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Abstract

Most computationally creative systems lack adequate means
of perceptually evaluating the artifacts they produce and are
therefore not fully grounded in real world understanding. We
argue that perceptually grounding such systems will increase
their creative potential. Having adequate perceptual abilities
can enable computational systems to be more autonomous,
learn better internal models, evaluate their own artifacts, and
create artifacts with intention. We draw from the fields of
cognitive psychology, neuroscience, and art history to gain
insights into the role that perception plays in the creative pro-
cess. We use examples and methods from deep learning on
the task of image generation and pareidolia to show the cre-
ative potential of systems with advanced perceptual abilities.
We also discuss several issues and philosophical questions re-
lated to perception and creativity.

Introduction

Some people seem to have a natural talent for drawing, while
others only wish they could draw well. Many of these peo-
ple have turned to books and teachers to help them develop
their drawing skills. One of the most widely used and con-
sistently successful books for teaching people how to draw
is titled Drawing on the Right Side of the Brain (Edwards
1989). This book uses insights from neuroscience to help
potential artists improve their drawing skills. One of the
main premises in the book is that drawing is not a skill of
hand, paper or pencil, but a skill of perception. To quote
from the book:

“The magic mystery of drawing ability seems to be, in part

at least, an ability to make a shift in brain state to a different

mode of seeing/perceiving. When you see in the special way

in which experienced artists see, then you can draw... Draw-

ing is not very difficult. Seeing is the problem, or, to be more

specific, shifting to a particular way of seeing.”
This idea can extend to any kind of creative ability. Before
one can create visual art, compose music, or invent recipes,
one must first learn to see, hear/listen, or taste, respectively.
Even creative tasks like writing poetry must ultimately be
grounded to what has been experienced through perception.
Our ability to perceive influences how and what we create.
Just as drawing is really about perceptual skills, our ability
to think creatively and do creative things heavily depends on
how we perceive and understand the world.

In his book, The Anthropologist On Mars, Oliver Sacks
recounts the story of Shirley Jennings, who had been blind

since early childhood and had surgically regained his sight at
the age of 50 (Sacks 1995). After the operation, he could not
immediately see, could not recognize his family, could not
pick out objects, and struggled with depth perception. Over
several months, his brain had to learn how to see and make
sense of an incredible amount of new information. It was a
slow and difficult process reconciling his non-visual mental
model of the world with this new form of perception. As he
learned to make use of his new sense, things that were aes-
thetically beautiful to him differed from those others found
pleasing. He eventually took painting lessons and created
paintings that demonstrate his unique taste in visual art!.

Shirley’s case, along with several other vision disorders
and anomalies like blindsight (Weiskrantz 1996), Capgras
syndrome (Ellis and Lewis 2001), and agnosia (Farah 2004),
has helped to uncover the work and learning that our brain
undertakes in order for us to perceive and understand the
world. In this paper we argue that the ability to perceive
is a necessary and influential piece of the creative process.
It enables us to learn a mental model of the world, to un-
derstand and continually evaluate our own creations, and to
infuse what we produce with meaning. Indeed, even percep-
tion itself is a creative act that our brains regularly perform,
although often subconsciously. The necessity of perception
applies to the field of computational creativity, in which one
of the goals is to build computational systems that can au-
tonomously create art. Before a system can learn to create
art, we argue that it must first learn to perceive.

We proceed by exploring the relationship between percep-
tion and creativity and then discuss the role of perception in
computational systems. We then consider how state-of-the-
art computer vision methods can enhance the creative po-
tential of systems designed for visual art. We demonstrate,
using deep neural networks, how perceptual skills facilitate
imagination and can lead directly to generating novel im-
ages. We then elaborate further on why perception itself is a
creative process and demonstrate a form of creative percep-
tion, called pareidolia, using deep neural networks. Finally,
we discuss philosophical issues and the implications of our
ideas and elaborate on what more advanced perceptual abil-
ities could mean for the future of computational creativity.

"http://www.atfirstsightthebook.com/shirls-paintings.html
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Perception and Creativity

When talking about visual art, Csikzentmihdlyi says, “...the
aesthetic experience occurs when information coming from
the artwork interacts with information already stored in the
viewer’s mind...” (Csikzentmihdlyi and Robinson 1990). In
other words, the viewer’s appreciation (perception) of art is
determined by his current mental model of the world. Like-
wise, the artist has her own mental model of the world and
created the artwork to convey meaning according to that
mental model. How was that mental model established? It’s
reasonable to say that it was learned through a lifetime of ex-
periences, and people experience the world through percep-
tion. Everything we know and understand about the world
has come through our senses. Every memory and every
thought we have is in terms of what we have experienced
in the past (Barsalou 1999).

It is difficult to comprehend what life would be like with-
out perception because it is so fundamental to how we think.
Would it even be possible to think, imagine, or create any-
thing at all without some kind of input? There is no defi-
nite answer to that question; however, studies of long term
sensory deprivation and solitary confinement suggest sig-
nificant mental deterioration (Grassian and Friedman 1986;
Allen, Celikel, and Feldman 2003). Perception directly in-
fluences our ability to think and understand, and the better
and more varied our perceptual abilities are, the more we are
able to think about, imagine, and ultimately, create. We can
take this idea further and say that, with our current senses,
there are thoughts we cannot think simply because we lack
additional (or adequate) senses to know how to think them.
To quote Richard Hamming (Hamming 1980):

“Just as there are odors that dogs can smell and we cannot,
as well as sounds that dogs can hear and we cannot, so too
there are wavelengths of light we cannot see and flavors we
cannot taste. Why then, given our brains wired the way they
are, does the remark ‘Perhaps there are thoughts we cannot
think,” surprise you? Evolution, so far, may possibly have
blocked us from being able to think in some directions; there
could be unthinkable thoughts.”

We need perception (i.e., input) in order to build a mental
model that can facilitate thinking, which can then facilitate
creativity (Flowers and Garbin 1989). Indeed, as noted ear-
lier in the case of Shirley Jennings (Sacks 1995), the mental
model itself is what does the perceiving. Our eyes merely
translate light into brain signals, but it is our brain that must
learn to make sense of that information, which then allows
us to think in those terms.

Imagination is clearly tied to this idea and is closely
linked with creativity in cognitive psychology litera-
ture (Gaut 2003). Imagination is typically generalized as
thinking of something (real or not) that is not present to
the senses. Most psychologists agree that our percep-
tions (senses), our conceptual knowledge, and our memo-
ries make up our mental model and form the bases of imagi-
nation (Barsalou 1999; Beaney 2005). As we perceive the
world and have experiences, our mental model is formed
by establishing and strengthening connections in our mind.
These connections form concepts, which are in turn inter-
connected. Creative imagination is achieved by combining

these connections and experiences in different ways that pro-
duce novel results.

Thinking Beyond Natural Perception

It is possible for us to indirectly experience things outside of
our perceptual abilities by translating other modalities into
our range of senses. For example, we visualize infrared light
by shifting it into the visible spectrum. We create charts and
graphs that represent data we cannot observe directly, like
barometric pressure, or electromagnetic fields. In this way
we can vicariously think in terms of other modalities and
perhaps even be creative in those modalities.

This idea is applied explicitly in the case of sensory sub-
stitution (Bach-y-Rita and Kercel 2003), where one sense
can take the place of another that has been lost. For ex-
ample, devices have been made that can allow blind people
to literally “see” with their tongue. They work by mount-
ing a video camera on the blind person’s forehead, which
sends video data to a plate that sits on the person’s tongue.
This plate contains a grid of “pixels” consisting of pressure
points. These pressure pixels correspond to grayscale video
by pressing harder where the image is brighter and pressing
lighter where the image is darker. The tongue can then “feel”
the video information and, after several months of training,
a blind person’s brain starts to see images in their mind. It’s
certainly not high resolution, but it’s enough to allow a blind
person to read large print text and navigate new terrain.

Another way that we humans can communicate and un-
derstand things that we ourselves have not perceived directly
is through language. In other words, through verbal/written
communication we can experience by proxy what others
have directly experienced (Zwaan and Kaschak 2008). In
this case, language acts as an analogy between two people’s
experiences. Our interpretation of a described experience
must still be grounded by our personal perceptions and ex-
periences (Barsalou 1999). For example, it is very difficult
to describe colors to a congenitally blind person because col-
ors are inherently visual and the blind person has no visual
grounding at all. This is why even creative literature and
poetry also require perception—the writer must have expe-
riences to write about and the reader must have experiences
with which to interpret the writing.

Art, whether it be visual, written, musical, etc, acts as a
metaphor between the experiences of the artist and the ex-
periences of the receiver. Successful artists are creative be-
cause they have a unique perspective on the world that they
are trying to communicate through their art, and people ap-
preciate art that helps them gain new perspectives. In other
words, having unique experiences and perceiving the world
differently plays a role in the creative process. It has been
postulated in cognitive psychology that creative people lit-
erally see the world differently (Flowers and Garbin 1989;
Berns 2008), which is in turn why they tend to think differ-
ently and can produce novel things and ideas.

Quality of Perception Affecting Visual Art

There have been studies analyzing several famous artists
with documented visual impairments (Marmor and Ravin
2009). For example, Claude Monet developed cataracts,
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while Edgar Degas began to suffer from retinal disease.
These studies point out that the earlier works of these
painters (when they had good eyesight) were better formed
and detailed, while later works (made with poorer eyesight)
became more and more abstract. These studies generally
conclude that the failing eyesight of the artists did have a
large impact on the quality and style of their work. Al-
though some researchers say that this was not necessarily
a bad thing, and some artists would use their visual impair-
ments to their advantage by removing their corrective lenses
for certain paintings.

These artists had issues with just their eyes, but what
about cognitive impairments involving vision? How do dif-
ferent cognitive disorders of the brain affect artists’ work?
This question was explored by Anjan Chatterjee, where he
reported on multiple studies analyzing the drawing ability
of several artists with various cognitive disorders, includ-
ing spacial neglect, visual agnosia, epilepsy, TBI, etc (Chat-
terjee 2004). The results for many of the disorders, like
epilepsy were mixed, but artists with disorders more spe-
cific to vision, like agnosia, had some notable peculiarities
to their drawing ability.

For example, one artist with a type of visual agnosia could
create beautiful drawings as long as the item he was draw-
ing was continuously right in front of him. However, if he
was asked to draw from memory (e.g., draw a ‘bus’), then
his drawings were simplistic and often unrecognizable. An-
other artist, with a traumatic brain injury, produced drawings
that were more abstract and “expressive” than drawings pro-
duced before the accident. Although these studies appear
anecdotal due to the rarity of many of these disorders, it is
apparent that how the brain sees and understands the world
does affect the ability to draw.

There are several cases of successful artists who are blind,
and one artist in particular has received a lot of attention
because he is congenitally blind (Amedi et al. 2008). This
blind man has a remarkable ability to paint and draw pictures
that are consistently meaningful to sighted people. He uses
special paper and pencils that form ridges that he can feel
as he draws. He first explores an object with his hands and
then, remarkably, can draw it from different perspectives.
He’s never been able to see, yet can understand perspective.
His case provides insight into how the brain perceives and
builds invariant mental representations of the world.

The blind artist’s case is related to sensory substitution,
where a blind person can “see” through touch, and further
supports the idea that the brain is what processes and makes
sense of perceptual input. Researchers who study blindness
and visual art have indicated that vision and touch are linked
and make use of similar processes and similar features in the
brain (Kennedy 1993; Kamel and Landay 2000). The brain
can do remarkable things even when the quality of the input
signal is disrupted or re-routed. Perception is really about
being able to build these mental models and using them to
interact with the world. It’s not that visual art requires vision,
but that creating visual art requires some form of perception
that establishes and continually informs the artist’s mental
model.

Perception and Computational Creativity

We’ve discussed the role of perception in human creativity,
but what about computational creativity? Certainly, there’s
no requirement that computers can only be creative in the
same way as humans. However, we are positing that per-
ception is fundamentally a necessary component of the cre-
ative process. So, just as perception is important for human
creativity, perceptual ability is also important for computa-
tional creativity. The exact methods of perceiving and creat-
ing may be different than those of humans, but some form of
perceptual grounding is requisite for a truly creative system.

Colton proposed the creative tripod as necessary criteria
for a creative system (Colton 2008). A creative system must
have imagination, which is analogous to producing novel ar-
tifacts; it must have skill, which corresponds to generating
quality artifacts; and it must have appreciation, which is the
ability to recognize the novelty and quality of its own arti-
facts (i.e., self-evaluation). In other words, there must be
a perceptual component that directs the creative process by
helping the system explore new ideas (imagination), and un-
derstanding which ideas are worth pursuing (appreciation).

Many creative systems exist across several domains that
can generate novel artifacts. Most of these systems, how-
ever, are merely mimicking example human-created artifacts
without understanding or appreciating what they are produc-
ing, like a parrot mimicking human speech. For example,
the PIERRE system generates new crockpot recipes accord-
ing to a model trained on user ratings of existing recipes, but
it has no sense of what the recipes actually taste like, only
that humans have liked similar recipes (Motris et al. 2012).
In music, there are several systems that analyze patterns and
n-grams from existing melodies, then probabilistically draw
from those distributions or construct grammars when pro-
ducing music (Cope 1996; Pachet and Roy 2011). Like-
wise, poetry systems are also often based on corpora and n-
gram distributions, without much understanding of what the
words actually represent (Colton, Goodwin, and Veale 2012;
Netzer et al. 2009).

Other existing creative systems produce artifacts accord-
ing to hand engineered metrics and databases, where the
ability to appreciate and perceive what is produced is lim-
ited to those explicit metrics. For example, some musical
systems rely on rules and metrics based on musical theory
in order to produce and evaluate melodies (Ebcioglu 1988;
Melo and Wiggins 2003). Visual art systems often use some
form of evolutionary algorithm for producing art, which in-
volves a fitness function by which the art is evaluated at each
iteration. The fitness functions in these systems are usu-
ally based on models trained using extracted image features
in order to evaluate aesthetic quality or novelty (Machado,
Romero, and Manaris 2007; DiPaola and Gabora 2009). In
these cases the perceptual ability is ultimately limited to
those specific features.

There are some creative systems that do attempt to incor-
porate a sophisticated model of perceptual ability. For ex-
ample, there is a system that invents recipes based on actual
chemical properties of the individual ingredients (Varshney
et al. 2013). It at least has some understanding of what
would actually taste good in a recipe and isn’t limited to
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just producing something that is mimicking human exam-
ples. The DARCI system extracts various image features
and trains neural networks to evaluate how well the images
convey the meaning of particular adjectives (Heath and Ven-
tura 2016). Although DARCI still relies on extracting spe-
cific low level features, it at least attempts to learn the se-
mantic qualities related to those features (in the form of ad-
jectives). In this way DARCI, more than other visual art
systems, is able to at least partially perceive meaning in the
art that is produced.

The example systems just described can produce interest-
ing and novel artifacts. However, without advanced percep-
tual abilities, the systems lack any notion of understanding
and intentionality. The systems can produce something, but
can’t necessarily tell us why, or what it means. They are in-
stances of Searle’s Chinese room (Searle 1980), that simply
follow rules and algorithms, with no comprehension of what
is taking place. Just as humans cannot think beyond our per-
ceptions, computational systems cannot think beyond theirs.
Some have argued that even human thought and creativity is
subject to the Chinese room analogy at the biological (cellu-
lar) level. This may be true, but if we aim to build systems
that can be creative at a human level, then they must at least
have human-level perception.

Somewhat surprisingly, in the case of visual art, current
creative systems rarely use state-of-the-art computer vision
techniques, like deep neural networks. Certainly having
more advanced perceptual abilities would improve the qual-
ity of their art by enabling these systems to understand more
concrete things. For example, a system could conceivably
create an original image of a dog, if it knew how to see and
recognize dogs. It seems, then, that incorporating advanced
computer vision techniques, especially ones tied to seman-
tic understanding, should be a high priority in the field of
computational creativity.

Visual Art and Deep Learning

The last few years have shown a resurgence of deep neu-
ral networks (DNNs), especially for computer vision tasks,
where they hold current records for several vision bench-
marks (Farabet et al. 2013; Szegedy et al. 2015). Deep
learning has the potential to significantly improve visually
creative systems as well. A key advantage of DNNss is that
they are capable of learning their own image features, while
the visual art systems described above all rely on manually
engineered features. Thus, deep learning models can pro-
vide more advanced perceptual abilities by building better
“mental” models of the world.

Some of these deep learning models can already be used
directly to improve current artistic systems. In recent work
on DARCI, we built a sophisticated semantic model that
uses a shallow neural network to associate image features
with a vector space model (Heath and Ventura 2016). Here
we can show significant improvement by replacing the shal-
low neural network and extracted features, with a DNN
(and the raw image pixels as input). Specifically, we used
a deep learning framework, called Caffe (Jia et al. 2014),
and started with the CaffeNet model, which was first trained
to recognize 1000 different items using the ImageNet 2012

Random | DARCI | Deep Network
Coverage 0.709 0.444 0.202
Ranking Loss 0.502 0.199 0.102

Table 1: Zero-shot image ranking results comparing the
DARCI system with our modification of DARCI that uses
a deep neural network (lower scores are better). We used
the same test set from the original DARCI paper (Heath and
Ventura 2016). The use of a DNN improves the system’s
ability to perceive and understand adjectives in images.

competition data (Russakovsky et al. 2015). We then fur-
ther trained and fine-tuned the model on DARCI’s image-
adjective dataset (with a vector space model).

The DARCI system is capable of zero-shot prediction
(using the vector space model), meaning it can success-
fully evaluate images for adjectives that it was not explicitly
trained on. We compare DARCI’s original results (Heath
and Ventura 2016) with our deep neural network version in
Table 1. The results show significant improvement using
the DNN to evaluate images, and fully incorporating a deep
model into the DARCI system will likely help it to produce
more semantically relevant images.

In fact, DNNs have already been used to generate im-
ages directly (Denton et al. 2015; Gregor et al. 2015;
Leon A. Gatys and Bethge 2015). One particular method,
called gradient ascent (Simonyan, Vedaldi, and Zisserman
2013), works by essentially using the DNN in reverse. The
trained network starts with a random noise image and tries
to maximize the activation of the output node corresponding
to the desired class to generate. The network then backprop-
agates the error into the image itself (keeping the network
weights unchanged) and the image is slightly modified at
each iteration to look more and more like the desired class.

We demonstrate gradient ascent using the same deep
model that we trained with the DARCI image-adjective data
set, and the resulting images can be seen in Figure 1. These
images can be thought of as visualizations of the features
learned by the model for each adjective. Each adjective’s
features seem fairly general, except in the case of ‘peaceful’,
where the visualized features are consistent with the fact that
most of the training images depict calm beaches. It is theo-
rized that imagination in humans can be partially thought of
as running our vision processing systems in reverse (Barsa-
lou 1999), in which case our deep neural network is analo-
gously demonstrating its own kind of imagination.

The generated images seem fairly abstract, which is ex-
pected for adjectives, especially since the DARCI data set
contains a wide variety of scenes, objects, genres, and styles
for each adjective label. Deep neural networks are becom-
ing powerful enough to render actual recognizable objects
using the gradient ascent method. The ImageNet 2012 com-
petition consists of classifying 1000 different categories of
objects ranging from various animals, to clothing, to house-
hold items. We took the CaffeNet model (used as the base
for the DARCI model), as well as another successful model
called GoogleNet (Szegedy et al. 2015), and generated sev-
eral images depicting objects from the 1000 possible cate-
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Figure 1: Four images generated using gradient ascent from
the deep neural network trained on the DARCI dataset.
From left to right the images were generated for the adjec-
tives ‘vibrant’, ‘cold’, ‘fiery’, and ‘peaceful’. These images
are essentially visualizations of the features that the model
has learned and demonstrate a form of imagination.

gories. The resulting images for several objects can be seen
in Figure 2.

While the images are not photo-realistic, they are orig-
inal and do resemble the intended item. Notice how the
two models generated images with different styles as each
model learned different features. The generation of im-
ages using DNNGs is currently an active area of computer vi-
sion and machine learning research, and several researchers
have produced impressive results (Denton et al. 2015;
Leon A. Gatys and Bethge 2015). The field of computational
creativity has yet to significantly leverage the potential of
deep learning, although some have alluded to it (Heath, Den-
nis, and Ventura 2015). However, some researchers have
already begun incorporating deep learning into evolution-
ary art systems that are capable of rendering images that re-
semble concrete objects, with interesting results (Nguyen,
Yosinski, and Clune 2015).

To See Is To Create

We have argued that perception is an important aspect of cre-
ativity and that more advanced perceptual abilities can lead
to more sophisticated creative systems. We also argue that
perception is a creative act in its own right. When light hits
a person’s eyes, it is converted into signals, which travel to
the visual cortex via the optic nerve. The brain itself does
not receive any light, only information about the light. The
brain must then learn to make sense of that information, and
an image in the mind is fabricated, and that is what a person
“sees”. Our brain over our lifetime has built a mental model
of the world through the various signals it has received from
our senses. This mental model is what determines our per-
sonal reality, and it is an impressively creative act (Hoffman
2000; Peterson 2006).

We do not think of perception itself as a creative act be-
cause it happens instantly, constantly, and seemingly with-
out effort. We take for granted how difficult perception is
because it is an ordinary part of life, and we have become
desensitized to it. However, even the most advanced state-
of-the-art computer intelligence cannot process visual infor-
mation as well as a child can almost instantaneously. The
case of Shirley Jennings (Sacks 1995), in which he spent
months learning how to see for the first time at age 50, and
other cognitive visual disorders, shed light on the tremen-
dous amount of work that goes into vision.

Figure 2: Images generated using gradient ascent from the
CaffeNet model and the GoogleNet model, both trained on
the 2012 ImageNet challenge data. The first two rows of im-
ages are from CaffeNet and, from left to right, were gener-
ated for ‘pool table’, ‘broccoli’, ‘flamingo’, ‘goldfish’, ‘bald
eagle’, ‘lampshade’, ‘starfish’, and ‘volcano’. The last row
of images are from GoogleNet and were generated for ‘bald
eagle’, ‘tarantula’, ‘starfish’, and ‘ski mask’. These original
images are certainly not photo realistic, but it is still fairly
easy to identify each image’s subject. Notice that the two
models have different styles because they have learned dif-
ferent features.

Optical illusions also provide insights on how the brain
understands visual input and constructs images in the
mind (Hoffman 2000). Different people given the same in-
put, experience it differently. A person’s subjective experi-
ence is unique to them, an act of novelty by their creative
brain. This idea became even more evident when a partic-
ular image of a dress sparked huge debate on social media
over the color of the dress (Lafer-Sousa, Hermann, and Con-
way 2015). Some saw white/gold, others saw blue/black,
because our brains construct differing realities based on our
mental models.

If we accept the idea that our brains are doing the actual
creating of the images we see, then what is the artist doing
when she paints a picture? The artist is providing a set of
constraints, in the form of a painting, that viewers use to
create an image in their minds. The more realistic a painting
is, the more it constrains the viewer to mentally create it a
certain way. The more abstract or ambiguous the painting
is, the less it constrains the viewer, and the more variety and
novelty in the individual aesthetic experiences.

Pareidolia

Attributing creativity to a system just because it has some
perceptual abilities does not appear very compelling. How-
ever, there are some perceptual tasks that seem more creative
than others. Pareidolia is the phenomenon of perceiving a
familiar pattern where none actually exists. For example,
seeing constellations in the stars, faces in ordinary things,
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objects in blotches of ink, or shapes in the clouds. Some-
times these are considered mistakes or optical illusions, but
they can actually be a deliberate act of creativity. When a
child says a cloud looks like a particular animal, we admire
her imagination, especially when we can then see the shape
too. We obviously know it’s a cloud, but we have chosen to
see it as something else.

Pareidolia is a creative act because it is is not about seeing
things for what they are but seeing things for what they could
be. Creative systems capable of pareidolia may have appli-
cations in visual communication, advertising, story telling,
illustration, and non-photo-realistic art. As it stands, there
are few computational systems developed for automatically
performing pareidolia. One group of researchers developed
a system for recognizing “faces” in ordinary pictures and
then automatically determining the emotion expressed by
the “face” (Hong et al. 2013). Here we demonstrate how
deep learning can be used for pareidolia and argue that it is
a form of creativity because the model is interpreting images
in novel ways.

Finding Faces Seeing faces in objects is by far the most
common type of pareidolia and provides a simplified ver-
sion of the problem to begin with. The initial task is to use
a deep neural network (DNN) to identify what aspects of an
image could make up a face. We then have the DNN itera-
tively emphasize those features, using gradient ascent, until
the “face” that the network sees emerges in the image. We
use two different DNN models trained on faces. The first is
called VGG-Face and was trained to recognize the faces of
over 2500 different celebrities (Parkhi, Vedaldi, and Zisser-
man 2015). The second model, which we’ll call AGE-Face,
was trained to determine the age of a person (one of eight
age ranges) in a provided image (Levi and Hassner 2015).

We perform pareidolia by having each network, when
given an image, determine the output node (corresponding
to a class) with the highest activation. The model then per-
forms the gradient ascent algorithm in an attempt to increase
that node’s activation further, thus emphasizing the strongest
features it found initially. Figure 3 shows example pareidolia
images generated with both the VGG-Face and AGE-Face
networks. The networks generally do a decent job of draw-
ing (cartoony) faces on the source images in ways that make
sense, although some are harder to appreciate. The VGG-
Face model tends to draw more realistic facial features (i.e.,
eyes, nose, etc) than the AGE-Face model. However, the
VGG-Face model will often highlight isolated facial features
(especially when a face in the source image is not apparent
to humans), while the AGE-Face model tends to keep the
facial features together for a full face.

Finding Objects We now move on to a harder version of
pareidolia in which we ask the model to find and highlight
any kind of object in an image. We again use the CaffeNet
model that was trained on the 1000 category 2012 ImageNet
data; thus the model could potentially see any of those 1000
items in an image. We use the same method as just described
in the faces version. The model is given a source image,
then performs gradient ascent on the source image in order
to further maximize the highest activated output node. We

Figure 3: Images created for face pareidolia using deep neu-
ral networks. The top row are the source images, the second
row are faces highlighted by the VGG-Face model, and the
third row are faces highlighted by the AGE-Face model.

Figure 4: Images for object pareidolia using CaffeNet,
trained on the 2012 ImageNet data for 1000 object cate-
gories. From left to right, the items highlighted in the images
(bottom row) from each source image (top row) are ‘mask’,
‘arctic fox’, ‘scorpion’, and ‘ringworm’.

applied this method to several source images, and the results
can be seen in Figure 4.

For some of the examples it is easy to see why the model
did what it did. For instance, it is understandable how the
[Figure 4, 1st] source image looks like a mask, and we can
see how the modified image came from it. However, it is
more difficult to appreciate how the model saw an ‘arctic
fox’ in the [Figure 4, 2nd] source image. Other examples are
hard to relate to initially, but on inspection, we can start to
see the connection. For example, the [Figure 4, 4th] source
image looks, to most humans, like a spider, but the model
saw it as a ringworm. After considering the resulting image,
we can at least appreciate why the model thought ringworm.

This leads to an interesting discussion about perception
and creativity. If a person says that a particular cloud looks
like a horse, then if we can also see it, we think the person
has imagination. However, if we can not see it ourselves,
then we do not necessarily praise the person’s imagination.
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Conversely, if a person says that a photo of a horse looks
like a horse, we also do not admire the imagination, and we
end up wondering why they bothered to say something so
obvious. We appreciate creativity when it is different from
the norm, but not so different that we cannot connect.

When it comes to visual art, how a person sees will influ-
ence their art; thus, people that see things differently (but
not too differently) can potentially be more creative with
their art. Using deep learning models for pareidolia helps
us to understand how these models are actually seeing, and
it helps us to visualize what features are being learned. The
features learned by each model are likely different than the
features that human brains use when processing visual in-
put. This is why the CaffeNet model sees an arctic fox in the
[Figure 4, 2nd] source image, but most humans would say it
looks like an elephant.

If a computational system perceives things differently
than a human, and accordingly produces different kinds of
art, then is the art only viable if we humans can relate to
it? It has been suggested that the most creative and influ-
ential people are ones that see (and therefore think) differ-
ently (Flowers and Garbin 1989; Berns 2008), and Colton ar-
gues that computational systems that see differently than hu-
mans have enhanced creative potential (Colton et al. 2015),
but is that true only to an extent? Could a computational
system that perceives differently (even radically differently)
than humans actually help us to extend our notions of what
constitutes good art?

To go even further, could we build a system capable of un-
derstanding and creating art beyond the capabilities of cur-
rent human perception? For example, could we build a sys-
tem that creates infrared art? Or electromagnetic field art?
Or gravity art? Or some other kind of art? Would there be
any purpose in doing so? Or perhaps augmenting compu-
tational systems with other forms of perception could help
them gain a richer, deeper understanding of the world, and
allow them to create visual art that can be even more mean-
ingful to humans.

Conclusion

We have argued that perceptual abilities are fundamental to
the creative process. We have discussed the relationship be-
tween perception and creativity from a cognitive psychol-
ogy perspective and also in terms of computational systems.
We have even asserted that perception itself is a creative act
and that perceiving things differently can facilitate creative
thinking. We have demonstrated how state-of-the-art deep
neural networks can be used to create images and perform
certain types of imagination, and we have also demonstrated
how they can see creatively through pareidolia.

As with humans, advanced perceptual abilities can pro-
vide a foundation on which computational systems can
think, imagine, and create. In the field of artificial gen-
eral intelligence, current trends and ideas are also advocating
the need for perception, and recent general Al systems are
learning to perform intelligent tasks exclusively from raw
inputs (Hawkins and Blakeslee 2007; Mnih et al. 2015).
They argue that having a system learn from the ground up,

with raw inputs (e.g., raw pixel values), is essential for gen-
eral/adaptable intelligence. Perceiving and understanding
various raw inputs can act as a basis for a large variety of
intelligence tasks, and learning how to perceive and perform
for one task should transfer to additional tasks. Furthermore,
advanced cognitive ability, such as language and reasoning,
could emerge naturally from these perceptual primitives as
they form connections and hierarchies of understanding.

The idea of perceptual primitives can also be applied to
a general notion of computational creativity. Ideally, we
would like to develop a universal creative process, which
allows for connections to form across multiple domains, ex-
periences, and knowledge. Perceptual abilities for multiple
modalities establish an internal mental model of the world,
which can provide a system with freedom and adaptabil-
ity to be creative in any of its modalities or combination of
modalities. For example, a system trying to invent recipes
could benefit from visually recognizing ingredients (in addi-
tion to understanding how they taste) and could invent new
recipes by substituting similar looking ingredients. It is pos-
sible that developing and incorporating advanced perceptual
abilities in computational systems will not only increase the
creative potential of those systems but may also facilitate
the abstraction of a domain-independent, general creativity
“algorithm”.
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