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Abstract

Sound and movement are closely coupled, particularly
in dance. Certain audio features have been found to
affect the way we move to music. Is this relationship
between sound and movement something which can be
modelled using machine learning? This work presents
initial experiments wherein high-level audio features
calculated from a set of music pieces are included in a
movement generation model trained on motion capture
recordings of improvised dance. Our results indicate
that the model learns to generate realistic dance move-
ments which vary depending on the audio features.

Introduction
Expressive movement is an intrinsic part of human life.
Hand gestures, body language as well as dance can effi-
ciently convey an emotional state. Simple movement pat-
terns such as gait or arm movement can allow us to detect
characteristics such as gender, personality or mood (Micha-
lak et al., 2009; Pollick et al., 2001; Satchell et al., 2017). As
such, a better understanding of body motion, and the anal-
ysis and generation of motion data is important to further
develop fields such as human-robot interaction and human
activity recognition. For dance movement in particular, gen-
erative models have potential as artistic tools for animation
and choreography.

Research in embodied music cognition has identified sev-
eral audio features that are relevant to how we move to mu-
sic. Burger et al.’s (2013) work suggests that several map-
pings exist between different aspects of music and music-
induced movement. The presence of a clear beat, for exam-
ple, was shown to translate to faster movements of head and
hands.

The work presented here is part of an ongoing research
effort to examine how deep learning can be used to capture
salient features of human movement, and especially dance
movement, using full-body motion capture data and sound.
As part of this work, we have collected a dataset of motion
capture recordings of dance improvisation performed to six
different musical stimuli. The improvisations are performed
by experienced dancers and use contemporary music styles.

Here, we present the results of training a generative mix-
ture density recurrent neural network (MDRNN) on our mo-
tion data and audio features which have been shown to affect

Figure 1: The 43 reflective markers translated to 22 points

certain aspects of movement to music. Without the inclusion
of audio features, the MDRNN is able to generate sequences
of movement which are (subjectively) realistic variations of
the underlying training data. The results presented here indi-
cate that the model retains this ability to produce movement
variations when audio features are added. Our findings sug-
gest that the model additionally learns that different audio
features affect the way the body moves.

Motion Capture Data
Our dataset contains 54 one minute motion capture record-
ings of improvised dance performed by three experienced
dancers. Each dancer performs three one minute improvi-
sations to six different musical stimuli. The dataset was
recorded using a Qualisys optical motion capture system
with 12 Oqus 300/400 series cameras which capture 43 re-
flective markers worn by the dancers. Figure 1 shows how
the 43 marker positions were reduced to a 22 point skeleton
representation using the MoCap Toolbox 1.5 (Burger and
Toiviainen, 2013). Small gaps in the data were spline-filled
using Qualisys Track Manager 2019.3 and a 2nd degree But-
terworth filter with a .03Hz cutoff was applied to remove any
marker jitter.

Recordings in our dataset have been normalized so that
the root marker (a weighted average of markers 41, 42, 6 and
7 in Figure 1) is centred at the origin. Body segment lengths
are averaged across the three dancers ensuring that the data
is invariant to global position and individual body dimen-
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sions. The data was captured at 240Hz and downsampled to
30Hz before model training to reduce the size of each ex-
ample. The resulting 54 data tensors consist of 1800 frames
(60 seconds at 30Hz) with 3-dimensional positions for each
of the 22 points.

Two full motion capture recordings were withheld for
testing while the remaining 52 examples were split into two
sets, 80% were used for training and 10% for validation.
Each example has been sliced into overlapping sequences
of 300 frames and the spatial dimensions of each of the 22
points are scaled using min-max normalisation. The input to
our model thereby consists of 78000 overlapping sequences
of 300 frames with their corresponding audio features. The
model performs a sequence-to-sequence mapping between
the training examples (including audio features) and the
shifted sequence of motion capture frames (excluding audio
features – the model only predicts motion).

Representing sound
There are several aspects to consider when selecting ap-
propriate audio features to represent the music examples
to which the dancers were improvising. Several previous
works (Fukayama and Goto, 2015; Lee et al., 2019; Seo
et al., 2013) have largely focused on the rhythmical, beat-
matching aspects when generating dance.

Although the presence of a clear beat can affect our urge
to move, moving in sync with a beat is only one of sev-
eral ways musical features influence the way we move. For
the experiments presented here, we have chosen to use two
high-level rhythm- and timbre-related features: pulse clarity
and sub-band spectral flux. Previous work by Burger et al.
(2013) has shown connections between pulse clarity (Lar-
tillot et al., 2008) and overall body movement, as well as
sub-band spectral flux and movement of the head and hands.

Pulse clarity is a high-level feature which measures how
clearly the underlying pulse of the music is perceived. Pulse
clarity is estimated using the overall entropy of the en-
ergy distribution of the frequency spectrum within a musical
piece. We calculate a series of pulse clarity values for each
musical stimuli using a sliding window of 5 seconds and a
hop size of 0.08 seconds. This gives us a time series wherein
each value corresponds to a single frame of the motion cap-
ture data.

Spectral sub-band flux measures spectral changes in dif-
ferent frequency bands of an audio signal. Alluri and Toivi-
ainen (2010) found that the sub-band fluctuations in the re-
gion between 50 Hz and 200 Hz are related to the perceived
“fullness” of a musical piece, while fluctuations in the region
of 1600 Hz and 6400 Hz were linked to the perceived “ac-
tivity” of the piece. These sub-bands also correspond to ac-
tivity from rhythmic instruments such as kick drum and bass
guitar for the lower frequency band and hi-hat and cymbals
for the higher range.

We extract two frequency bands, one low-frequency band
(50 Hz - 100 Hz) and one high-frequency band (3200 Hz -
6400 Hz) from the six musical stimuli. The spectral flux is
then calculated using the same window and hop size as for
the pulse clarity values resulting in a single sub-band flux
value for each of the two bands for every frame of motion

Figure 2: Sampling from the MDRNN. One frame of mo-
cap data and audio features is sent through the model. The
MDRNN outputs the parameters of a mixture distribution
which is sampled to generate the next frame.

capture data. The audio features are appended to each data
frame of the motion capture data to create the tensors used
to train the generative mixture density recurrent neural net-
work.

Mixture Density Recurrent Neural Networks

Mixture density networks (MDNs) (Bishop, 1994) treat the
outputs of a neural network as the parameters of a Gaus-
sian mixture model (GMM), which can be sampled to gen-
erate real-valued predictions. A GMM can be derived us-
ing the mean, weight and standard deviation of each com-
ponent. The number of components needed to accurately
represent the data is not known and is treated as a hyper-
parameter for our model. For the study outlined here, we
have used 4 components. By combining a recurrent neural
network (RNN) with an MDN to form an MDRNN we can
make real-valued predictions based on a sequence of inputs.
Figure 2 shows the model architecture of the MDRNN used
in this work. The RNN consists of three layers of LSTM
cells (Hochreiter and Schmidhuber, 1997). The three LSTM
layers contain 1024, 512 and 256 hidden units respectively.
The outputs of the third LSTM layer are in turn connected
to an MDN. The LSTM layers learn to estimate the mean
(µ), standard deviation (�) and weight (⇡) of the 4 Gaus-
sian distributions of the MDN. This approach has the advan-
tage of control over the diversity and “randomness” of sam-
pling, and control over the number of mixture components
that allow training to account for situations where multiple
predictions could be considered equally suitable. MDRNNs
have previously been applied to various other tasks such as
sketches (Ha and Eck, 2017), handwriting (Graves, 2013),
and music control generation (Martin and Torresen, 2019).

To optimize an MDN, we minimize the negative log-
likelihood of sampling true values from the predicted GMM
for each example. A probability density function is used to
obtain this likelihood value. This configuration corresponds
to 8.5M parameters. The loss function in our system is cal-
culated by the keras-mdn-layer Martin (2018) Python
package which makes use of Tensorflow’s probability distri-
butions package to construct the PDF. The model is trained
using the Adam optimizer (Kingma and Ba, 2014) until the
loss on the validation set failed to improve for 10 consecu-
tive epochs.
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(a) The original movement sequence used to prime the model.

(b) Movement generated using the priming sequence with corresponding audio features. Movements are less smooth and expressive than the
original recording, but the generated movement follows the priming example nicely.

(c) Sequence generated when the audio features from the priming example are replaced with features from a song not used in the dataset. The
movements are more unstable and shaky.

(d) Here, audio features are replaced with features calculated from a white noise signal. While the overall sequence is similar to the priming
example, the movements contain more variation between frames, causing jittery movement.

Figure 3: These figures show the trajectories of hand and toe markers over time (left to right). When generating motion using
audio which was not used in training (3c) or white noise (3d) the movements become more unstable.

Altering Movement Using Audio Features
When the MDRNN is trained on movement without the ad-
dition of audio features it is able to generate movements
which are, under visual inspection, realistic. In this section,
we examine the effect of altering the audio input for a model
trained on both movement and audio data.

To examine to what extent the model has learned a corre-
lation between the audio features and the movement we gen-
erate motion using a priming technique. When using prim-
ing the input to the model is taken from one of the examples
which were withheld during training. At each time step, the

input consists of the 3D positions of the 22 points and the
corresponding set of audio features for that time step. The
model then predicts the positions of the 22 points at the next
time step. Thereby, the model always predicts the next pose
using the values from the priming sequence. By altering
the audio features of the priming example the output can be
evaluated to determine the effect which different audio fea-
tures have on the generated output. We examine three such
cases here. First, we investigate a sequence generated using
the audio features associated with the priming example it-
self, that is, features calculated from the musical stimuli the
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dancer was improvising to when the priming example was
recorded. Secondly, we replace this audio with an excerpt
from a song which was not part of the training data. Finally,
features calculated from a white noise signal is used to re-
place the original audio features. Figure 3 show keyframes
from the 3 generated movement sequences as well as the
motion sequence used to prime the model.

Discussion

When generating movement using the audio features be-
longing to the priming sequence (Figure 3b), the model gen-
erates movement which largely follows the example (Figure
3a). While the overall movement sequence is similar, some
expressiveness seems to have been lost. The generated mo-
tion could be said to resemble a “dead pan” performance of
the original sequence, as trajectories of arms and legs are
to some extent muted in comparison to the original. This
may be due to the model generalising movement across the
training data.

Figure 3c shows the sequence generated when the original
audio features are replaced with features calculated from a
song not included in the training data. The model produces
a movement sequence which matches the priming sequence
well, indicating that the model is able to predict the next
frame of the motion data even with unseen audio features.
Still, additional noise is visible in this example (when com-
pared to 3b), suggesting that the model has not fully learned
to generate smooth movements when unseen audio features
are used.

In the final figure, 3d, the audio features are replaced with
features calculated from a white noise signal. Here, trajec-
tories are decidedly affected by the audio. As with figure
3c and 3b the model still predicts reasonable positions for
the 22 markers at every frame, but with a larger variation
between frames, causing the resulting sequence to display
jittery movement. This indicates that the model does rely
on structured audio to generate realistic movements at the
micro (if not macro) scale.

Conclusions and Future Work

These results indicate that the MDRNN model could be used
to explore how music and audio features affect the way the
dancers move, and how this manifests itself in the move-
ments generated by a deep neural network. Much work
remains to obtain a comprehensive understanding of how
MDRNNs can model cross-modal interactions like those be-
tween sound and motion. An important aspect is how we can
best evaluate the performance of this model. Finding good
qualitative and quantitative ways to evaluate creative data
generated by models such as this one will be a central ques-
tion in our future work. Going forward, we will focus on
systematically exploring metrics to evaluate the generated
movements, train the model on a larger dataset and experi-
ment with alternate audio representations.
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