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Abstract 

The Raven's Progressive Matrices (RPM) test is a 
commonly used test of intelligence. The literature sug-
gests a variety of problem-solving methods for address-
ing RPM problems. For a graduate-level artificial intel-
ligence class in Fall 2014, we asked students to develop 
intelligent agents that could address 123 RPM-inspired 
problems, essentially crowdsourcing RPM problem 
solving. The students in the class submitted 224 agents 
that used a wide variety of problem-solving methods. In 
this paper, we first report on the aggregate results of 
those 224 agents on the 123 problems, then focus spe-
cifically on four of the most creative, novel, and effec-
tive agents in the class. We find that the four agents, us-
ing four very different problem-solving methods, were 
all able to achieve significant success. This suggests the 
RPM test may be amenable to a wider range of prob-
lem-solving methods than previously reported. It also 
suggests that human computation might be an effective 
strategy for collecting a wide variety of methods for 
creative tasks.  

 Introduction 
The Raven's Progressive Matrices (RPM) tests are a group 
of intelligence tests based on visual analogy problems (Ra-
ven, Raven, & Court 1998). In these problems, a matrix of 
visual frames is presented with a blank space; six or eight 
options are presented for filling in this space. Performance 
on RPM has been shown to correlate well with other intel-
ligence tests (Snow, Kyllonen, & Marshalek 1984). Thus, 
although wholly visual, the RPM tests measure general 
human intelligence, and are often used as the psychometric 
measure of choice in educational and clinical settings. 
 Hunt (1974) suggested that humans use multiple prob-
lem-solving methods to address RPM problems, including 
“analytical”   and   “Gestalt”   methods. Bringsjord & 
Schimanski (2003) have proposed intelligence tests such as 
RPM as a method of measuring the effectiveness of AI 
techniques. AI research has developed a variety of methods 
for addressing RPM and similar visual analogy problems, 

including both “analytical” methods that typically use 
propositional representations (Evans 1968; Lovett, Forbus, 
& Usher 2009; O’Donoghue, Bohan & Keane 2006; Prade 
& Richard 2011; Ragni & Neubert 2014), and "Gestalt" 
methods that often use imagistic representations (Dastani, 
Induskhya & Scha 2003; Kunda, McGreggor, & Goel 
2013; McGreggor & Goel 2014; Schewring et al. 2009). 
Another way of classifying the various methods is by con-
trol of processing. For example, some methods for address-
ing RPM problems, such as the affine method (Kunda, 
McGreggor & Goel 2013), first generate an answer based 
on the (partial) matrix, and test this answer by comparing it 
with each available choice; other methods, such as the frac-
tal method (McGreggor, Kunda & Goel 2014), test each 
available answer by computing the degree of fit in the ma-
trix. While it may appear that generation of answers is a 
necessary part of creativity, we posit that generating expla-
nations for available answers is also creative. 

The Raven's Test and Creativity 
 One major component in the value of the RPM test is its 
connection not only to intelligence, but also to creativity. 
Hunt (1974) laid the foundation for the creative nature of 
problem-solving methods on this test in identifying the two 
broad categories of methods mentioned previously, "Ge-
stalt" and "analytical". Kirby & Lawson (1983) argued 
further that it is the diversity of problem-solving methods 
that makes the RPM test a valuable tool for assessing intel-
ligence in humans. If creativity is in part the ability to de-
velop novel, useful, and effective methods to a problem, 
then the RPM test's admission of multiple methods adds to 
its value as a tool for studying creative problem solving. 
 Second, Keating & Bobbitt (1998) argue that addressing 
many RPM problems requires metacognitive abilities to 
select among the available problem-solving methods, to 
monitor the progress of the selected method, to suspend or 
abandon the current method and move to a different meth-
od, and to combine insights from the use of multiple meth-
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ods into one final answer choice. Third, the normatively 
correct choices for some RPM problems are often non-
obvious, sometimes even unexpected, such as in the prob-
lem shown in Figure 1. Thus, from the perspective of both 
process (metacognitive processing) and product (unexpect-
edness of the answer), the RPM test measures not only 
intelligence, but also creativity. 
 One potential critique of the RPM test for studying crea-
tivity is that a set of answer choices are presented to the 
test-taker. However, this implies that the creative task nec-
essarily entails generating a novel answer. The structure of 
the RPM problems turns this notion of creativity around: 
rather than generating an answer, the test-taker instead 
creatively generates an explanation for a particular answer 
choice. In Figure 1, for example, the most obvious answer 
would be a large square; however, none of the answer 
choices match this obvious answer. The presence of an-
swer choices constrains the activity and forces the test-
taker to creatively generate not an answer, but an explana-
tion for why one of the presented choices is most compel-
ling. This explanation is as much the output of the creativi-
ty process as the answer itself. 
 From the perspective of computational creativity, the 
above analysis makes the RPM test an excellent choice for 
designing, evaluating, and comparing new AI methods not 
only for intelligence, but also for creativity: the task admits 
a wide variety of AI methods characterized by different 
knowledge representations and different controls of pro-
cessing. The question then becomes: how can we identify 
the novel techniques that may effectively address RPM 
problems?  
 We postulate that one strategy for acquiring new meth-
ods for addressing visual analogy problems on the RPM 
test is through crowdsourcing (Howe 2008), or, more accu-
rately, human computation (Law & von Ahn 2011). Alt-
hough crowdsourcing has typically been used for acquiring 

domain knowledge, human computation also admits acqui-
sition of problem-solving methods. Yet, it is also important 
to acquire new methods for addressing visual analogy 
problems not from any crowd, but from intelligent, educat-
ed, high-achieving humans who themselves are likely to do 
well on the RPM test. 

The Experiment 
 In Fall 2014, we offered a new online Georgia Tech 
graduate-level CS 7637 course titled "CS 7637 
Knowledge-Based AI: Cognitive Systems" as part of the 
new Georgia Tech Online MS in CS Program (Goel & 
Joyner 2014; Goel & Joyner 2015). We also offered an in-
person class in parallel, with the two classes sharing the 
same syllabus and structure. The course describes its learn-
ing goals as, "to develop an understanding of (1) the basic 
architectures, representations and techniques for building 
knowledge-based AI agents, and (2) issues and methods of 
knowledge-based AI." Toward this end, students cover 
several knowledge representations (semantic networks, 
frames, scripts, formal logic), reasoning strategies (case-
based reasoning, rule-based reasoning, model-base d rea-
soning), and target domains (computational creativity, de-
sign, metacognition). More comprehensive information on 
the structure and content of the class is available at the link 
above. 
 In previous offerings of the in-person class, we had used 
variants of problems on the RPM test to motivate the class 
projects (Goel, Kunda, Joyner, & Vattam 2013). Thus, we 
knew class projects based on the RPM test stimulated stu-
dent engagement while providing an authentic opportunity 
to explore cutting-edge research. Therefore, in Fall of 
2014, we again designed the class projects based on vari-
ants of problems on the RPM test.  Students in both the 
online and in-person sections were asked to complete four 
projects that addressed 123 RPM-inspired problems in all, 
culminating in Project 4, wherein students designed agents 
that could answer all 123 problems using visual input. 224 
students completed Project 4, addressing all the problems 
using the raw imagistic input. We collected all the data on 
these 224 Project 4 submissions, including the designs of 
the agents and their performance on the 123 problems.  
 In this paper, we will describe the results of this experi-
ment. First, we will present at a high level the results of the 
224 agents that were developed to address these RPM-
inspired visual analogy problems. Second, we will examine 
in greater detail the design of four of the most creative and 
effective agents developed for the project. These agents 
operate according to four significantly different methods 
for reasoning about these problems. In describing these 
agents, we will clarify their relationship to elements of 
human creativity operationalized and instantiated in AI 
agents. 

 
Figure 1: A 2x1 visual analogy problem. Although RPM tests do 
not have 2x1 problems, 20 2x1 problems are used as a soft intro-
duction to solving visual analogies. 
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RPM-Inspired Visual Analogy Problems  
 The standard set of Raven's Progressive Matrices test is 
made of 60 visual analogy problems: 24 of the problems 
are 2x2 matrices, and 36 of the problems are 3x3 matrices. 
For copyright reasons, we have not yet been able to use 
actual RPM in these class projects.  Instead, we have 
developed a set of 123 RPM-inspired problems. These 
problems are broken into three categories: 27 2x1 matrices 
(as shown in Figure 1), 48 2x2 matrices (as shown in 
Figure 2), and 48 3x3 matrices (as shown in Figure 3). 
Although there are no 2x1 matrices in the actual RPM test, 
these are included in our set to provide a simpler initial set 
of problems for students to address before moving on to 
more difficult problems. 
 To develop these RPM-inspired problems, we examined 
individual problems on the actual RPM tests (both the 
standard and the advanced test) and wrote problems to 
have a close correspondence with the problems on the 
actual tests. Although the individual shapes and their 
properties differ, these RPM-inspired problems mimic the 
same transformations and problem types as the actual 
standard and advanced RPM tests. These correspondences, 
however, only exist at the level of individual problems; not 
every RPM has a corresponding RPM-inspired problem in 
our problem sets, and some types of problems are present 
more often in our problem sets than in the actual RPM 
tests. Therefore, no claim is made that our RPM-inspired 
problem sets are equivalent to the RPM tests as a whole; 
we only claim that the individual problems capture the 

same reasoning as problems on the original RPM tests. We 
are presently running two previously-designed agents 
(Kunda. McGreggor & Goel 2011; McGreggor, Kunda & 
Goel 2014) for solving the actual RPM tests against these 
new RPM-inspired problems in order to establish a 
conversion factor between the two sets. 

The Projects 
In the Fall 2014 version of the KBAI class, students com-
pleted a series of four projects. In the first three projects, 
students designed agents that could address 2x1, 2x2, and 
3x3 matrix problems. During these projects, the input into 
these agents was propositional representations of the 123 
RPM-inspired visual analogy problems. The propositional 
representations were written by the instructors of the 
course to prevent students from building inferential ad-
vantages into the representations. During the design of 
their agents, students could see 83 of these problems: the 
remaining 40 were designated 'Test' problems and were 
hidden from students in order to test their agents for gener-
ality. Thus, students were encouraged to construct agents 
with general problem-solving ability rather than agents that 
would tightly fit a small set of previously-seen problems. 
 By the end of project 3, students had completed an agent 
that could solve 2x1, 2x2, and 3x3 visual analogy problems 
based on  propositional input. In project 4, students de-
signed an agent that could solve these same problems using 
visual input. Here, students' agents read in the images di-
rectly from .PNG files, with one file representing each 
frame from the problem. Students' agents were run against 
the same 123 problems. Students' grades were dependent 
on performance on 100 of these problems (the remaining 
23 were provided as challenge problems with no credit 
granted for correct answers), and 40 of these 100 problems 
were withheld as 'Test' problems. This paper focuses only 
on the agents designed in project 4, which took visual in-
put.  

 
Figure 2: A 2x2 visual analogy problem, inspired by Raven's 
Progressive Matrices. In this paper, individual squares in a prob-
lem   are   called   ‘frames’,   while   individual   shapes   within   each  
frame  are  called  ‘objects’. 

 
Table 1: Performance on the eight sets of RPM-inspired problems 

(123 problems in all). "n" gives the number of problems in that 
set. "Avg." gives the average number of correct answers in that 

set for the 224 agents. "1", "2", "3", and "4" give the performance 
of the four agents described in further detail under 'Four Agents', 

below. 
 n Avg 1 2 3 4 

2x1 Basic 20 8.8 18 14 17 12 
2x1 Extra 7 1.5 4 1 7 2 
2x2 Basic 20 8.8 18 16 20 14 
2x2 Extra 8 2.5 7 4 7 7 
2x2 Test 20 7.2 17 16 14 12 

3x3 Basic 20 11.0 19 17 20 15 
3x3 Extra 8 1.5 2 0 6 4 
3x3 Test 20 7.9 16 15 11 13 

 

Proceedings of the Sixth International Conference on Computational Creativity June 2015 25



Aggregate Results 
Students in the KBAI class submitted 224 agents, each of 
which ran against the 123 problems. The percentage of 
agents answering an individual problem correctly ranged 
from 87% (fo r the easiest 3x3 problem, which involved no 
transformations between frames) to 8% (for the hardest 
3x3 problem, which demanded reasoning about the sum of 
the number of sides of multiple shapes). Among the prob-
lems completed for credit, one Test problem was correctly 
answered by only 10% of agents; this 2x2 problem in-
volved two transformations – change-fill and remove-
shape – that conflicted with one another.  
 Table 1 previously shows the performance of the agents 
as a whole, as well as the performance of the four agents 
highlighted below. The table is broken up by the eight dis-
tinct problem sets students addressed: 'Basic' sets were 
provided to students during the design of their agents and 
were evaluated for the project grade; 'Test' sets were not 
provided to students for the design of their agents and were 
evaluated for the project grade; 'Extra' sets were provided 
to students during the design of their agents but were not 
evaluated for the project grade. Agents' scores on the Basic 
and Test sets comprised 70% of students' project grades. 
 Perhaps surprisingly, students' agents performed better 
on 3x3 problems than on 2x2 problems. While 3x3 prob-
lems allow more complex problem structures, such as 

transformations in which two frames together determine 
the contents of a third, students noted that 3x3 problems 
gave their agents more information with which to work. 
With more information, their agents performed better, even 
on more complex problems. 

Four Agents 
After evaluating the aggregate results, we examined the 
problem-solving methods of several of the best-performing 
agents and identified a number of particularly novel and 
successful methods for addressing these RPM-inspired 
problems. The majority of the 224 submitted agents oper-
ated by first writing a propositional representation based on 
shape recognition, and then solving the problem proposi-
tionally; we describe the most successful agent using this 
method below, which combines contour recognition with 
problem classification. However, we also identified several 
other methods to solving these problems. Here, we de-
scribe three additional creative methods to solving RPM-
inspired problems based on imagistic representations. 

Agent 1: Contour Recognition &  Reasoning 
Agent 1 uses an intermediate propositional knowledge rep-
resentation  for  working  memory.  In  the  agent’s  representa-
tion, each frame in an RPM consists of objects, and each 
object consists of the following attributes: shape, size, fill, 
rotation, and relative-position to other shapes. A library of 
shapes was available to the agent, storing 20 basic shapes 
and features  such  as  symmetry  and  corner  count.  Agent  1’s  
method has three phases: symbol extraction, top-down 
recognition, and bottom-up recognition. 
 Phase 1 uses image processing to extract a propositional 
representation for each problem. First, objects are found by 
isolating connected components, after which they are clas-
sified into shapes based on attributes of the object like cor-
ner count, edge lengths, and convexity. Other object attrib-
utes, including fill, rotation, size, and relative position are 
also computed in this phase. 
 Phase 2 uses top-down pattern finding. 19 pattern recog-
nizers look for simple patterns that will be combined to 
form   a   pattern   fingerprint.   Recognizers   include   “constant  
rotation  across  objects   in   frame”   (as   seen  between   frames  
A   and   C   in   Figure   2)   and   “object   count   arithmetic   se-
quence.”  For  each  problem  matrix,  patterns  are   found and 
combined for all in-row, -column, and -diagonal relation-
ships. The agent then chooses the answer with the largest 
set of matchers. In the event of a tie, Phase 3 begins. 
 Phase 3 performs bottom-up reasoning by splitting each 
problem into 2x1 sub-problems: 2 for 2x2 matrices and 29 
for 3x3 matrices (including diagonal sub-problems). The 
agent solves each sub-problem, producing multiple answer 
choices, then uses majority-rule to make a final answer 
selection. 

 
Figure 3: A 3x3 visual analogy problem, inspired by Raven's 
Progressive Matrices. Individual objects within frames in an 
RPM  can  be  said  to  have  ‘properties’;;   for  example,  some  of   the  
triangles in this problem have a 180° rotation as a property. 
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 To solve a 2x1 sub-problem, (1) all object pairs from 
frame A to frame B are created; (2) all object pairs from 
frame C to the answer choices are created; (3) all mappings 
between object pairings from step one and step two are 
created; and (4) each mapping is given a score. The scoring 
function includes the intuitiveness of the transformation in 
step two and the strength of analogy in step three. For ex-
ample, a mapping would be scored highly for intuition for 
mapping a triangle from frame A to a triangle in frame B. 
However, if a triangle in frame A instead mapped to a 
square in frame B, the best analogy would map triangles 
from frame C to squares in frame D. The highest scoring 
mapping is the most intuitive analogy. In the worst case, 
phase 3's runtime is O((n!)3), where n is object count per 
frame. To offset this, time limits were imposed. 
 To take the problem shown in Figure 3 as an example: 
during Phase 1, 31 shapes and 14 frames would be repre-
sented in a fashion similar to the following: frames: [{id: 1, 
objects:[{id: 1; shape: triangle; fill: yes; angle: 0; left-of: 
[2, 3]; size: medium},{id: 2; shape: triangle; fill: yes; an-
gle: 180; left-of:  [3];;  size:  medium}…]},  …]. 
 During Phase 2, each potential answer is inserted into 
the last cell of the matrix, and each pattern matcher runs. 
Here,  the  matcher  labelled  “remaining  shapes  after pairing”  
will match: each upright triangle in the first cell of a row or 
column is paired with a flipped version in the second cell, 
and the remaining triangles are checked to see if they 
match those of the third cell. Other matchers may also 
match the inserted choice, creating a more complex pat-
tern. In the end, each potential answer will have a list of 
matchers associated with it, and the one with the longest 
list of matchers is selected. For this problem, the agent 
would choose the first answer choice. Because the problem 
would be solved in Phase 2, Phase 3 would not execute. 
 Agent 1 performed exceptionally well, correctly answer-
ing 101 of the 123 problems (88 of the 100 problems for 
credit). Agent 1's general method of generating a  represen-
tation based on prior shape knowledge also reflects the 
most common approach used in the class (as well as an 
approach used in prior literature, e.g. O'Donoghue, Bohan, 
& Keane 2006);;  however,  Agent  1’s  classification  of  mul-
tiple problem types goes beyond what the majority of 
agents attempt and plays a large role in its success. 
 Connecting with computational creativity, Agent 1 pos-
sesses the ability to creatively generate its own answers. 
Presently, Agent 1 operates by substituting each answer 
choice in the empty frame and evaluating its degree of fit 
to the problem's transformations; however, implicit here is 
the idea of an 'optimal' fit for the remaining frame. Were 
the agent deprived of the answer choices, it could instead 
generate the optimal solution for the empty frame. Agent 1 
is limited in this regard, however, in that it could only pro-
duce solutions that are comprised of the shapes in its shape 
library; Agent 1 cannot deal with novel shapes. 

Agent 2: Shape-Agnostic Transformation 
Recognition 
The second agent, Agent 2, operates in two stages. First, 
the agent detects and analyzes individual objects to pro-
duce a  propositional representation, similar to Agent 1. 
The agent uses the individual properties to find relation-
ships between objects in pairs of frames, and chooses the 
answer that best fits the relationships that are found. Agent 
2’s  high-level  process   thus  resembles  Agent  1’s   in   its   ini-
tial phase of translating imagistic representations into  
propositional ones; however, it differs in that it does not 
rely on prior shape knowledge. Agent 2 derives the struc-
ture and content of the problem from within the problem, 
rather than based on prior knowledge of shapes and fea-
tures. 
 The agent begins by recording visual measurements for 
each object in the problem and using a simple clustering 
method to partition similar objects into shape groups. The 
agent records the width/height ratio of an object and the 
amount  of  whitespace  “outside”  of  the  object’s  boundaries  
in its cropped region. Without predefined knowledge of 
triangles and squares, the agent instead categorizes shapes 
based on these properties and gives them arbitrary names. 
For example, the agent may label  all  triangles  as  “shape1”  
and  all  squares  as  “shape2”,  even  if   the  individual  objects  
vary in size and other properties across the problem, based 
on these measurements. To account for variations in the 
measurements, objects are rotated to optimize an arbitrary 
scoring function. This also helps determine relative rota-
tion angles between objects which are necessary in certain 
problems. 
 To take an example, in Figure 1, there are no overlap-
ping objects in the frames. Individual objects are easily 
isolated, and the shapes of these objects are distinguished 
by the relative outside whitespace. Other properties, such 
as relative size and position, are also computed. In frames 
A and B, the agent records as the target relationship that 
the single object in frame B has the same shape (shape2) as 
both of the objects in frame A and the same size as the 
larger object in frame A. The agent then compares frame C 
with each answer frame to find the closest match to this 
relationship. An exact match is not possible because frame 
C contains two different shapes (shape1 and shape3) rather 
than a single shape. The correct answer, frame 2 with the 
large triangle (shape3), is chosen because it matches all 
aspects of the target relationship other than the object 
matching the shape of the smaller object. Thus, the concept 
of shape is used to mark objects as being different from or 
similar to other objects, and as long as the agent correctly 
observes those differences in the visual analysis portion it 
will have enough information to solve the problem. 
 The process for the problems in Figures 2 and 3 is simi-
lar, although the addition of rotating objects demands the 
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agent’s   rotation   logic.   For example, in the first frame of 
Figure  3,   the  two  outer  triangles  are  already  at   the  “ideal”  
rotation angle and are given an angle value of 0 degrees, 
whereas   the  middle   triangle  would  reach   the  same  “ideal”  
value after being rotated 180 degrees. As noted before, the 
primary difference between Agent 1 and Agent 2 is that 
while Agent 1 relies on prior knowledge of shapes and 
their potential properties, Agent 2 takes a grounded method 
to identifying shapes in a frame. Thus, while Agent 1 will 
fail to recognize previously unseen shapes, Agent 2 is 
equipped to address previously unidentified shapes. 
 Agent 2 performed exceptionally well, correctly answer-
ing 83 of the 123 problems (78 of the 100 problems for 
credit).   It   is   notable,   though,   that   Agent   2’s   performance 
lagged  behind  on   the   ‘Extra’   problem  sets;;  many  of   these  
sets included  transformations, such as counting the sides 
of a shape, for which Agent   2’s   more   visually-oriented 
method does not account. We also hypothesize Agent 2 
would show greater success on problems featuring previ-
ously unseen shapes that humans could similarly address, 
but no such problems were included here. 
 Like Agent 1, Agent 2 can also generate novel answers 
rather than select them from a set of possible answers. The 
paragraph above acknowledged that on the problem pre-
sented in Figure 1, the most-obvious answer to Agent 2 is 
not present among the answer candidates. To have a 'most 
obvious' answer prior to examining the choices, Agent 2 
must generate its own solutions. This also reveals how the 
presence of candidate answers can encourage creativity by 
introducing new constraints. It is creative to generate novel 
solutions from scratch, but it is also creative to generate 
arguments for available non-obvious solutions. 

Agent 3: Visual Heuristics 
In contrast to Agents 1 and 2, Agent 3 does not derive any  
representation of the visual analogy problems. Agent 3 
begins from the supposition that it is fundamental to reduce 
the input space to something both manageable and 
meaningful for the agent to be able to compute and 
correctly guess an answer from the given choices. Agents 1 
and 2 do so by reducing the input space to a propositional  
representation; Agent 3 reduces the input space to sets of 
contiguous non-white pixels. 
 Agent 3 takes each possible answer choice and computes 
the likelihood it is correct. To do so, the agent takes a 
series of measurements capturing the relationship between 
each training pair, which is described by any two adjacent 
cells in the matrix. It then compares those measurements 
against each of the test-answer pairs, the combinations of 
any cell adjacent to the empty slot and each answer choice. 
Each comparison, if significant enough, casts a vote for the 
current answer as the likely answer with a weight directly 
proportional to the believed similarity of the cells. The 
most-voted answer is selected as the agent's answer. 

 Many relationship measurements were evaluated, such 
as grid-based similarity, histogram-based similarity, and 
affine transformations. After multiple iterations, few 
measures were needed to yield the best performance. In the 
final design, the agent only uses the following two 
measurements: 

x Dark pixel ratio: the difference in percentage of the 
number of dark-colored pixels with respect to the 
total number of pixels in the contiguous pixel sets of 
two matrix cells. 

x Intersection pixel ratio: the difference in 
percentage of the number of dark-colored pixels 
present at the same coordinates with respect to the 
total number of dark-colored pixels in both matrix 
cells for a given set of contiguous pixels. 

 For example, in Figure 1, the intersection pixel ratio 
would lead the agent to vote for the answers containing an 
outer square; this is analogous to the most logical answer 
to the problem, an outer square with the inner object 
removed. Counterintuitively, the correct answer is just the 
expanded triangle, but the agent would also vote for that 
answer based on the dark pixel ratio's similarity to the most 
logical answer. Hence, thanks to the simple metrics used, 
the   agent   is   “immune”   to   problems   that   may   appear  
deceiving at first glance or may involve convoluted 
transformations. Although for this particular example, the 
agent picked answer 6, the correct answer was evaluated to 
be only 6.76% less likely to be correct. 
 Agent 3 performed exceptionally well, correctly answer-
ing 102 of the 123 problems (82 of the 100 problems for 
credit). Agent 3 gave the most correct answers of any 
agent, although a greater proportion of its correct answers 
were previously-seen problems   than   Agent   1’s   similarly  
high performance. This may suggest that the iterations 
examining the effectiveness of multiple measures of 
similarity  may  have  overfit   the  agent’s   reasoning   to   those  
problems, and that further development with more 
problems may expand the set of desirable measurements. 
 Unlike Agents 1 and 2, Agent 3 does not have the 
capability of generating an answer choice rather than 
selecting from a set of presented answer choices. This is 
because while Agents 1 and 2 operate under an implicit 
ranking of possible choices culminating in an ideal choice, 
Agent 3 might find numerous options equally ideal, and 
thus could generate thousands of candidate selections. 

Agent 4: Hybrid Reasoning 
Agents 1 and 2 use  propositional representations of the 
target problem while Agent 3 uses purely imagistic repre-
sentations; Agent 4, by contrast, leverages both and takes a 
hybrid method. This method asks the question: can an 
agent quickly find patterns and relationships in a problem 
through a high-level visual comparison? If the agent can 
find high-level visual relationships quickly, it can efficient-
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ly formulate a solution without any further  propositional 
understanding of the problem. If no such visual relation-
ships are found, the agent may look for lower level propo-
sitional relationships present in the problem. 
 Thus, Agent 4 starts by examining frames for visual 
relationships and transformations that can be quickly de-
tected by visual inspection. The agent uses image similari-
ty to detect rotation, vertical and horizontal reflection, the 
identity transformation, image addition, XOR, and NOR. If 
this process detects the presence of one of these relation-
ships within a matrix problem, the agent generates a pro-
spective solution and looks for a matching answer. For 
example, in Figure 1, the transformation between frame A 
and frame B would be identified through the XOR trans-
formation, which searches for pixels present in only one of 
two frames. Similarly, in Figure 2, the transformation be-
tween frame A and frame B would be identified through 
the rotation transformation; the agent would (successfully) 
identify frame 3 as a frame that would complete the same 
rotation transformation when paired with frame C. 
 This imagistic method was successful in finding solu-
tions to over 20% of the problems, and it was much more 
computationally efficient compared to extracting proposi-
tional  representations from the images; this is notable in 
that it acknowledges the different levels of effort applied 
by humans in solving these problems. Results could be 
further improved by searching for more types of high-level 
relationships and transformations, by applying transfor-
mations at a lower granularity than at the image level, and 
by improving the image comparison. For example, at pre-
sent, Agent 4 is unable detect the visual transformations 
between parts of frames in Figure 2. 
 This visual method has difficulty finding relationships 
that cannot be represented through affine transformations, 
such as problems involving prior knowledge of shapes and 
properties represented in the frames. When the agent is 
confronted with problems like these, it will try to find low-
level relationships using contour recognition to identify 
shapes and object properties, ultimately leading to a  meth-
od similar to Agent 1. 
 Agent 4 performed exceptionally well, correctly answer-
ing 79 of the 123 problems (66 of the 100 problems for 
credit). Although these scores are the lowest among these 
four agents, they are in the top 10% of agents submitted. 
Moreover, Agent 4 may represent the best approximation 
of human reasoning; humans can discuss problems in both 
visual and propositional terms (Kunda, McGreggor & Goel 
2011), and Agent 4 similarly can do both. 
 As noted in the description above, during the first phase 
of its reasoning, Agent 4 generates prospective solutions 
and compares those prospective solutions to the answer 
choices. Thus, it already engages in creative answer gener-
ation and compares the generated answers to the candidate 
solutions.  

Discussion 
Agents 1 and 2 above exemplify  Hunt’s  (1974)  analytical,    
propositional reasoning strategies for addressing RPM 
problems. Agent 1 extracts  propositonal representations 
that describe the shapes, spatial relations, and transfor-
mations from the input images, and then operates on those  
representations. Agent 2 also extracts  propositional repre-
sentations, but these representations are grounded in the 
transformations between objects: it has no prior knowledge 
of shapes, but rather the ability to generate  representations 
of the transformations themselves. Agents 3, on the other 
hand,  exemplifies  Hunt’s  “Gestalt”  visual  reasoning  strate-
gy for RPM. It uses visual abstractions over problems to 
approximate the answer even without precise knowledge of 
the transformations between frames. Agent 4 combines the 
two methods: it first leverages the immediately-identifiable 
"intuitive" answer that can be established from accessible 
visual transformations before resorting to more complex  
propositional reasoning strategies. Thus, Agent 4 demon-
strates the possibility of creatively combining methods. As 
far as we know, the precise strategies used by these agents 
have not appeared in the literature on the RPM test. 
 These four agents, along with the 220 other agents de-
veloped over the course of this project, reflect the ability of 
AI agents to succeed on a test of human intelligence that 
relies on creative and flexible problem-solving. This exper-
iment suggests that there may be no one single “right”  
problem-solving strategy for the RPM test, that creativity 
on the RPM test may entail a large number of problem-
solving strategies, and that we have so far discovered only 
a subset of creative problem-solving strategies. Future re-
search along these same lines will test future agents against 
the authentic RPM test; examine patterns of errors in 
agents' performance for comparison to human performance 
(Kunda et al. 2013) including atypical cognition (Kunda & 
Goel 2011); and better articulate the strengths and weak-
nesses of different methods (Lynn, Allik, & Irwing 2004; 
Kunda et al. 2013). We will also examine merging multiple 
agents into a single agent equipped with metacognitive 
ability to select among the different strategies, thus more 
closely approximating factors that determine human suc-
cess on such tests (Keating & Bobbitt 1978). 

Conclusions 
The RPM test admits many problem-solving methods, 
which in part is what makes it a good test of intelligence 
and creativity. The various problem-solving methods differ 
in both the knowledge representations and control of pro-
cessing they use. In this paper we described a human com-
putation strategy for acquiring novel problem-solving 
methods for addressing RPM-inspired visual analogy prob-
lems. This strategy resulted in the design of 224 AI agents 
for addressing 123 visual analogy problems. Some of the 
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agent designs were both novel and effective: we described 
four of these agent designs. 
 An important issue in computational creativity is how to 
acquire knowledge of creative methods. Our research sug-
gests that human computation may be a useful strategy for 
this acquisition, especially when the computation comes 
from intelligent, educated, high-achieving humans who 
themselves are likely to do well on a creative task. 

Acknowledgements 
We thank all 224 students in both the in-person and online 
sections of CS 7637 KBAI course at Georgia Tech in Fall 
2014. Goel was the primary instructor of both sections; 
Joyner was the course developer and head TA of the online 
section; Lemmon, Graham, Martinez, and Bedwell were 
four students in the online course and developed agents 1, 
2, 3, and 4, respectively.  
 We are grateful to Maithilee Kunda and Keith 
McGreggor for their prior work on which this project 
builds. We also thank the course's teaching team: Lianghao 
Chen, Amish Goyal, Xuan Jiang, Sridevi Koushik, 
Rishikesh Kulkarni, Rochelle Lobo, Shailesh Lohia, Nilesh 
More, and Sriya Sarathy. We also thank the anonymous 
reviewers of this paper: their comments truly helped im-
prove the discussion. 

References 
Bringsjord, S., & Schimanski, B. (2003). What is Artificial 
Intelligence? Psychometric AI as an answer. In Procs. 18th 
IJCAI, 887-893. 
Dastani, M., Indurkhya, B., & Scha, R. (2003). Analogical 
Perception in Pattern Completion. JETAI 15(4), 489-511. 
Evans, T. (1967). A Program for the Solution of a Class of 
Geometric Analogy Intelligence-Test Questions. In M. 
Minsky (ed.) Semantic Information Processing. MIT Press. 
Goel, A. & Joyner, D. (2014). CS7637: Knowledge-Based 
AI: Cognitive Systems [Online Course]. Retrieved from 
http://www.omscs.gatech.edu/cs-7637-knowledge-based-
artificial-intelligence-cognitive-systems/ 
Goel, A. & Joyner, D. (2015). An Experiment in Teaching 
Cognitive Systems Online. Technical Report, Georgia In-
stitute of Technology. 
Goel, A., Kunda, M., Joyner, D., & Vattam, S. (2013). 
Learning about Representational Modality: Design and 
Programming Projects for Knowledge-Based AI. In Fourth 
AAAI Symposium on Educational Advances in Artificial 
Intelligence. 
Howe, J. (2008). Crowdsourcing: Why the Power of the 
Crowd is Driving the Future of Business. Crown. 
Hunt, E. (1974). Quote the raven? Nevermore! In L. W. 
Gregg (Ed.), Knowledge and Cognition. 129-158. Hills-
dale, NJ: Erlbaum. 

Keating, D. , & Bobbitt, B. (1978). Individual and devel-
opmental differences in cognitive-processing components 
of mental ability. Child Development, 155-167. 
Kirby, J., & Lawson, M. (1983). Effects of strategy train-
ing on progressive matrices performance. Contemporary 
Educational Psychology, 8(2), 127-140. 
Kunda, M., & Goel, A. (2011). Thinking in Pictures as a 
Cognitive Account of Autism. Journal of Autism and De-
velopmental Disorders, 41(9), 1157-1177. 
Kunda, M., McGreggor, K., & Goel, A. (2013). A Compu-
tational   Model   for   Solving   Problems   from   the   Raven’s  
Progressive Matrices Intelligence test using Iconic Visual 
Representations. Cognitive Systems Research, 22, 47-66. 
Kunda, M., Soulieres, I., Rozga, A., & Goel, A. (2013). 
Methods for Classifying Errors on the Raven's Standard 
Progressive Matrices Test. In Proceedings of the 35th An-
nual Meeting of the Cognitive Science Society, 2796-2801. 
Berlin, Germany. 
Law, E., & von Ahn, L. (2011). Human Computation. 
Morgan & Claypool. 
Lovett, A., Tomai, E., Forbus, K. & Usher, J. (2009). Solv-
ing geometric analogy problems through two-stage analog-
ical mapping. Cognitive Science 33(7), 1192-1231.  
Lynn, R., Allik, J., & Irwing, P. (2004). Sex differences on 
three factors identified in Raven's SPM. Intelligence, 32, 
411-424. 
McGreggor, K., Kunda, M., & Goel, A. (2014). Fractal and 
Ravens. Artificial Intelligence 215, 1-23. 
O’Donoghue, D., Bohan, A., & Keane, M. (2006). Seeing 
Things: Inventive Reasoning with Geometric Analogies 
and Topographic Maps. New Generation Computing 24 
(3), 267-288. 
Prade, H. & Richard, G. (2011). Analogy-Making for Solv-
ing IQ Tests: A Logical View. In Procs. 19th International 
Conference on Case-Based Reasoning, 561-566. London, 
UK: Springer. 
Ragni, M. & Neubert, S. (2014). Analyzing  Raven’s  Intel-
ligence Test: Cognitive Model, Demand, and Complexity. 
In H. Prade & G. Richard (Eds.) Computational Approach-
es to Analogical Reasoning: Current Trends, 351-370. 
Springer. 
Raven, J., Raven, J. C., & Court, J. (1998). Manual for 
Raven's Progressive Matrices and Vocabulary Scales. San 
Antonio, TX: Harcourt Assessment. 
Schwering, A., Krumnack, U., Kuhnberger, K-U, & Gust, 
H. (2009). Spatial cognition of geometric figures in the 
context of proportional analogies. In Procs. Spatial Infor-
mation Theory, Lecture Notes in Computer Science Volume 
5756, 18-35.  
Snow, R., Kyllonen, P., & Marshalek, B. (1984). The to-
pography of ability and learning correlations. Advances in 
the Psychology of Human Intelligence, 2, 47-103. 

Proceedings of the Sixth International Conference on Computational Creativity June 2015 30


