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Abstract 

Science education nowadays emphasizes authentic 
science practices mimicking the creative discovery 
processes of real scientists. How, then, can we build 
creativity support tools for student learning about 
scientific discovery processes? We summarize several 
epistemic views of ideation in scientific discovery and 
find that the ideation techniques provide few guarantees 
of correctness of scientific hypotheses, indicating the 
need for supporting hypothesis evaluation. We describe 
an interactive tool called MILA−S that enables students 
to elaborate hypotheses about ecological phenomena 
into conceptual models and evaluate conceptual models 
through agent-based simulations.  We report on a pilot  
experiment with 50 middle school students who used 
MILA−S to discover causal explanations for an 
ecological phenomenon. Preliminary results from the 
study indicate that use of MILA–S had a significant 
impact both on the creative process of model 
construction and the nature of the constructed models.  
We posit that the computational support for model 
construction, evaluation and revision embodied in 
MILA–S fosters student creativity in learning about 
scientific discovery processes.  

Introduction  
Scientific discovery in general is a creative task 

(Carruthers, Stitch & Siegal 2002; Clement 2008; Darden 
1998; Magini, Nersessian & Thagard 1999; Nersessian 
2008). Thus, computational modeling of scientific discovery 
processes has received significant attention in AI research 
on creativity (Chen et al. 2009; Davies, Nersessian & Goel 
2005; Griffith, Nersessian & Goel 2000; Langley 2000; 
Langley et al. 1987; Lindsay et al. 1980). Science education 
nowadays emphasizes authentic science practices 
mimicking the creative discovery processes of real scientists 
(Clement 2008; Edelson et al. 1999). Thus, interactive tools 
for supporting authentic science practices in science 
education have received significant attention in AI research 
on education (Bridewell et al. 2006; De Jong & van 
Joolingen 1998; Jackson, Krajcik, & Soloway 2000;  Novak 
2010; vanLehn 2013).  

The goal of supporting creative discovery processes in 
science education raises several issues for research on 
computational creativity. We briefly three questions:  
(1) What specific tasks in creative discovery processes 
should we automate in supporting science education? We 
focus on ideation in scientific discovery, and summarize 

five epistemic views of ideation in the literature. We find 
that most epistemic views provide few guarantees of the 
correctness of ideas. This indicates a need for supporting 
hypothesis evaluation in student learning about creative 
discovery processes.  
(2) What computational tools may support evaluation of 
hypotheses in science education? We focus on conceptual 
modeling in scientific discovery. We summarize an 
interactive technology called MILA−S for first elaborating 
explanatory hypotheses into conceptual models and then 
evaluating a hypothesis through simulation.   
(3) What is the impact of creativity support tools such as 
MILA−S on student learning about scientific discovery 
processes? We summarize an educational intervention in a 
middle school engaging MILA−S for modeling ecological 
phenomena. We find that the use of MILA−S had 
substantial impact on the discovery processes of middle 
school students in modeling the ecological phenomenon.  

Epistemic Views of Scientific Discovery 
Idea generation is a core element of the creative process 

in scientific discovery (Clement 2008; Nersessian 2008). 
However, the task of ideation is complex. The question for 
us is what specific subtasks of ideation should we automate 
in supporting student learning about scientific discovery 
processes? To answer this question, we examine several 
epistemic views of ideation in scientific discovery.  

Conceptual Classification 
One common view of ideation in scientific discovery is 

classification of data into known categories.. We know 
about Linneas’ classic work on classification in biology. 
Classification continues to be important in modern biology 
(e.g., Golub et al. 1999). Classification has been extensively 
studied in AI (e.g., Duda, Hart & Stork 2001) and ML (e.g., 
Bishop 2007). The classic DENDRAL system (Lindsay et 
al. 1980) classified mass spectroscopy data into chemical 
molecules. Chandrasekaran & Goel (1988) trace the 
evolution of early AI theories of classification. We have 
studied both top-down hierarchical classification in which a 
concept is incrementally refined based on data (Goel, 
Soundarajan & Chandrasekaran 1987), and bottom-up 
hierarchical classification in which features of data are 
incrementally abstracted into a concept (Bylander, Goel & 
Johnson 1991).  
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Abductive Explanation 
Abductive inference, i.e., inference to the best explanation 

for a set of data, is another common view of ideation in 
scientific discovery. AI has studied abduction from multiple 
perspectives (e.g., Charniak & McDermott 1985; Josephson 
& Josephson 1996). The classic BACON system (Langley 
et al. 1987) abduced physical laws from data. Bylander et al. 
(1991) have analyzed the computational complexity of the 
abduction task.  Goel et al. (1995) describe a computational 
technique for abductive explanation based on  the RED 
system for identifying red-cell antibodies in a patient’s 
serum (Fischer et al 1991): the technique assembles 
composite explanations that explain a set of data from 
elementary explanations that explain subsets of the data. 

Conceptual Modeling 
Conceptual modeling is ubiquitous in science (e.g., 

Clement 2008; Darden 1998; Nersessian 2008). Conceptual 
models are abstract representations of the elements, 
relationships, and processes of a complex phenomenon or 
system. AI has extensively studied conceptual models (e.g., 
Davis 1990; Lenat 1995; Stefik 1995). We have developed 
conceptual models of complex systems that specify how a 
system works, i.e., the way the system’s structure produces 
its behaviors that achieve its functions (Goel, Rugaber & 
Vattam 2009). We have used structure-behavior-function 
modeling for both engineering systems (Goel & Bhatta 
2004) and natural systems (Goel et al. 2012) for supporting 
a variety of reasoning processes in design and invention.  

Analogical Reasoning 
Scientific discovery often engages analogical reasoning 

(Clement 2008; Dunbar 1997; Nersessian 2008). We know 
about Neil Bohr’s famous analogy between the atomic 
structure and the solar system. Analogical reasoning 
engages retrieval of an analogue useful for addressing the 
scientific problem of interest and transfer of the relevant 
relational knowledge from the retrieved analogue to the 
scientific problem. AI research has developed several 
theories of analogical reasoning (e.g., Bhatta & Goel 2004; 
Falkanehainer, Forbus & Gentner 1989; Hofstader 1996; 
Thagard et al. 1990). We have studied analogical reasoning 
in scientific problem solving (Griffith, Nersessian & Goel 
2000). Starting from verbal protocols of physicists 
addressing problems with spring systems (Clement 1988), 
we developed an AI system called Torque that emulates the 
problem solving behavior of the physicists.  

Visual Reasoning 
Scientific discovery often engages visual representations 

and reasoning (Clement 2008; Magnini, Nersessian & 
Nersessian 1999; Nersessian 2008). Although some AI 
research has explored visual representations and reasoning 
(e.g., Glasgow, Narayanan & Chandrasekaran 1995), AI 
research on visual representations and reasoning is not as 
robust or mature as on, say, classification. We have 

developed a language for representing visual knowledge and 
a computational technique for reasoning about visual 
analogies (Davies, Goel & Yaner 2008), and to understand 
the use of visual analogy Maxwell’s construction of the 
unified theory of electromagnetism (Davies, Nersessian & 
Goel 2005). 

The Evaluation Task   
It is noteworthy that in general the above methods of idea 
generation in scientific discovery provide few guarantees of 
correctness of their results. Further, while these methods 
help generate hypotheses for a given situation, in general 
they do not by themselves evaluate their results. This 
indicates a need for supporting hypothesis evaluation in 
student learning about creative discovery processes. That is, 
there is a need for developing interactive tools that automate 
the evaluation task in the context of supporting creativity in 
student learning about scientific discovery processes. Thus, 
we decided to focus on automating the evaluation task in 
supporting student learning as described below.    

Model Construction and Evaluation  
In this work, we elected to automate the evaluation task in 

the context of supporting creativity in student learning about 
conceptual modeling. Cognitive science theories of 
scientific discovery describe scientific modeling as an 
iterative process entailing four related but distinct phases: 
model construction, use, evaluation, and revision (Clement 
2008; Nersessian 2008; Schwarz et al. 2009). Thus, a model 
is first constructed to explain some observations of a 
phenomenon. The model is then used to make predictions 
about other aspects of the phenomenon. The model’s 
predictions next are evaluated against actual observations of 
the system. Finally, the model is revised based on the 
evaluations to correct the errors and improve the model’s 
explanatory and predictive efficacy.  

Scientific models can be of several different types, with 
each model type having its own unique affordances and 
constraints, and fulfilling specific functional roles in 
scientific inquiry (Carruthers, Stitch & Siegal 2002; 
Magnini, Nersessian & Thagard 1999). In this work, we are 
specifically interested in two kinds of models: conceptual 
models and simulation models. Conceptual models allow 
scientists to specify and share explanations of how a system 
works, aided by the semantics and structures of the specific 
conceptual modeling framework. Conceptual models tend to 
rely heavily on directly modifiable representations, 
languages and visualizations, enabling rapid iterations of the 
model construction cycle.  

Simulation models capture relationships between the 
variables of a system such that as the values of input 
variables are specified, the simulation model predicts the 
temporal evolution of the values of other system variables. 
Thus, the simulation model of a system can be run 
repeatedly with different values for the input variables, the 
predicted values of the system variables can be compared 
with the actual observations of the system, and the 
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simulation model can be revised to account for 
discrepancies between the predictions and the observations. 
A main limitation of simulation models is the complexity of 
the setting up a simulation, which makes it difficult to 
rapidly iterate on the model construction cycle. 

AI research on science education has used both 
conceptual models (e.g., Novak 2010; vanLehn 2013) and 
simulation models (e.g., Bridewell et al. 2006; de Jong & 
van Joolingen 1998; Jackson, Krajcik, & Soloway 2000) 
very extensively and quite productively. However, AI 
research on science education typically uses the two kinds 
of models independently from each other: students use one 
set of tools for constructing, using, and revising conceptual 
models, and another tool set for constructing and using 
simulation models. However, cognitive science theories of 
scientific inquiry suggest a symbiotic relationship between 
conceptual modeling and simulation modeling (e.g., 
Clement 2008; Magnini, Nersessian & Thagard 1999; 
Nersessian 2008): scientists use conceptual models to set up 
the simulation models, and they run simulation models to 
test and revise the conceptual models. Thus, we developed 
an interactive system called MILA–S that enables science 
students to construct conceptual models of ecosystems, to 
directly and automatically generate simulation models from 
the conceptual models, and then execute the simulations.  

MILA−S: A Tool for Model Construction and 
Evaluation 

MILA (Modeling & Inquiry Learning Application)_ is a 
family of interactive tools for supporting student learning 
about scientific discovery. The core MILA tool enables 
middle school students to investigate and construct models 
of complex ecological phenomena. MILA–S also allows 
students to simulate their conceptual models (Joyner, Goel 
& Papin 2014). In this paper, we focus on the impact of 
using MILA-S on students’ creativity in conceptual 
modeling. 
    MILA builds on a line of exploratory learning 
environments including the Aquarium Construction Toolkit 
(ACT; Vattam et al. 2011) and the Ecological Modeling 
Toolkit (EMT; Joyner et al. 2011).  ACT and EMT were 
shown to facilitate significant improvement in students’ 
deep, expert-like understanding of complex ecological 
systems. For conceptual modeling, ACT used Structure-
Behavior-Functions models that were initially developed in 
AI research on system design (Goel, Rugaber & Vattam 
2009). In contrast, EMT used Component-Mechanism-
Phenomenon (or CMP) conceptual models that are variants 
of Structure-Behavior-Function models adapted for 
modeling ecological systems. Both ACT and EMT used 
NetLogo simulations as the simulation models (Wilsensky 

& Reisman 2006; Wilensky & Resnick 1999). Like most 
interactive tools for supporting modeling in science 
education (vanLehn 2013), both ACT and EMT provided 
one set of tools for constructing and revising conceptual 
models and another tool set for using simulations.  

Like EMT, MILA–S uses Component-Mechanism-
Phenomenon (or CMP) conceptual models that are variants 
of the Structure-Behavior-Function models used in ACT.. In 
CMP models, mechanisms explain phenomena such as fish 
dying in a lake. Mechanisms arise out of interactions among 
components and relations among them. Components are 
parts of the physical structure of system, and are classified 
as either biotic or abiotic; oxygen, for example, is an abiotic 
component while fish are biotic components. The 
representation of each component in CMP includes a set of 
variables such as population, age, birth rate, and energy for 
biotic components, and amount for abiotic components. The 
representation of each component is annotated by a set of 
parameters specifically for setting up a simulation, such as 
the appearance of the component and ranges for each 
variable associated with the component. 

In the CMP model of a system, representations of 
components (and their variables) are related together 
through different kinds of relations. MILA–S provides the 
modeler with a set of prototype relations. For example, 
interactions between a biotic component like 'Fish' and an 
abiotic component like 'Oxygen' could be 'consumes', 
'produces', or 'destroys'. Connections have directionality; a 
connection from 'Oxygen' to 'Fish' would have a different 
set of prototypes, including 'poisons'. Representations of 
relations are also annotated with parameters to facilitate the 
simulation, such as energy provided for 'consumes' and rate 
of production for 'produces'. 

Like ACT and EMT, MILA–S too uses the NetLogo 
simulation infrastructure. After constructing a CMP 
conceptual model, a student clicks a 'Run Sim' button to 
initialize MILA–S and pass their model for simulation 
generation. MILA–S iterates through some initial boilerplate 
settings, then gathers together all the components for 
initialization along with their individual parameters. After 
this, MILA–S writes the functions based on the relations 
specified in the CMP model. A key part of this is a set of 
assumptions that MILA–S makes about the nature of 
ecological systems. For example, MILA–S assumes that if a 
biotic component consumes a certain other component, then 
it must need that other component to survive. A model with 
'Fish' that contains 'consumes' connections to both 'Plankton' 
and 'Oxygen' would infer that fish need both Plankton and 
Oxygen to survive. MILA–S also assumes that species will 
continue to reproduce to fulfill their carrying capacity rather 
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than hitting other arbitrary limitations. These assumptions 
do limit the range of simulations that MILA–S can generate, 
but they also facilitate the higher-level rapid model revision 
process that is the learning objective of this project. Figure 1 
illustrates a simple conceptual model constructed by a 
middle school student team (on the top of the figure) and the 
results of simulating it (at the bottom). 

Educational Intervention 
The present intervention had two main parts. In the first 

part, 10 classes with 237 students in a metro Atlanta middle 
school used MILA for two weeks. During this time, students 
worked in small teams of two or three to investigate two 
phenomena: a recent massive and sudden fish death in a 
nearby lake and the record high temperatures in the local 
area over the previous decade. In the second part, two 
classes with 50 of the original 237 students used MILA-S to 
more deeply investigating the phenomenon of massive, 
sudden death of fish in the lake.  

Prior to engagement with MILA–S, the 50 students in our 
study received a two-week curriculum on modeling and 
inquiry, featuring five days of interaction with CMP 
conceptual modeling in MILA. In the first part of the study 
using MILA, students also used pre-programmed NetLogo 
simulations that did not respond to students' models, but 
nonetheless provided students experience with the NetLogo 
interface and toolkit. Thus, when given MILA–S, students 
already had significant experience with CMP conceptual 
modeling, NetLogo simulations, and the interface of 
MILA−S. The question now becomes what was the impact 
of using MILA−S on students’ creativity? 

Impact on Students’ Creativity 
An initial examination of the processes and results of 

model construction by the student teams in our study 
provides two insights. Firstly, there exists a fundamental 
difference in the conceptual models that students 
constructed with MILA–S compared to the earlier models 
they constructed with MILA: while earlier models were 

 
 

 
Figure 1: A model in MILA–S (top) showing a set of simple relationships between fish, algae, and oxygen, and the NetLogo 
simulation (bottom) generated by MILA–S to simulate the model. This model was constructed by the team described in the 
third case study below; the simulation was generated and run from their model by research staff to obtain this screenshot. 
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retrospective and explanatory, models constructed with 
MILA–S models were prospective and dynamic. Secondly, 
the model construction process when students were 
equipped with MILA–S was profoundly different from their 
earlier process using MILA: whereas previously, conceptual 
models were used to guide investigation into sources of 
information such as existing theories or data observations, 
once equipped with MILA–S the students used the 
conceptual models to spawn simulations that directly tested 
the implications of their hypotheses and models thereof. 

The Constructed Models 
During engagement with MILA, students produced 

models that can be described as retrospective and 
explanatory. Students started from an observable 
phenomenon, the aforementioned fish kill, and recounted a 
series of events that led to that result. Causal relationships 
were captured throughout the model, but only those that lay 
directly in the causal path leading to the observed 
phenomenon, and only in the specific way in which the 
chain occurred in the phenomenon. For example, one team 
modeled multiple feedback cycles to explain the 
phenomenon. In their model, a heat spike caused algae 
populations to grow out of control, then die off due to a lack 
of carbon dioxide to breathe and a lack of sunlight to 
produce energy (due to the thick algae clouding the lake). 
This led to a spike in algae-decomposing bacteria who 
suddenly had an ample food supply, as well as a drop in the 
population of oxygen-producing algae. These bacteria, then, 
consumed an enormous quantity of oxygen, causing the fish 
population to suffocate. This led to more dead matter in the 
lake, thus encouraging more bacteria reproduction, 
exacerbating the fish kill further. 

This model presented a complete explanation for why and 
how the fish kill occurred in the lake; however, the model 
only captured a retrospective view of the series of events 
applicable in this situation. Although students could use 
mental simulation to imagine the results, these models do 
not explicitly capture dynamic relationships in the system, 
and thus are of limited use describing what would have 
happened under different circumstances. For example, had 
the temperature changed more slowly and allowed the algae 
to grow steadily rather than exploding and plummeting in 
quick succession, could the lake have sustained the 
increased algae population? Would the increased algae 
population have produced sufficient oxygen to allow the 
fish population to grow and thrive as well? Thus, models 
constructed with MILA were explanatory and retrospective. 

With MILA–S, students constructed fundamentally 
different kinds of models that aimed not to capture the series 
of events that occurred, but rather to capture the dynamic 
relationships that gave rise to that series of events. Thus, the 
models constructed in MILA–S invoked a layer of 
abstraction and generalization away from the models 
constructed in MILA. For example, one team constructed an 
initial model that captured the three relationships they 
considered most pertinent in the system. These students 

already believed that the fish kill was caused by a sudden 
drop in oxygen, thus suffocating the fish. Thus, their first 
relationship was that fish consume oxygen. They similarly 
knew that oxygen is produced from sunlight, and thus 
included the relationship between sunlight and oxygen. 
These connections differed fundamentally from those 
modelled in MILA, such as accounting for trends in 
multiple directions (i.e. oxygen production varies directly, 
up or down, with sunlight presence). The model was not 
constructed to directly explain the phenomenon, but rather 
to provide the relationships necessary so that under the right 
conditions, the phenomenon may arise on its own.  

Model Construction Process 
During prior engagement with MILA, model construction 

occurred as students constructed their initial hypotheses, 
typically connecting only a cause to a phenomenon with no 
mechanism in between. This was then used to guide 
investigation into other sources of information such as 
observed data or other theories to look for corroborating 
observations or similar phenomena. The conceptual model 
was then evaluated according to how well it matched the 
findings; in some cases, the findings directly contradicted 
the model, while in other cases, the findings lent evidence or 
mechanism to the model. Finally, the conceptual models 
were revised in light of this new information (or dismissed 
in favor of stronger hypotheses, reflecting revision at a 
higher level) and the process began again. 

During engagement with MILA–S, however, we observed 
a profound variation on the model construction process. The 
four phases of model construction were still present, but the 
nature of model use and evaluation changed. Students 
started by constructing a small number of relationships they 
believe to be relevant in the system, the model construction 
phase. After some initial debugging and testing to become 
familiar with the way in which conceptual models and 
simulations fit together, students generated simulations and 
used them to test the implications of their conceptual 
models. After running the simulation a few times, students 
then evaluated how well the results of the simulation 
matched the observations from the phenomenon. This 
evaluation had two levels: first, did the simulation 
accurately predict the ultimate phenomenon (in this case, the 
fish kill)? Once this basic evaluation was met, an advanced 
evaluation followed: did other variables, trends, and 
relationships in the simulation match other observations 
from the phenomenon? For example, one team successfully 
caused a fish kill by causing the quantity of food available 
to the fish to drop, but evaluated this as a poor model 
nonetheless because nothing in the system indicated a 
disturbance to the fish's food supply. Finally, equipped with 
the results of this evaluation, students revised their models 
to more closely approximate the actual system. 

Thus, students still constructed and revised conceptual 
models, but through the simulation generation framework of 
MILA–S, the model use and evaluation stages took on the 
practical rigor, repeatable testing, and numeric analysis 
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facilitated by simulations. Rather than speculating on the 
extent to which their model could explain a phenomenon, 
students were able to directly test its predictive power. 
Then, when models were shown to lack the ability to 
explain the full spectrum of the phenomenon, students were 
able to quickly return and revise their conceptual models 
and iterate through the process again. 

Three Illustrative Case Studies 
We present three case studies from our experiment to 

illustrate the above observations about the model 
construction process. These case studies were chosen to 
demonstrate variations in the process and connections to the 
underlying model of construction and revision. 

Case 1 
The first team posited that pollution from dangerous 

chemicals played a significant role in the system. 
Specifically, this team speculated that chemicals were 
responsible for killing the algae in the lake, which then 
caused the fish population to drop. They began this 
hypothesis by constructing a model suggesting that algae 
produces oxygen, fish consume oxygen, and harmful 
chemicals destroy algae populations. They then used 
MILA–S to generate and use a simulation of this model to 
mimic the initial conditions present in the system (i.e. a fish 
population, an algae population, and an influx of chemicals). 
This simulation showed the growth of fish population 
continuing despite the dampened growth of algae population 
from the harmful chemicals. The team evaluated this to 
mean that the death of algae alone could not cause the 
massive fish kill to occur. The team then revised their model 
to suggest chemicals directly contributed to the fish kill by 
poisoning the fish directly, as well as killing the algae. 

The team then used MILA–S to generate another 
simulation. This time, when the team used the simulation 
under similar initial conditions, the fish population initially 
grew wildly, but the chemicals ate away at both the fish and 
algae. Eventually, the harmful chemicals finished eating 
away at the algae, the oxygen quantity plummeted, and the 
fish suffocated. Students evaluated that this simulation 
matched the observed phenomenon, but also evaluated that 
their model missed a relevant relation: based on a source 
present in the classroom, students posited that fish ought to 
consume algae. They revised their model to account for this 
error uncovered during evaluation, used their simulation 
again, found the same result, and evaluated that they had 
provided a model that could explain the fish kill. 

Case 2 
A second team started off by creating a simple set of 

relations that they believed was present due to their biology 
background and prior experience with MILA. First, they 
speculated that sunlight “produces” oxygen, and then that 
fish, in turn, consume the oxygen. Following these two 
initial relationships, they generated their first simulation 

through MILA–S and used it to mimic the believed initial 
conditions of the lake (i.e. a population of fish, available 
oxygen, available sunlight). Sunlight was inferred to be 
continuously available, and thus, at first, the population of 
fish expanded continuously without any limiting factor. 
However, when the population of fish hit a certain 
threshold, it began to consume oxygen faster than it was 
being produced. This led to the quantity of oxygen 
dropping, and subsequently, the population of fish dropping. 
However, rather than depleting completely, the fish and 
oxygen populations instead began to fluctuate inversely, 
with oxygen concentration rebounding sufficiently when 
fish population dropped, allowing the fish to rebound. 

The team ran this simulation multiple times to ensure that 
this trend repeated itself. In one instance, the fish population 
crashed on its own simply due to the suddenness of the fish 
population growth and subsequent crash. However, the team 
evaluated that this was not an adequate explanation of what 
had actually happened in the lake. The team posited that if 
this kind of expansion and crash could happen without 
outside forces, it would be more common. Second, the team 
observed that their model contained faulty or questionable 
claims, such as the notion that sunlight “produces” algae. 
This evaluation based on both the simulation results and 
reflection on the model led to a phase of revision. An 
‘Algae’ component was added between sunlight and 
oxygen, representing photosynthesis. Students then used 
MILA–S to generate a new simulation, and used this new 
simulation to test the model. This time, students found that 
their model posited that an oxygen crash would always 
occur in the system, and evaluated that while this 
successfully mimicked the phenomenon of interest, it failed 
to match the lake on other days. 

Case 3 
The third team began with an interesting hypothesis: algae 

serves as both the food for fish and the oxygen producer for 
fish. The team, thus, started with a simple three-component 
model with fish, algae, and oxygen: fish consume algae, fish 
consume oxygen, and algae produces oxygen. The team 
further posited that in order for algae populations to grow, 
they must have sunlight to feed their photosynthesis 
process. Sunlight, therefore, was drawn to produce algae. 
The team reasoned that if the fish population destroys the 
source of one type of ‘food’ (oxygen) in search for another 
type (actual food), it could inadvertently destroy its only 
source for a necessary nutrient. 

The team used MILA–S to generate a simulation based on 
this model and ran it several times under different initial 
conditions. Each time, algae population initially grew due to 
the influx of sunlight. As a result, fish populations grew, 
due to the abundance of both algae (as produced via 
sunlight) and oxygen (as produced by the algae). As the fish 
population spiked, the algae hit a critical point where it 
began to be eaten faster than it reproduced, and the rate of 
sunlight entering the system was insufficient to maintain 
steady, strong growth. This caused the algae population to 
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plummet, and in turn, the fish population to plummet as the 
fish suddenly lacked both food and oxygen. Sometimes, the 
algae population subsequently bounced back even after the 
fish fully died off, while in others both species died entirely. 

Unlike the second team, this third team evaluated this to 
mean their model was accurate: under the initial conditions 
observed in the lake, their model predicted an algal bloom 
every single time. Thus, the third team provided two 
interesting variations on the model construction process 
observed in other teams: first, they overloaded one 
particular component, demonstrating an advanced notion of 
how components can play multiple functional roles. Second, 
they posited that a successful model would predict that the 
same events would transpire under the same initial 
conditions every time, as opposed to the second team’s 
notion that this phenomenon ought to only occur sometimes. 

Summary, Conclusions, and Future Work 
Scientific discovery in general is a creative task. Our goal 

in this work was to enable science students to mimic the 
scientific modeling practices of real scientists and thus help 
make learning about scientific discovery as authentic as 
possible. Our analysis of several epistemic views of idea 
generation in scientific discovery indicated a need for 
automating the task of hypothesis evaluation.  Therefore, we 
developed an interactive system called MILA–S that enables 
science students to construct conceptual models of 
ecosystems, to directly evaluating the conceptual models by 
automatically generating simulation models from the 
conceptual models and then execute the simulations. Our 
hypothesis was that the computational support for model 
construction and evaluation embodied in MILA–S would 
foster student creativity in scientific modeling. 

Initial results from a pilot study with 50 students in a 
middle school provide preliminary evidence in favor of the 
hypothesis (although a controlled study is needed to 
conclusively verify these claims). Firstly, students 
approached the modeling process from a different 
perspective from the outset, striving to capture dynamic 
relationships among the components of the ecological 
system. These dynamic relationships then promoted a more 
abstract and general perspective on the system. Secondly, 
the process of model construction, use, evaluation, and 
revision presented itself naturally during this intervention, 
with the simulations playing a key role in supporting the 
cyclical process of constructing conceptual models. By 
using the simulations to test their predictions and claims, 
and by subsequently evaluating the success of their 
conceptual models by matching observations from the actual 
phenomenon, students engaged in a rapid feedback cycle 
that saw rapid model revision and repeated use for 
continued evaluation. MILA–S empowers science students 
to evaluate the conceptual models through simulation, 
allowing them to focus on idea generation, and model 
construction and revision.  

Note that in addition to conceptual modeling, this project 
entails some of the other processes of scientific discovery 

we briefly mentioned in the introduction. Thus, it engages 
abductive explanation as students explore multiple 
hypotheses for explaining an ecological phenomenon, and 
construct the best explanation for the given data about the 
phenomenon. It also engages visual representations and 
reasoning: students construct a visual representation of their 
conceptual model of the ecological phenomenon (top of 
Figure 1) and generate visualizations of simulations directly 
from the conceptual models (bottom of Figure 1).  

We are presently engaged in a full-scale investigation to 
test these theories, techniques and tools with college-level 
biology students. The objective of this investigation is to 
examine the use of creativity support tools for scientific 
modeling of ecological phenomena in college-level 
introductory biology courses.  
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