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Abstract

Humans are the ultimate judges on how creative is an
artifact. In order to be creative, most researchers agree
that an artifact has to be at least new and valuable. How-
ever, metrics to evaluate novelty and value are often
craft for individual studies. Even within the same do-
main, these metrics commonly differ. Although this
variety of metrics extends the spectrum of alternatives
to assess creative artifacts, the lack of domain indepen-
dent metrics makes hard to compare artifacts produced
by different studies, which in turn slows down the re-
search progress in the field. In this paper, we propose an
domain independent metric, called Regent-Dependent
Creativity (RDC), that assesses the creativity of arti-
facts. This metric requires that artifacts are described
within the Regent-Dependent Model, in which artifacts
features are represented as dependency pairs. RDC
combines the Bayesian Surprise and Synergy to mea-
sure novelty and value, respectively. We show two case
studies from different domains (fashion and games) to
demonstrate how to model artifacts and assess creativ-
ity through RDC. We also propose and make available
a simple API to promptly use RDC.

Introduction
The beauty of computational creativity lies in its diversity,
which ranges from music, culinary to science. In recent
years, this myriad of possibilities has attracted researchers
from across many research fields such as computer sci-
ence, social sciences and arts into a quest to unveil the pro-
cesses in which creativity emerges. This interaction of var-
ious disciplines led to the proposal of a plethora of cre-
ative systems, in which most of them have the ultimate
goal of producing creative artifacts. The definition of what
makes an artifact creative or not is still an evolving dis-
cussion, nevertheless researchers tend to agree that an ar-
tifact has to be new and valuable on a particular domain
to be considered creative (Boden 2015; Colton et al. 2015;
van der Velde et al. 2015). Although the concepts of novelty
and value are intuitive to humans, they are not easily trans-
lated into a computer program, as they depend on individual
knowledge, beliefs, tastes and cultural values (Boden 2015).

In order to tackle such a daunting task, researchers on
computational creativity have proposed many solutions to
assess how novel and valuable is an artifact. A popu-
lar approach is to ask what humans think about it (Lamb,
Brown, and Clarke 2015; Karampiperis, Koukourikos, and

Koliopoulou 2014), as we are the ultimate judges on creativ-
ity. In this way, creative artifacts are indeed evaluated, but
the human implicit mechanisms to spot creativity are still
left as a black box. A more analytical approach is the use
of domain specific metrics to assess novelty, value and any
other features that could be related to creativity such as sat-
isfaction, plausibility, faithfulness, generality, etc. This met-
rics zoo is an expected outcome due to the huge challenges
imposed by the complexity that is the assessment of creativ-
ity. However, as the sub-fields in computational creativity
mature, some have been converging (Góes et al. 2016;
Pinel, Varshney, and Bhattacharjya 2015; Maher and Fisher
2012) to standard methods and metrics to evaluate creativ-
ity, while others are still proposing new metrics (Toma-
sic, Znidarsic, and Papa 2014; Schorlemmer et al. 2014;
Colton et al. 2014; van der Velde et al. 2015). The latter
may still be beneficial on the long run, but it makes hard to
compare existing solutions between different works, conse-
quently slowing down the progress in these particular sub-
fields.

As an ambitious goal, a domain independent creativity
metric would be ideal to boost scientific research on com-
putational creativity. In fact, previous work (Maher 2010;
Maher and Fisher 2012) pursued this objective, but some
issues remained: i) the proposed metrics lacked implemen-
tation details, making it hard to replicate them; ii) very little
or no practical examples were provided, weakening their ap-
peal to experimental researchers; and iii) the lack of quanti-
tative results hindered to show the effectiveness of the metric
across different domains.

In this paper, we propose the Regent-Dependent model
which describes artifacts as a collection of features, rep-
resented by dependency pairs. Once represented in this
model, artifacts can be evaluated by our proposed Regent-
Dependent Creativity (RDC) metric.

The RDC metric combines the Bayesian Surprise and
Synergy to measure novelty and value, respectively. In or-
der to address some aforementioned issues found in previ-
ous work, we present: i) two case studies from different do-
mains; ii) a quantitative evaluation of RDC; and iii) propose
and make available a simple API to the research community
that implements the RDC metric.

Novelty and Value
Creative artifacts have to be novel and valuable (Boden
2004). In order to evaluate novelty, there are few metrics
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based on concepts of unexpectedness, expectation and sur-
prise that are commonly used (Grace and Maher 2014). On
the other hand, value can be extracted from the associa-
tions and rules that bond individual artifacts (Varshney et
al. 2013).

A novel artifact may be new only to a particular person
or group. Alternatively, it may be entirely new in relation to
all human history. The former type of novelty is required to
achieve p-creativity (p for psychological), while the latter is
concerned to h-creativity (h for historic) (Boden 2015). In
practice, psychological creativity is more feasible, since it
can be verified for a given dataset of known artifacts. In con-
trast, historical creativity imposes a dataset to have all exist-
ing artifacts, which its completeness is hard to be proved.

However, creativity is not just novelty, a creative artifact
must also be valuable. Value is a measure of performance or
attractiveness of an artifact which depends on its acceptance
by an expert or society (Maher 2010). There are many types
of value (e.g. beauty, scientific interest, musical harmony,
utility etc.) (Boden 2015), and many of them are difficult to
recognize, harder to put into words, and even more difficult
to say clearly. For a computational model, however, it must
be precisely defined (Boden 2009).

Even in science, values are often transient and sometimes
changeable. The meaning of simplicity and elegance, when
applied to scientific theories, is something that philosophers
of science have long try - and fail - to precisely define (Bo-
den 2004). In addition to it, if a scientific finding or hypoth-
esis is interesting it depends on other current theories of the
time and also in the social context. This is where creativ-
ity is concerned, the shock of the new can be so great that
even for those who are the witnesses, it is difficult to see
value in the new idea. This makes the calculation of value
specific to a certain context, that is, the value of an artifact
depends on the relationships between an artifact and the ex-
isting ones, more precisely, the associations of the artifacts
features. When evaluating an artifact, its value is determined
according to the combination of its features, which in turn
are governed by rules that were implicitly created by humans
in that context to value certain types of artifacts more than
others. Once these rules and associations are expressed in a
computer model, the value of an artifact can be determined.

Related Work
The existence of the “islands of creativity” problem, as re-
cently highlighted by Bown (2015), suggests that a signifi-
cant obstacle for the evaluation of computational creativity
resides in the idea that creativity is situated on specific sys-
tems without any fluidity between these systems and the rest
of the world. In fact, when it is not used a very specific
metric, they appeal to random choice.

Some research tackle this problem by employing hu-
man computation to assess creativity in computer systems.
Joyner et al. (2015) suggest that human computation can be
an effective strategy to collect a wide variety of methods for
creative tasks. From a set of existing solution methods to
the intelligence test Raven’s Progressive Matrices (RPM),
they developed other new methods using crowd-sourcing,
highlighting those that were most different and achieved sig-
nificant success. On the other hand, Lamb, Brown, and
Clarke (2015) point out that the quality of a creativity metric

relies on the appropriate choice of human judges, which is
addressed by the consensual assessment technique (Amabile
1982) from the field of psychology.

As opposed to the idea of using humans as judges, Cook
and Colton (2015) proposed an alternative way to enable
a software to make significant decisions. With the use of
evolutionary algorithms which evolve short pieces of code
called preference functions, it makes meaningful and justifi-
able choices between artifacts. As another approach to mea-
sure value, Jordanous, Allington, and Dueck (2015) inves-
tigate how to measure subjective and cultural value which
have been expressed by members of a community towards
other members. Focusing on the activity by electronic mu-
sicians on the music social network SoundCloud, they com-
bined qualitative and quantitative research to understand and
trace significant ‘valuing activities’ in Sound-Cloud data.

Maher (2010) proposed a domain independent metric to
evaluate creative artifacts. It is based on novelty, value and
unexpectedness. Novelty is measured as the distance from
clusters of other artifacts in a conceptual space. In addi-
tion to it, value is calculated through a set of performance
criteria. Finally, unexpectedness looks for variations in at-
tributes by the use of pattern matching algorithms. Despite
this research was the first to propose a domain independent
creativity metric, it does not verify its applicability in real
world examples.

Maher and Fisher (2012) extend the previous model pro-
posed by Maher (2010), where creativity is evaluated based
on novelty, value and surprise. In contrast to the previous
unexpectedness metric, they use Bayesian inference based
on prior probability for measuring the surprise of a given ar-
tifact. They suggest an application regarding the design of
laptop computers.

Other work also focused on automatically assessing cre-
ativity using a creativity model, focused on aesthetics as-
pects, based on the probabilistic model for Bayesian in-
ference and Shannon’s measure of entropy (Burns 2006;
2015). Bayesian inference is applied for evaluating the
meaning of a given artifact based on prior evidences and
the psychological arousal produced by violating expecta-
tions is modeled mathematically by Shannon’s measure of
surprise (Rigau, Feixas, and Sbert 2007). The aesthetics is
finally expressed as the product of Shannon-entropy mea-
sure of surprise and the Bayesian-probability measure of
meaning. Some previous work have used Bayesian pos-
terior probability or prior probability to model a notion of
Bayesian surprise (Itti and Baldi 2009; Baldi and Itti 2010;
Maher and Fisher 2012), instead of using the Shannon-
entropy.

Similar to those previous work, we also use the Bayesian
surprise metric for assessing novelty, which is known to
be reasonably effective (Itti and Baldi 2009; Baldi and Itti
2010). However, in contrast to previous work, for modeling
and measuring the value of a given artifact, we use concepts
of synergy by extracting metrics of a graph-based knowl-
edge representation of the artifact’s properties.

Regent-Dependent Model
A single data model to describe each artifact is imperative to
allow the creativity evaluation of artifacts produced by dif-
ferent systems. In this paper, we propose a data model to
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describe an artifact as a set of pairs between its features and
their modifiers. This dependency relationship is defined by
a pair P(regent; dependent) associated with a numeric value
v. A regent is a feature that contributes to describe an ar-
tifact, and may be an action or attribute, while a dependent
can change the state of an attribute or connect an action to
a target. For example, an artifact car can be described by
a pair pi(color; blue), where blue changes the state of the
attribute color. The same artifact could also be described by
another pair pi(drive;home), where the dependent home
connects a target to the action drive. In a grammatical ex-
ample, the famous slogan “Just do it” can be described by
two pairs: pi(do; just) and pj(do; it). The first says that the
adverb just is a modifier of the verb do, while the second
pair connects the verb do to the direct object it.

The value v is important because it can be used to
represent the intensity of a specific pair in different con-
texts. Different cultures have different preferences for culi-
nary recipes, music and art. Even the science progress is
weighted by social interests. Thus, the pairs can be modeled
to these different situations. For example, a car with the blue
color may be more common in certain countries than others,
so the value v can be set higher than other colors.

With the definition of the presented data model, it is pos-
sible to build a dataset of existing artifacts and a graph of
associations between the artifacts pairs which are required
in our proposal to calculate novelty and value, respectively,
as explained in the next sections.

Bayesian Surprise as a Novelty Metric
Novelty can only be evaluated compared to a group of ex-
isting artifacts. In this paper, we propose that novelty is cal-
culated using a well-known metric called the Bayesian sur-
prise (Baldi and Itti 2010), which enables to evaluate how
much new is an artifact compared to existing ones in the
knowledge dataset. This knowledge dataset is the descrip-
tion of existing artifacts, organized in instances following
the Regent-Dependent model so that each instance is the rep-
resentation of an artifact described by its pairs. Physically, a
dataset is a matrix, where the rows are instances of artifacts
and the columns its pairs.

The Bayesian surprise stems from the fact that a new ar-
tifact is unusual and surprising for the observer. This sur-
prising effect is an interesting novelty detector that can be
calculated by the application of Bayes’ theorem, as shown
in Equation 1.

P (h|d) = P (d|h)P (h)

P (d)
(1)

According to this theorem, the probabilities represent sub-
jective degrees of belief in hypotheses or models that are
updated as new data is acquired. Thus, the degree of con-
viction of an observer is represented by a subjective prob-
ability function P (h) measuring the degree of belief in the
observer’s hypothesis h. The term P (h) is called prior dis-
tribution, and reflects the knowledge before new data are
considered, whereas the term P (h|d) is called posterior dis-
tribution, and as the name suggests, reflects the knowledge
after consideration of a new fact d has occurred, and be in-
serted in the hypothesis h. Similarly, P (d) is the probability
that d occurs independently of the hypothesis h, and P (d|h)

is the probability that event d occurs given that h is true (Kr-
uschke 2015).

Fundamentally, the effect of a new artifact is to trans-
form an observer previous convictions in posterior convic-
tions. Novelty thus can be quantified by considering the dif-
ference between the probability distributions that accurately
describes how the world view of the observer has changed.

In fact, as shown empirically in recent studies, this ap-
proach is able to capture human notions of novelty in dif-
ferent types and levels of abstraction (Itti and Baldi 2009;
Baldi and Itti 2010; Varshney et al. 2013). Mathemati-
cally, the novelty n(pi) of a pair pi, regarding a specific
artifact a, is calculated by Equation 2, where σ and m̄ are
respectively the variance and average of an existing pair in
the dataset of artifacts, and μi is the value associated with
pi. The total novelty Na of a given artifact a is defined as
Na =

∑
pi∈a n(pi). Equation 3 computes the normalized

novelty in the range [0,1], by means of an exponential nor-
malization, where λ is a smoothing factor.

n(pi) =
1

2σ2

[
σ2 + (μi − m̄)

2
]

(2)

f(Na, λ) = 1− e−λNa (3)

Synergy as a Value Metric
Strategies for assigning a value to an artifact can be widely
distinct from one domain to another. Even experts from the
same domain will differ comparing two or more artifacts
(Boden 2015). For this reason, there are several metrics to
measure value. For instance, pleasantness measures the fla-
vor perception of a recipe (Pinel, Varshney, and Bhattachar-
jya 2015; Varshney et al. 2013), an aggregation metric de-
fines the quality of a slogan (Tomasic, Znidarsic, and Papa
2014) etc. However, these metrics are designed for specific
domains.

On the other hand, artifacts, even in different domains,
are composed of a set of elements that have actions and
attributes. This set of elements and the interaction among
them is what gives value to a certain artifact. For example, a
recipe consists of ingredients, each with its own taste, its tex-
ture, and its aroma, the final flavor of the recipe, however, is
the result of the combined actions of its ingredients (Corn-
ing 2012). This feature takes place in other areas, such as in
music in which harmony occurs when two or more pitches
are combined to produce a chord (Cope 2015), or in some
turn-based strategy games, where players perform individ-
ual moves with a set of elements that together implement an
efficient strategy (Millington 2009).

Moreover, there are plenty of information publicly avail-
able that describes artifacts and the elements that constitute
them like in fooDB 1. In particular, it is also available how
these elements interact and what interactions are most val-
ued in a given context or group of people, which is key to
compose a valuable artifact. These facts give evidence that
the relationship between the elements of an artifact can be
used as a measure of value.

Our Regent-Dependent Model allows to represent an arti-
fact by its elements, which in turn are described by regent-
dependent pairs. This model also allows to build a graph

1Available at http://foodb.ca/
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Figure 1: Relationships between pairs used to describe three
different artifacts with isolated pairs (a), completely inter-
connected pairs (b) and reasonably associated pairs (c).

connected by pairs in which their relationship are valued in
a particular context. Consequently, the most valuable arti-
facts in this graph are the ones which have pairs that are
more interconnected among themselves.

A metric that captures this cooperative nature is synergy
(Corning 2012). It measures the effect produced by various
elements (forces, particles, parts or individuals) acting coop-
eratively in the development of emergent behaviors found in
many real-world systems, such as the brain and other neural
systems, stock markets, the Internet and social networking
systems. The center of gravity of an object, for instance, is
actually a synergistic effect, it depends upon how the com-
bined weight of all its parts is distributed. Therefore, the
value of an artifact can be measured by the synergy of the
elements that exist within it.

To measure synergy, an artifact a is modeled as a graph
Ga = (V,E) where the vertex set V consists of pairs be-
longing to a and there exists an edge between two vertices
pi and pj if and only if they belong to the same set of syn-
ergy. Each set of synergy is defined by two or more pairs
that have complementary effects, i.e., they exhibit a better
effect together than separately.

The graph is providential because it presents a series of
metrics to measure the relationship between vertices. In par-
ticular, the connectedness and the density of the graph define
fairly well a measure of synergy and the value va of an arti-
fact a can then be defined by Equation 4.

v(a) =
1

2
kc(Ga) +

1

2
ρ(Ga) (4)

where:

Ga: is the graph which represents the artifact a.
kc(Ga): is the Krackhardt’s connectedness of Ga.
ρ(Ga): is the density of Ga.

The first term of the Equation 4 measures the associativ-
ity among the pairs of an artifact. If all pairs are associated,
i.e., all pairs are reachable from every other, then kc(Ga)
Krackhardt’s connectedness of Ga is maximum (Krackhardt
1994). If all pairs are isolated in the artifact, then kc(Ga) is
minimum. The second term measures the strength of the
connection among the pairs of an artifact. Basically, it mea-
sures the average number of connections between two pairs
pi and pj . Although this is a simple measure of the relation-
ship between vertices, the relationship described in Equa-
tion 4 can be more descriptive to contain other graph metrics
such as concentration, diameter and max flow.

Figure 1 shows graphs of three different artifacts de-
scribed by pairs pi, pj and pk. Each of these pairs is a
vertex and the edges between a pair and another indicates
a synergistic relationship. The values va, vb and vc of re-
spectively artifact a, b and c, calculated by Equation 4, in
the range [0,1], is greater when the pairs are fully connected
and smaller when less associated the pairs are.

Regent-Dependent Creativity Metric
The proposed Regent-Dependent Creativity (RDC) metric,
for calculating the creativity of an artifact a, is defined in
Equation 5 as the sum of the normalized novelty na and
value va plus an extra penalty term. This penalization is
needed to avoid that high novelty artifacts with low value
(different but useless artifacts), and high valuable artifacts
with low novelty (useful but already known artifacts) are
considered creative.

rdc(a) = na + va − p(na, va) (5)

p(na, va) = sa(1− e−kda) (6)

where:

sa: is the sum of na and va.
da: is the absolute difference of na and va.

Equation 6 penalizes an artifact depending on the differ-
ence among its novelty and its value. The greater the differ-
ence between novelty and value of an artifact, its creativity is
more penalized. The penalty is more intense as the variable
k is higher, however, no artifacts are penalized more than
the sum of its novelty and its value. Therefore creativity is
in the range [0,2].

Case Studies
In this section, we show two case studies to demonstrate how
to model artifacts and assess their creativity using RDC. The
first case study is a simplified example from the fashion do-
main to evaluate apparels. The second one is from the game
domain. It is based on a real and large problem to create card
combos in the game HearthStone.

Fashion it: Evaluating Creative Apparels
The creation of fashion artifacts is challenging given the di-
versity of factors such as style, color, patterns, materials, etc
(Jagmohan et al. 2014). The challenge lies both in the com-
bination of various elements of clothing with different styles
and purposes for creating a complete apparel, and in subse-
quently ranking them based on certain criteria.

Consider a hypothetical case where in the space of cloth-
ing items available to compose an apparel, there is only one
type of shoes, one type of pants and one type of shirt, vary-
ing only the color as shown in Figure 2(a). Given this space,
the process of generating creative apparels reduces to com-
bining the colors of the clothing items available to form a
complete apparel (shoes + shirt + pants).

Figure 2(b) shows some existing apparels that are consid-
ered interesting combinations for a fashion consultant and
provides our prior knowledge.
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Figure 2: (a) Space of clothing items available to compose an apparel. (b) Existing apparels used to define the knowledge
dataset.

Figure 3: Color Synergy List

As the color is the only feature to be described and there
are seven different color options (white, black, navy, gray,
blue, brown, lilac), we can use the regent to represent the
clothing item while the dependent is one of the available
colors. Thus, the set of regents has three elements (shirt,
pants, shoes) and the set of dependents has seven elements.
These definitions guide the construction of the dataset
where each instance is an apparel and the attributes are
elements pi of set P of all pairs used to describe all the
clothing item:

P ={shirt:white, shirt:navy, shirt:gray, shirt:blue,
shirt:lilac, pant:white, pant:black, pant:navy, pant:gray,

pant:brow, shoes:white, shoes:black, shoes:navy,
shoes:gray, shoes:brow}

For example, the first apparel of Figure 2(b), would be
described by the pairs (shirt, lilac) = 1; (pant, white) = 1,
(shoes, gray) = 1. There are nine known apparels in the
dataset as described in Table 1. Note that values are set to 1,
since all pairs are equally important in this example.

The creativity assessment of an artifact is made according
to its novelty and value, as presented in Equation 5. The
novelty of an apparel can be calculated by Equation 2, using
the apparel dataset.

On the other hand, to calculate value we need to know
about the synergy of colors, i.e., what color combinations

Figure 4: Behavior of the proposal metric for evaluation of
different apparel.

are most valued. There are some techniques for combining
colors based on color wheels, wherein a set of colors are
harmonious when they fit some analogous, triad or pattern.
Figure 3 illustrates a synergy list for each color based on
the color wheels. The brown color for example, has syn-
ergy with the colors: navy, black, white and blue. Then,
according to our proposal for the metric, an apparel would
be modeled as a graph where the vertices are a clothing item
and there is an edge between one clothing item and another
if they have synergistic colors. With the complete graph, the
value of the apparel can then be calculated by Equation 4.

Figure 4 shows the behavior of the proposed RDC metric
in different scenarios. In apparel 1a, for instance, the colors
are all synergistic, so that the graph representing that apparel
is completely connected and the application of the Equation
4 returns the maximum value. The novelty, however, is pe-
nalized because it is an apparel with an existing pattern in
the dataset.

Apparel 2a has a non existent pattern in the dataset, con-
sequently achieving high novelty. On the other hand, the
synergy of colors occurs only between pants and shoes,
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Table 1: Dataset of existing apparels. Each instance is an apparel and the attributes are the values vi of the pairs used to describe
each apparel. A nonexistent pair has value 0.

making the shirt a isolated vertex in the graph. The effect
of this isolation is to reduce the value of this apparel to 0.33
and thereby creativity to 0.7.

Apparel 3a, in addition to exhibit a non existent pattern in
the dataset, has synergistic colors for shirt, pants and shoes,
so it has a maximum score of creativity.

In order to further explore the RDC metric, the apparels
1b, 2b and 3b of Figure 4 show the metric behavior after 10
additional inserts of the apparel 1a into the dataset. The ap-
parel 1a becomes more common, reducing its novelty. How-
ever, as the dataset increased towards apparel 1a, the appar-
els patterns 2b and 3b become even more novel.

HoningStone: Evaluating Creative Combos for
HearthStone
Hearthstone2, by Blizzard Entertainment, is a DCCG in
which human players compete in one-versus-one matches in
alternating turns, until a player is defeated. On each turn, a
player can play any cards from his hand, use his hero power
or minions to attack characters (minions or hero) and par-
ticularly combining cards, that is, playing combos. Thus, a
combo is a group of related cards played in the same turn.
In (Góes et al. 2016), a computational creativity system,
called HoningStone, was proposed. It automatically gener-
ates creative card combos for Hearthstone based on the Hon-
ing theory of creativity (Gabora 2010). HoningStone used a
creativity metric based on surprise and efficiency to generate
and evaluate combos. These metrics used a dataset of 31000
distinct combos extracted from real game logs from 10000
decks played in more than 3 million matches obtained from
the various public websites.

In this paper, we use the same knowledge dataset to model
and evaluate a few card combos generated by HoningStone
using RDC. We show how to use synergy as a value metric
instead of efficiency.

Each combo is composed of cards, which in turn has ef-
fects. Each effect, described in the card’s text, is modeled
as a pair P (ability, target) which has a value v. In a card
which the text is ”destroy 2 minions”, for instance, it is rep-
resented as P (destroy,minion) = 2. HearthStone pro-
duces 190 distinct pairs when combining all abilities and tar-
gets from the existing card set (Góes et al. 2016). Thus, the
prior knowledge is composed by 31000 combos, each one
represented by those effect pairs extracted from each card. A
card ci is synergistic to another card cj when they have com-
plementary pairs, i.e., the combined effect of the comple-

2Available at http://us.battle.net/hearthstone/en/

Table 2: A subset of six cards and their respective pairs.

Figure 5: Associations between the effects pairs of cards c1,
c2 and c3.

mentary pairs produces greater advantages than when played
separately. Figure 5 shows the pairs’ relationship for the
cards c1, c2 and c3, while Table 2 lists pairs of each of these
cards.

For example, card c2 and c3 are synergistic as c2 enrage
effect, represented by pair c, is activated only when this card
takes damage. In addition to it, pair e of card c3 works as
trigger that deals damage to card c2, binding c2 and c3. This
combination of cards and their complementary effects that
makes a combo stronger. The same type of associations can
be made to all other cards and effects. The more associations
a card has to another, higher is the synergy.

Figure 6 shows the novelty, value and RDC for three
combo examples, generated with HoningStone, using cards
c1, c2, c3, c4, c5 and c6. Novelty is calculated using the
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Figure 6: Behavior of the RDC metric for evaluation of dif-
ferent combos.

knowledge dataset of 31000 combos, and synergy uses a
simplified set of associations which covers all the effects
in cards from c1 to c6. Combo b is novel according to the
knowledge database and also has a high synergy, leading to
a high RDC. On the other hand, combo a presents low value
and high novelty. This gap penalizes creativity since it is a
new combo but not very effective.

Regent-Dependent Creativity API

In order to complement the presented case studies, an API
for evaluating artifacts was developed3. Only two inputs
are required to evaluate an artifact: a knowledge database
that contains existing artifacts of a particular application do-
main, and a set of relations that represent the synergy among
the artifacts’ attributes. The knowledge database must con-
tain artifacts encoded in JSON format. In the first example,
where clothing items are combined to form an apparel, the
knowledge database has the following format:
[ {

"clothingItems": [{
"type": "SHIRT",
"color": "LILAC"

}, {
"type": "PANTS",
"color": "WHITE"

}, {
"type": "SHOES",
"color": "GRAY"

}]
}, ...

A specialized parser is responsible for converting the en-
coded knowledge database into a collection of instances of
artifact objects. The decoded collection of artifact objects is
depicted bellow:

{
"1":[0,0,0,0,1,1,0,0,0,0,0,0,0,1,0],
"2":[1,0,0,0,0,0,0,1,0,0,1,0,0,0,0],
...
"9":[0,0,0,0,1,0,1,0,0,0,0,0,0,1,0]

}

Relations representing the synergy of the artifacts are
structured as a map between each attribute and its respec-
tive synergistic attributes. These relations are illustrated in
figure 3, describing the synergy among the colors and their
clothing items. The API supports the synergistic relations to
be represented as follows:

3Source-code for the Regent Dependent Creativity API:
https://github.com/CreaPar/rd-creativity-metric-api

Figure 7: Class diagram
{
"WHITE":["NAVY", "BLACK", "BLUE", "GRAY", "LILAC", "BROWN"],
"BLACK":["NAVY", "BROWN", "WHITE", "BLUE", "LILAC", "GRAY"],
"NAVY":["GRAY", "BLACK", "WHITE", "BLUE", "BROWN"],
"BLUE":["NAVY", "BLACK", "WHITE", "GRAY", "BROWN"],
"GRAY":["NAVY", "BLACK", "WHITE", "BLUE", "LILAC"],
"BROWN":["NAVY", "BLACK", "WHITE", "BLUE"],
"LILAC":["BLACK", "WHITE", "GRAY"]
}

When the parser loads the knowledge database, it com-
putes the mean and variance of each attribute among all
loaded artifacts. These information is useful for the calcu-
lation of the RDC metric. The two main classes responsi-
ble for the Regent-Dependent creativity metric are: the Syn-
ergyValue class, responsible for calculating the value met-
ric, in which the method getValue (T artifact) will return
the synergistic value of the artifact given as parameter; and
the BayesianSurprise class, responsible for calculating the
novelty metric, by using the method getNovelty (artifact T).
With a measure of novelty and value, the evaluateArtifact()
method in ArtifactJudge class, judges how creative is an ar-
tifact according to Equation 5 using RDC. Figure 7 shows
the implementation details of the API.

Conclusion
Despite the proposal of several metrics to assess the creativ-
ity of artifacts, still computational creativity lacks metrics
that can be used across different domains. This paper ad-
dresses this issue by proposing the Regent-Dependent Cre-
ativity (RDC) metric, based on the Bayesian surprise and
synergy to measure novelty and value. The presented results
show the use of RDC in two different domains: fashion and
games. The fashion case study is simplified but is a through-
out example to show each step to model and use RDC. The
second one is a real world example to show that the model
is applicable to larger problems. This paper also presented
an API, which is available online, with a full example so
researchers can promptly use RDC to evaluate artifacts.

As future work, RDC can be used into several other do-
mains, such as culinary, arts, music etc. RDC can also be
used as a creativity metric to guide the generation of arti-
facts. The API can be extended to accommodate other met-
rics and filled up with more examples. In addition to it, we
can validate RDC using human experts to assess creativity
through techniques such as Consensual Assessment and hu-
man computation. We hope that RDC helps the computa-
tional creativity community to boost progress in this chal-
lenging research field.
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