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Abstract

For an artificial creative agent, an essential driver of the
search for novelty is a value function which is often provided
by the system designer or users. We argue that an important
barrier for progress in creativity research is the inability of
these systems to develop their own notion of value for nov-
elty. We propose a notion of knowledge-driven creativity that
circumvent the need for an externally imposed value function,
allowing the system to explore based on what it has learned
from a set of referential objects. The concept is illustrated by
a specific knowledge model provided by a deep generative au-
toencoder. Using the described system, we train a knowledge
model on a set of digit images and we use the same model to
build coherent sets of new digits that do not belong to known
digit types.

Introduction
It is a widely accepted view in creativity research that cre-
ativity is a process by which novel and valuable combina-
tions of ideas are produced (Runco and Jaeger 2012). This
view bears a tension, the essence of which can be expressed
by the following question: how to determine the value of
novelty? If a new object is substantially different of the pre-
vious objects in its category, it might be hard to determine
its value. On the contrary, if the value of an object can be
readily determined, it might be the case that the object is
not genuinely new. Indeed, there exist experimental results
positing that novelty is a better predictor of creativity than
the value (Diedrich et al. 2015) and that the brain processes
novelty in a particular way (Beaucousin et al. 2011), sug-
gesting that the relationship is far from trivial.

In art, the difficulty in determining the value of an ob-
ject is omnipresent. An emblematic example is Le Grand
Verre by Marcel Duchamp. The artist worked on this singu-
lar project from 1915 to 1923 and produced a groundbreak-
ing yet enigmatic piece of art, which the critiques still con-
tinue to interpret in various ways. In 1934, Duchamp built
La boı̂te verte, a green box containing preparatory material
(notes, drawings, photographs) he produced for Le Grand
Verre. Considered as a piece of art in its own right, the
box was intended to assist and to explain Le Grand Verre,
as would an exhibition catalog (Breton 1932).

In product design, there exist less enigmatic but still em-
blematic cases, where the value of an innovation could not

be easily determined. For instance, the first smartphone re-
ceived significant criticism regarding its usability (e.g., no
stylus was provided), and it was deemed to be less evolved
than its counterparts. Beyond such problems related to the
reception of novelty, the sheer difficulty in discovering new
value has led companies to seek alternative approaches, such
as input from lead users (Von Hippel 1986).

The difficulty in determining the value of novelty has par-
ticular implications from a computational perspective. How
would a creative agent drive his search process towards nov-
elty if its evaluation function has been predetermined? In
practical implementations, we can find various manifesta-
tions of such fixed evaluation functions such as fitness func-
tions or quantitative aesthetics criteria. These implementa-
tions fixate the kind of value the system can seek, once and
for all in the beginning of the process. The creative out-
come, if any, comes from an output whose perception was
unexpected or unpredictable.

Theoretically, it may be argued that this can be solved
by allowing the creative agent to change its own evaluation
rules (Wiggins 2006; Jennings 2010). This implies that the
system would be able to develop a preference for unknown
and novel types of objects (Kazakçı 2014). In practice, this
is implemented by interactive systems that use external feed-
back (e.g., the preferences of an expert) to guide the search
process. Such systems explore user preferences about nov-
elty rather than building their own value system. This is a
shortcoming from the point of view of creativity (Kazakçı
2014).

An alternative approach might be to force the system to
systematically explore unknown objects (Hatchuel and Weil
2009). This requires the system to function in a differen-
tial mode, where there is a need to define a reference of
known objects. In other words, new kinds of values might
be searched by going-out-of-the-box mechanisms which re-
quire the system to develop knowledge about a referential
set of objects. In the absence of knowledge about such a
set, creativity is reduced either to a combinatorial search or
to a rule-based generative inference, both of which explore
boundaries confined by the creator of the system and not the
system itself. When such knowledge exists, the system can
explore new types of objects by tapping into the blind spots
of the knowledge model (Kazakci et al. 2010).

In this paper, we use a deep generative neural network
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Figure 1: Digits that are not. Symbols generated using a deep neural net trained on a sample of hand-written digits from 0 to 9.

to demonstrate knowledge-driven creativity. Deep nets are
powerful tools that have been praised for their capacity of
producing useful and hierarchically organized representa-
tions from data. While the utility of such representations
have been extensively demonstrated in the context of recog-
nition (i.e., classification) far less work exists on exploring
the generative capacity of such tools.

In addition, the goal of the little work on generative deep
nets is to generate objects of known types, and the quality
of the generator is judged by the visual or quantified simi-
larity with existing objects (e.g., an approximate likelihood)
(Theis, Oord, and Bethge 2015). In contrast, we use deep
nets to explore their generative capacity beyond known types
by generating unseen combinations of extracted features, the
results of which are symbols that are mostly unrecognizable
but seemingly respecting some implicit semantic rules of
compositionality (Figure 1). What we mean by features is
a key concept of the paper: they are not decided by the (hu-
man) designer, rather learned by an autoassociative coding-
decoding process.

The novelty of our approach is two-fold. With respect
to computational creativity models, our model aims at ex-
plicitly generating new types. We provide an experimental
framework for studying how a machine can develop its
own value system for new types of objects. With respect
to statistical sample-based generative models, rather than a
technical contribution, we are introducing a new objective:
generate objects that are, in a deep sense, similar to objects
in of the domain, but which use learned features of these
objects to generate new objects which do not have the same
type. In our case, we attempt to generate images that could
be digits (e.g., in another imaginary culture), but which are
not.

The first section, Generative models for computational
creativity, describes our positioning with respect to some
of the fundamental notions in creativity research in previ-
ous works. The section Learning to generate presents de-
tails about data-driven generative models and deep neural
nets relevant to our implementation. The section Generating
from the learned model describes our approach for exploring
novelty through generation of new types, presents examples
and comments. The section Discussion and perspectives
discusses links with related research and points to further

research avenues. Finally, section Summary concludes.

Generative models for computational
creativity

The purpose of a generative model

In the computational creativity literature, exploration of nov-
elty has often been considered in connection with art (Bo-
den and Edmonds 2009; McCormack et al. 2014). De-
spite various debates and nuances on terminology, such
work has generally been categorized under the term gen-
erative art (or generative models). As defined by (Boden
and Edmonds 2009), a generative model is essentially a rule-
based system, albeit one whose output is not known in ad-
vance, for instance, due to non-determinism or to many de-
grees of freedom in the parameters of the systems (see also
(Galanter 2012)). A large variety of such systems has been
built, starting as early as the 90s (Todd and Latham 1991;
Sims 1991), based on even earlier foundations (Nees 1969;
Edmonds 1969). The definition, the complexity and the ca-
pabilities offered by such models evolved consistently. To
date, several such models, including L-systems, cellular au-
tomata, or artificial life simulations, have been used in var-
ious contexts for the generation of new objects (i.e., draw-
ings, sounds, or 3D printings) by machine. Such systems
achieve an output perceived as creative by their users by
opportunistically exploiting existing formal approaches that
have been invented in other disciplines and for other pur-
poses. Within this spirit, computational creativity research
has produced a myriad of successful applications on highly
complex objects, involving visual and acoustic information
content.

In contrast, this work considers much simpler objects
since we are interested, above all, in the clarification of no-
tions such as novelty, value, or type, and in linking such
notions with the solid foundations of statistics and machine
learning. These notions underlie foundational debates on
creativity research. Thus, rather than producing objects that
might be considered as artistic by a given audience, our pur-
pose is to better define and explicate a minimalist set of no-
tions and principles that would hopefully lead to a better
understanding of creativity and enable further experimental
studies.
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The knowledge of a generative system
The definition of a generative model as a rule-based sys-
tem (Boden and Edmonds 2009) induces a particular rela-
tionship with knowledge. It is fair to state that such formal-
ized rules are archetypes of consolidated knowledge. If such
rules are hard-coded into the creative agent by the system de-
signer, the system becomes an inference engine rather than a
creativity engine. By their very nature, rules embed knowl-
edge about a domain and its associated value system that
comes from the system designer instead of being discovered
by the system itself.

Allowing the system to learn its own rule system by exam-
ining a set of objects in a given domain resolves part of this
problem: the value system becomes dependent on the learn-
ing algorithm (instead of the system designer). In our sys-
tem, we use a learning mechanism where the creative agent
is forced to learn to disassemble and reconstruct the exam-
ples it has seen. This ensures that the utility of the features
and the transformations embedded within the rules learned
by the system are directly linked to a capacity to construct
objects. As we shall see, the particular deep neural net archi-
tecture we are using is not only able to reconstruct known ob-
jects: it can also build new and valuable objects using their
hierarchically organized set of induced transformations.

Knowledge-driven exploration of value
Today, more often than not, generative models of computa-
tional creativity involve some form of a biological metaphor,
the quintessence of which is evolutionary computation (Mc-
Cormack 2013). Contrary to human artists who are capa-
ble of exploring both novelty and the value of novelty, such
computational models often consider the generation of nov-
elty for a value function that is independent of the search
process. Either they operate based on a fixed set of eval-
uation criteria or they defer evaluation to outside feedback.
For the former case, a typical example would be a traditional
fitness function. For the later case, a typical example would
be an interactive genetic algorithm (Takagi 2001) where the
information about value is provided by an oracle (e.g., a
human expert). In both cases, the system becomes a con-
struction machine where the generation of value is handled
by some external mechanism and not by the system itself.
This can be considered as a fundamental barrier for compu-
tational creativity research (Kazakçı 2014) that we shall call
fitness function barrier.

(Parikka 2008) summarizes the stagnation that this ap-
proach causes for the study of art through computers: “. . . if
one looks at several of the art pieces made with genetic al-
gorithms, one gets quickly a feeling of not ‘nature at work’
but a Designer that after a while starts to repeat himself.
There seems to be a teleology anyhow incorporated into the
supposed forces of nature expressed in genetic algorithms
practice ‘a vague feeling of disappointment surrounds evo-
lutionary art’”.

The teleology in question is a direct consequence of fit-
ness function barrier and the hard-coded rules. In our sys-
tem, we avoid both issues by using a simple mechanism that
enables the system to explore novel objects with novel val-
ues. Given a set of referential objects D = {x1, .., xn}

whose types T = {t1, ..., tk} are known (or can be de-
termined by a statistical procedure such as clustering), the
system is built in such a way that it generates objects
D′ = {x′

1, . . . , x
′
m} with types T ′ = {t′1, . . . , t′�} such that

D′ �⊂ D and T ′ �⊂ T . In other words, the system builds a set
of new objects, some of which have new types. While the
current system does not develop a preference function over
the novelty it generates, the current setup provides the nec-
essary elements to develop and experiment with what might
be a value function for the unknown types. At any rate, the
generation of unknown types of objects is an essential first
step for a creative system to develop its own evaluation func-
tion for novelty and to become a designer itself.

Learning to generate
Data-driven generative models
In contrast to computational creativity research that aims to
generate new object descriptions, disciplines such as statis-
tics and machine learning strive to build solid foundations
and formal methods for modeling a given set of object de-
scriptions (i.e., data). These disciplines do not consider the
generation of data as a scientific question: the data generat-
ing process is considered fixed (given) but unknown. Never-
theless, these fields have developed powerful theoretical and
practical formal tools that are useful to scientifically and sys-
tematically study what it means to generate novelty.

In fact, generative models have a long and rich history
in these fields. The goal of generative models in statistics
and machine learning is to sample from a fixed but unknown
probability distribution p(x). It is usually assumed that
the algorithm is given a sample D = {x1, . . . , xn}, gener-
ated independently (by nature or by a simulator) from p(x).
There may be two goals. In classical density estimation the
goal is to estimate p in order to evaluate it later on any new
object x. Typical uses of the learned density are classifica-
tion (where we learn the densities p̂1 and p̂2 from samples
D1 and D2 of two types of objects, then compare p̂1(x) and
p̂2(x) to decide the type of x), or novelty (or outlier) detec-
tion (where the goal is to detect objects from a stream which
do not look like objects in D by thresholding p̂(x)).

The second goal of statistical generative models is to sam-
ple objects from the generative distribution p. If p is known,
this is just random number generation. If p is unknown, one
can go through a first density estimation step to estimate p̂,
then sample from p̂. The problem is that when x is high-
dimensional (e.g., text, images, music, video), density esti-
mation is a hard problem (much harder than, e.g., classifica-
tion). A recent line of research (Hinton, Osindero, and Teh
2006; Salakhutdinov and Hinton 2009) attempts to generate
from p without estimating it, going directly from D to novel
examples. In this setup, a formal generative model g is a
function that takes, as input, a random seed r, and generates
an object x = g(r). The learning (a.k.a, training or building)
process is a (computational) function A that takes, as input,
a data set D, and outputs the generative model g = A(D).

The fundamental problem of this latter approach is very
similar to the main question we raised about computational
creativity: what is the value function? When the goal is den-

195

 

190Proceedings of the Seventh International Conference on Computational Creativity, June 2016



sity estimation, the value of p̂ is formally
∑

x∈D′ log p̂(x),
the so-called log-likelihood, where D′ is a second data set,
independent from D which we used to build (or, in machine
learning terminology, to train) p̂. When p is unknown, eval-
uating the quality of a generated object x = g(r) or the
quality of a sample D̂ = {g(r1), . . . , g(rn)} is an unsolved
research question in machine learning as well.

There are a few attempts to formalize a quantitative goal
(Goodfellow et al. 2014), but most of the time the sample D̂
is evaluated visually (when x is an image) or by listening to
the generated piece of music. And this is tricky: it is trivial
to generate exact objects from the training set D (by random
sampling), so the goal is to generate samples that are not in
D, but which look like coming from the type of objects in
D. By contrast, our goal is to generate images that look like
digits but which do not come from digit types present in D.

Deep neural networks
In the machine learning literature, the introduction of deep
neural networks (DNNs) is considered a major breakthrough
(LeCun, Bengio, and Hinton 2015). The fundamental idea
of a DNN is to use of several hidden layers. Subsequent
layers process the output of previous layers to sequentially
transform the initial representation of objects. The goal is
to build a specific representation useful for some given task
(i.e., classification). Multi-layered learning has dramatically
improved the state of the art in many high-impact appli-
cation domains, such as speech recognition, visual object
recognition, and natural language processing.

Another useful attribute of deep neural nets is that they
can learn a hierarchy of representations, associated to lay-
ers of the net. Indeed, a neural net with L layers can be
formalized as a sequence of coders (c1, . . . , cL). The repre-
sentation in the first layer is y1 = c1(x), and for subsequent
layers 1 < � ≤ L it is y� = c�(y�−1). The role of the output
layer is then to map the top representation yL onto a final
target ŷ = d(yL), for example, in the case of classification,
onto a finite set of object types. In what follows, we will
denote the function that the full net implements by f . With
this notation, ŷ = d(yL) = d

(
cL(yL−1)

)
= . . . = f(x).

The formal training setup is the following. We are given a
training set D = {x1, . . . , xn}, a set of learning targets (e.g.,
object types) {y1, . . . , yn}, and a score function s(y, ŷ) rep-
resenting the error (negative value) of the prediction ŷ with
respect to the real target y. The setup is called supervised
because both the targets of the network yi and the value
of its output s is given by the designer. We train the net-
work fw, where w is the vector of all the parameters of the
net, by classical stochastic gradient descent (modulo tech-
nical details): we cycle through the training set, reconstruct
ŷi = fw(xi), compute the gradient δi = ∂s(yi, ŷi)/∂w, and
move the weights w by a small step in the direction of −δi.

Autoassociative neural nets (autoencoders)
Formally, an autoencoder is a supervised neural network
whose goal is to predict the input x itself. Such neural
networks are composed of an encoder part and a decoder
part. In a sense, an autoencoder learns to disassemble then

to reassemble the object x. Our approach is based on a
particular the technique described in (Bengio et al. 2013).
We first learn about the input space by training an autoas-
sociative neural net (a.k.a. autoencoder) f using objects
D = {x1, . . . , xn}, then apply a technique that designs a
generative function (simulator) g based on the trained net f .

Autoencoders are convenient because they are designed
to learn a representation y = c(x) of the object x and a de-
coder x′ = d(y) such that x is close to x′ in some formal
sense, and y is concise or simple. In the classical informa-
tion theoretical paradigm, both criteria can be formalized:
we want the code length of y (the number of bits needed to
store y) to be small while keeping the distortion (e.g., the
Euclidean distance) between x and x′ also small. In (neu-
ral) representation learning, the goals are somewhat softer.
The distortion measure is usually the same as in informa-
tion theory, but simplicity of y is often formalized implicitly
by using various regularization operators. The double goal
of these operators is to prevent the algorithm to learn the
identity function for the coder c, and to learn a y that uses
elements (“code snippets”) that agree with our intuition of
what object components are.

The decoder d takes the top representation yL and recon-
structs x′ = d(yL). The goal is to minimize a score s(x, x′),
also called distortion, that measures how close the input im-
age x is to the reconstructed image x′. Throughout this pa-
per, we will use the Euclidean squared distance in the pixel
space s(x, x′) = ‖x− x′‖22.

We are using a particular variant of autoencoders, called
sparse convolutional autoencoders (Makhzani and Frey
2015) with L = 3 coding layers and a single decoding
layer. Convolutional layers are neural net building blocks
designed specifically for images: they are essentially small
(e.g., 5 × 5) filters that are repeated on the full image (in
other words, they share the same set of weights, represent-
ing the filter). The sparse regularizer penalizes dense activa-
tions, which results in a sparse representation: at any given
layer, for any given image x, only a small number of units
(“object parts”, elements of y�) are turned on. This results
in an interesting structure: lower layer representations are
composed of small edgelets (detected by Gabor-filter like
coders), followed by small object parts “assembled” from
the low-level features. The convolutional filters themselves
are object parts that were extracted from the objects of the
training set. The sparsity penalty and the relatively small
number of filters force the net to extract features that are
general across the population of training objects.

Generating from the learned model

In this section we present and comment some experimen-
tal results. First, we provide some illustrations providing an
insight regarding the usefulness of the representations ex-
tracted by a deep net for searching for novelty. Then, we
present the method we use to generate novel image objects,
based on the formal approach described in the section Learn-
ing to generate.
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Figure 2: Four examples illustrating the iterative generative process. At each iteration, the net pushes the input image closer to
what it can “understand” (reconstruct easily), converging to a fixed point (an image that can be reconstructed without an error).

Searching for new types: with and without
knowledge
We argued in previous sections that combinatorial search
over the objects has disadvantages over a search process
driven by a knowledge over the same set of objects obtained
by the system itself. When the learning is implemented
through a deep neural net, this knowledge is encoded in
the form of multiple levels of representations and transfor-
mations from layer to layer. To demonstrate the effect of
knowledge over these search procedures, instead of search-
ing in the original object space of x, we have applied simple
perturbation operations on the representation space y.

Figure 3 illustrates the results of these perturbations. In
the original representation space, crossover and mutation
operators create noisy artifacts, and the population quickly
becomes unrecognizable, which, unless the sought effect is
precisely the noise, is not likely to produce novel objects (let
alone types) unless a fitness function that drives the search
is given (which is what we are trying to avoid). In com-
parison, the same operators applied to the code y produced
by the deep nets produce less noisy and seemingly more co-
herent forms. In fact, some novel symbols that go beyond
the known digits seem to have already emerged and can be
consolidated by further iteration through the model. Overall,
combinatorial search in the representation space provided by
the deep net seems more likely to generate meaningful com-
binations in the absence of a given evaluation function, thus,
making it more suitable for knowledge-driven creativity.

Method for generating new objects from a learned
model
To generate new objects in a knowledge-driven fashion, we
first train a generative autoencoder to extract features that
are useful for constructing such objects. To train the autoen-
coder f , we use the MNIST (Lecun and Cortes 2012) data
set (Figure 4) containing gray-scale hand-written digits. It
contains 70 000 images of size 28 × 28. Once the model
learned to construct objects it has seen, it has also learned
useful transformations that can be queried to generate new
objects.

Autoassociative networks exist since the 80s (Rumelhart,
Hinton, and Williams 1986; Baldi and Hornik 1989; Kramer
1991), nevertheless, it was discovered only recently that they
can be used to generate new objects (Bengio et al. 2013;
Kamyshanska and Memisevic 2013). The procedure is the

following. We start from a random image x0 = r, and re-
construct it x1 = f(x) using the trained network f . Then
we plug the reconstructed image back to the net and repeat
xk = f(xk−1) until convergence. Figure 2 illustrates the
process. At each step, the net is forced to generate an im-
age which is easier to reconstruct than its input. The random
seed r initializes the process. From the first iteration on, we
can see familiar object parts and compositions rules, but the
actual object is new. The net converges to a fixed point (an
image that can be reconstructed without an error).

It can be observed that, although this kind of generative
procedure generates new objects, the first generation of im-
ages obtained by random input (second column of Figure 2)
look noisy. This can be interpreted as the model has created
a novelty, but has not excelled yet at constructing it ade-
quately. However, feeding this representation back to the
model and generating a new version improves the quality.
Repeating this step multiple times enables the model to con-
verge effectively towards fixed points of the model, that are
more precise (i.e., visually). Their novelty, in terms of typ-
icallity, can be checked using clustering methods and visu-
alised as in Figure 5.

Generating new types
When the generative approach is repeated starting from
multiple random images {r1, . . . , rn}, the network gen-
erates different objects {x1, . . . , xn}. When projecting
these objects (with the original MNIST images) into a two-
dimensional space using stochastic neighbor embedding
(van der Maaten and Hinton 2008), the space is not filled
uniformly: it has dense clusters, meaning that structurally
similar objects tend to regroup; see Figure 5. We recover
these clusters quantitatively using k-means clustering in the
feature space {y1, . . . , yn}. Figure 6 contains excerpts from
these clusters. They are composed of similar symbols that
form a coherent set of objects, which can be perceived as
new types.

Discussion and perspectives
It is possible to compare our work with several other pub-
lished results. To start with, the generation of novelty
through the use of neural nets is an old idea (Todd 1992;
Todd 1989; Thaler 1998). There are two main differences
between our approach and theirs. First, our emphasis is on
studying how an artificial agent can generate novelty that
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Figure 3: The effect of perturbations applied to object representations. On the left, the effect of crossover and mutation on
the original representations of MNIST. On the right, the same operators applied to the representations learned by the deep
generative net. Visually, this latter category seem less affected by perturbations, and thus is likely to provide a better search
space for novelty.

Figure 4: A subsample of MNIST, the data set we use to
train the autoencoder f .

does not fit into learned categories, rather than creating ob-
jects with artistic value. This experimental setup is intended
to provide means for studying how a creative agent can build
an evaluation function for new types of objects. Second, we
explicitly aim at establishing a bidirectional link between
generative models for computational creativity and genera-
tive models within statistics and machine learning. Beyond
the use of techniques and tools developed in these disci-
plines, we wish to raise research questions about creative
reasoning that would also be interesting in statistics and ma-
chine learning.

In fact, some recent work has already started exploring
the creative potential of deep neural networks. For instance,
(Mordvintsev, Olah, and Tyka 2015) uses a deep net to
project the input that would correspond to a maximal acti-
vation of a layer back onto an image in an iterative fashion.

Figure 5: A distance-preserving projection of digits to a two-
dimensional space. Colored clusters are original MNIST
types (digit classes from 0 to 9). The gray dots are newly
generated objects. Objects from four of the clusters are dis-
played.
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Figure 6: A sample of new types discovered by the model

The images are perceived as dreamy objects that are both
visually confusing and appealing. Another work (Gatys,
Ecker, and Bethge 2015) uses correlations of activations
in multiple layers of a deep net to extract style informa-
tion from one picture and to transpose it to another. Fi-
nally, (Nguyen, Yosinski, and Clune 2015) uses a trained
net as a fitness function for an evolutionary approach (see
also (Machado, Romero, and Manaris 2008) for a similar
application with shallow nets). These successful approaches
demonstrate the potential of deep nets as an instrument for
creativity research and for generating effects that can be
deemed as surprising, even creative. The present approach
and the points the paper puts forward are significantly dif-
ferent. Compared to the architectures used in these studies,
ours is the only one that uses a generative deep autoasso-
ciative net. The reason for this choice is twofold. First, we
aim at using and understanding the generative capacity of
deep nets. Second, we are interested in the deconstruction
and reconstruction our architecture provides since our aim
is to build objects through the net (not to create an effect
that modifies existing objects). Once again, thinking about
and experimenting with these foundational aspects of gen-
erative deep nets provide a medium through which notions
of creativity research can be clarified through statistical no-
tions. This is not among the declared objectives of previous
works.

The novelty-seeking behavior of our system can also be
compared to the recent novelty-driven search approaches in
the evolutionary computing literature (Mouret and Doncieux
2012; Lehman and Stanley 2011). These approaches, like
ours, seek to avoid objective functions and push the system
to systematically generate novelty in terms of system behav-
ior (e.g., novelty in the output). Our system is akin to such
methods in spirit with one main difference: we believe that
knowledge plays a fundamental role in creative endeavor
and the decision of the system regarding the search for nov-
elty should come from its own knowledge model. Note that
this does not exclude a more general system where several
systems such as ours can compete to differentiate themselves
from the observed behavior of others, effectively creating a
community of designers.

Our system provides a step towards an experimental study
of how an artificial agent can drive its search based on
knowledge. Furthermore, it can effectively create new types
of objects preserving abstract and semantic properties of a
domain. However, we have not fully addressed the question

of how such an agent can build its own value function about
novelty. Nevertheless, the system enables numerous ways to
experiment with various possibilities. An obvious next step
would be to hook our system to an external environment,
where the system can receive feedback about value (Clune
and Lipson 2011; Secretan et al. 2008). To avoid the fit-
ness function barrier, this should be done in such a way that
the system can build its own value system rather than only
learning the ones in its environment.

Summary
We provided an experimental setup based on a set of princi-
ples that we have described. The pinnacle of these principles
is that artificial creativity can be driven by knowledge that a
machine extracts itself from a set of objects defining a do-
main. Given such knowledge, a creative agent can explore
new types of objects and build its own value function about
novelty. This principle is in contrast with existing systems
where the system designer or audience imposes a value func-
tion to the system, for example, by some fitness function.

We argued that when an artificial creative agent extracts
its own domain knowledge in the form of features that are
useful to reconstruct the objects of the domain, it becomes
able to explore novelties beyond the scope of what it has
seen by exploring systematically unknown types. We have
demonstrated the idea by using a deep generative network
trained on a set of digits. We proposed a compositional sam-
pling approach that yielded a number of new types of digits.

While our setup provides a basis for further exploring how
an agent can develop its own value function, it is also a
bridge with the powerful theories and techniques developed
within the statistics and machine learning communities. A
colossal amount of work has already been published on deep
neural networks with significant breakthroughs in many do-
mains. Deep learning will be all the more valuable if it offers
an evolution of the machine learning paradigm towards ma-
chine creativity.
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