

1 Normal at first VNF = 1 500 - 440 500 0 2 - - NC1 = 0 and NC2 > 0: Normal

2 Bypass/Drop at first VNF = 1 400 - 540 600 2 2 - - NC1 > 0: Bypass/Drop

3 Injection at first VNF = 1 600 - 340 400 0 0 - - NC2 = 0: Injection

4 Normal at second VNF2 >1 400 500 - - - - 100 400 |TE − TVNF| ≤ δT : Normal

5 Bypass/Drop at second VNF2 >1 300 500 - - - - 100 400 TE > TVNF + δT : Bypass/Drop

6 Injection at second VNF2 >1 500 500 - - - - 100 400 TE < TVNF − δT : Injection
1 In Mbps.
2 Second VNF is representative of any VNF in the service chain except the first VNF (i.e., VNF Position >1).
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Fig. 8: Applying DBSCAN clustering algorithm on inter-packet delay (IPD); Noise ( ), Cluster 1 ( ), Cluster 2 ( )
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Fig. 9: Measuring APPD overhead in terms of network performance metric (packet loss, jitter, out-of-order packets)

as shown in Fig. 8b resulting in NC1 = 0. However, at TP2 = 500Mbps, two clusters are found as shown



in Fig. 8d, giving NC2 = 2. Since NC1 = 0 and

NC2 > 0, at the verification phase (using cluster-based

verification) it is confirmed that the scenario is Normal
and the estimated incoming throughput (λ′) is calculated

to be C − TV NF = 500Mbps.

• Second scenario: Traffic is bypassing/dropping FW and the

actual throughput received at FW is TV NF = 400Mbps.

Then, first probe requests are sent having response

throughput TP1 = C − TV NF − δT = 540Mbps and the

clustering algorithm finds two clusters. Since NC1 > 0,

Bypass/Drop is detected.

• Third scenario: Similar to above.

• Fourth scenario: Received throughput is TV NF =
400Mbps. IDS is updated by FW that λ′ = 500Mbps

and dropped traffic by FW throughput is TD = 100Mbps.

So, the IDS calculates its expected traffic throughput

E = 400Mbps. Since TE−TV NF = 0 ≤ 60, the scenario

is detected as Normal.

• Fifth and sixth scenarios: Similar to fourth scenario.

Effectiveness of Probing and IPD Clustering. In Fig. 8,

we demonstrate the IPD clustering results for different probe

throughputs in a Normal scenario (i.e., no integrity breaches).

Here the tenants’ last-mile link capacity and throughput are

1Gbps and 500Mbps, respectively. For lower probing through-

puts: 400Mbps (Fig. 8a) and 440Mbps (Fig. 8b) no cluster

is formed, and for higher probing throughputs: 450Mbps

(Fig. 8c) and 500Mbps (Fig. 8d) two clusters (as indicated

in orange and green) are formed. Here the transition from no

clusters to two clusters happens between probing throughput

440Mbps and probing throughput 450Mbps. Therefore, APPD

expects no clusters in a Normal scenario for its first round of

probing (TP1 = 440Mbps), as calculated from Equation 2 in

Section III. Similarly, APPD expects one or more clusters for

its second round of probing (TP2 = 500Mbps), as calculated

from Equation 2 in Section III.

Overhead. We evaluate the overhead of APPD in terms of

impact on different network performance metrics (e.g., packet

loss, jitter and packet reordering). To do so, we measure these

metrics while performing tenant network throughput estimation

at different possible probe rates. To measure these metrics, we

capture packets (at both video clients and video servers) and

perform calculations on these packets by identifying the same

packets using Transmission Control Protocol (TCP) sequence

numbers. The results of these experiments are shown in Fig. 9

where we can see that there is no correlation between these

performance metrics and the APPD probe throughput (e.g.,

packet loss does not show an upward trend as probe throughput

increases). Thus, it is evident that APPD has a negligible

impact on network performance.

VI. RELATED WORK

Table II summarizes the comparison between existing works

and APPD. The first column lists the works. The next two

columns indicate different design goals, such as blackbox (i.e.,

without requiring access to the underlying cloud infrastructure)

TABLE II: Comparing APPD with existing works
Proposals Goals Capabilities
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FlowCloak [7] � - - � - - - - -

vSFC [6], REV [5] � - - � - - � - �
Thang et. al. [17] - - � � � - � - �
Shin et. al. [13] - - � � � � � � �
ChainGuard [14] � - � � � � � � �

APPD � � � � � � � � �

and in-cloud (i.e., on-premise hardware/software which would

increase the total cost of ownership (TCO) [32] is not needed).

The next seven columns list different integrity breaches and

threats that are mentioned in Section II-C. In the following,

we discuss the existing works in more detail.

NFV Verification. Existing works mainly focus on verifica-

tion of correct processing and arrangement of VNFs them-

selves [33]–[36] and little attention has been given to veri-

fying the integrity of service chains. Moreover, most of the

works that verify service chain integrity require access to

the underlying infrastructure (e.g., reading flow rules [13],

[14] or reprogramming firmware [5]–[8], [17]). Additionally,

some works propose on-premise mechanism [17] (i.e., they

are not in-cloud solutions). Not only that the existing works

do not provide a blackbox approach but also they cannot verify

different types of service chain integrity breaches. Firstly, they

cannot detect packet bypass when all VNFs are bypassed or the

last VNF in the chain is bypassed [5]–[8], [17]. This is because

they need to first assign a tag to the packets which can be done

only after the packets have arrived at least at one (first) VNF.

Also, they need to verify the tags in the last VNF of the chain

(at the latest). Additionally, existing works cannot detect both

packet dropping and fake packet injection before the first VNF

in the chain [5]–[8], [17]. This is because existing works need

to collect statistics which is available only when the packets

arrive at least at the first VNF.

Traffic Throughput Estimation. In the literature, extensive

work has been done in estimating available capacity (which

we use to estimate throughput) using Packet Pair Dispersion

Technique [16], [37]–[42]. However, these techniques are not

applicable in our context. Firstly, because, they mainly measure

available capacity at the bottleneck link (i.e., link with the

lowest capacity) and cannot measure available capacity at a

link that may not be the bottleneck link. Secondly, most of the

existing tools require cooperation from both ends (i.e., require

on-premise deployment) of the path for estimation. It makes

their deployment very difficult [43] and cannot provide an in-

cloud solution.



VII. CONCLUSION

This paper proposed a blackbox approach, namely, APPD,

to verify service chain integrity in NFV without requiring any

access to the infrastructure-level data or resources. Addition-

ally, APPD can verify integrity breaches resulted by a wider

range of attacks in comparison to the existing works. To that

end, APPD first created an artificial packet-pair dispersion

among the incoming traffic to NFV using probing packets.

Second, APPD estimated tenant network traffic throughput

from inter-packet delay that is caused by the artificial packet-

pair dispersion. Finally, APPD verified different types of in-

tegrity breaches by comparing the estimated throughput with

the actual traffic throughput observed in any VNF in a service

chain. Experimental results in a real network environment

showed that our approach can effectively verify service chain

integrity for a wide range of integrity breaches and have

negligible impact on network performance. As future work,

we plan to automate setting the parameters of the clustering

algorithm and further optimize other parameters of APPD.

Furthermore, we plan to perform extensive security analysis

and more experimental evaluations of APPD in future.

ACKNOWLEDGMENT

We thank the anonymous reviewers for their valuable com-

ments and suggestions. This work was partially supported by

the Natural Sciences and Engineering Research Council of

Canada and Ericsson Canada under the Industrial Research

Chair (IRC) in SDN/NFV Security.

REFERENCES

[1] NFV deployment–important considerations for opera-
tors. [Online]. Available: https://www.ericsson.com/en/blog/2018/6/
nfv-deploymentimportant-considerations-for-operators

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: network pro-
cessing as a cloud service,” ACM SIGCOMM Computer Communication
Review, vol. 42, no. 4, pp. 13–24, 2012.

[3] C. Lan, J. Sherry, R. A. Popa, S. Ratnasamy, and Z. Liu, “Embark:
Securely outsourcing middleboxes to the cloud,” in USENIX NSDI, 2016.

[4] R. Poddar, C. Lan, R. A. Popa, and S. Ratnasamy, “Safebricks: Shielding
network functions in the cloud,” in USENIX NSDI, 2018, pp. 201–216.

[5] P. Zhang, “Towards rule enforcement verification for software defined
networks,” in IEEE INFOCOM, 2017.

[6] X. Zhang, Q. Li, J. Wu, and J. Yang, “vSFC: Generic and agile verifi-
cation of service function chains in the cloud,” IEEE/ACM Transactions
on Networking, pp. 1–14, 2020.

[7] K. Bu, Y. Yang, Z. Guo, Y. Yang, X. Li, and S. Zhang, “Flowcloak:
Defeating middlebox-bypass attacks in software-defined networking,” in
IEEE INFOCOM, 2018.

[8] ——, “Securing middlebox policy enforcement in SDN,” Computer
Networks, vol. 193, p. 108099, 2021.

[9] K. D. Bowers, M. Van Dijk, A. Juels, A. Oprea, and R. L. Rivest, “How
to tell if your cloud files are vulnerable to drive crashes,” in ACM CCS,
2011.

[10] M. Antikainen, T. Aura, and M. Särelä, “Spook in your network:
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