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Abstract

We propose to apply Simplicity Theory (ST) to model in-
terest  in  creative  situations.  ST has been designed  to de-
scribe and predict interest in communication. Here we use
ST to derive a decision rule that we apply to a simplified
version of a creative game, the Poietic Generator. The de-
cision rule produces what can be regarded as an elementary
form of creativity.  This study is meant as a proof of prin-
ciple. It suggests that some creative actions may be motiv-
ated by the search for unexpected simplicity.

Introduction

Can  human  creativity  be  captured  by  equations  or  al-

gorithms? The idea seems contradictory. Most creative acts

are by essence unexpected and cannot be predicted. But if

unexpectedness is the hallmark of creativity,  couldn’t we

use it as a proxy? Our hypothesis is that creative processes
should maximize unexpectedness.

To test the hypothesis, we considered a situation that is

sufficiently constrained to offer a limited range of possibilit-

ies, but that is still rich enough to give rise to creative beha-

viour. We used a simplified version of the “Poietic Gener-

ator” for that purpose. Our point is to offer a proof of prin-

ciple by showing that a program implementing the principle

of maximum unexpectedness may mimic creative behaviour.

This study relies on a formal definition of unexpected-

ness provided by Simplicity Theory. To be unexpected, cre-

ative acts must generate some complexity drop for an ob-

server. This principle proves sufficient, in the constrained

situation of the Poietic  Generator,  to  produce non trivial

patterns of actions that can be regarded as creative.

In what follows, we briefly introduce Simplicity Theory

and the  notion  of  unexpectedness.  We then  describe  the

simplified version of the Poietic Generator  that  we have

been using for our experiments. We then explain how we

implemented the principle of maximum unexpectedness in

that game and show our results. Lastly, we discuss how this

basic form of creativity can be used as a basis to analyse

more complex creative behaviour.

Unexpectedness and Simplicity

Our hypothesis is that to appear creative, actions should in-

volve unexpected aspects (Bonnardel, 2006; Maher, 2010).

In some situations such as the one analysed here, the set of

available actions is so limited that a good way of achieving

creativity consists in adopting the following principle:

Principle of maximum unexpectedness in creativity: 

Select actions 

that will maximize 

unexpectedness.

There are few formal definitions of surprise or unexpec-

tedness.  Schmidhuber  distinguishes  between  (un)pre-

dictability,  unexpectedness,  surprise  and  interestingness

(Schmidhuber 1997a; 1997b; 2003; 2009). For him, unpre-

dictability  implies  unexpectedness,  but  unexpectedness

does not imply surprise, which is defined with reference to

expectations (Schmidhuber, 2003). He also defines interest

as the time-derivative of the best compression an observer

can achieve from the situation (Schmidhuber 2009). This

means that interest is raised when the observer is making

more sense of the current situation.

The framework of Simplicity Theory1 (ST) also makes use

of a difference in complexity. ST was introduced to explain

why some events are unexpected and newsworthy (Dessalles,

2006;  2008).  Unexpectedness is  defined  as  the  difference

between expected complexity and observed complexity.

U = Cexp − Cobs. (1)

The term ‘complexity’, also known as Kolmogorov com-

plexity, refers to its theoretical definition, namely the size of

the shortest  summary.  We do not consider objective com-

plexity, which is not computable (Li & Vitányi, 1994), but a

resource-bounded version of it (Buhrman  et al., 2002). ST

introduces a difference between Cexp and Cobs. The former is

generally assessed through the complexity of a  causal pro-

1  See www.simplicitytheory.science. 
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cedure,  whereas  the latter is free from this constraint  and

matches  the  usual  definition  of  (resource-bounded)  com-

plexity. This difference between generation and observation

is parallel (though not identical) to the difference between

‘generation’ and  ‘distinction’ (Buhrman  et  al.,  2002).  ST

designates causal complexity by Cw. Since Cobs corresponds

to a minimal description, it can be noted  Cd. The unexpec-

tedness of an observed event can be rewritten as:

U = Cw − Cd. (2)

This definition explains why the content of a blank page is

not unexpected (Cw = Cd = 0) and why a random binary string

of size n is not unexpected either (Cw = Cd = 2n). A remarkable

lottery draw like 1-2-3-4-5-6, on the other hand, would appear

extremely unexpected: all draws have same causal complex-

ity,  as they require the generation of 6 numbers  (Cw  20

bits) ; most of them require the enumeration of 6 numbers as

well to be unambiguously determined (Cd  20 bits), but not

the consecutive draw which can be described with much less

(Cd < 3) (Dessalles, 2006).

In toppling domino challenges, flicking one single dom-

ino leads millions of them to fall down. The global result is

spectacular;  particular  moments  revealing  a  well-known

image or triggering some mechanical device such as a tiny

catapult are spectacular as well. Does our definition of un-

expectedness account for such effects? The intended results

are certainly chosen to be mostly simple (i.e. they require a

small amount of information to be described): all dominoes

down,  a  well-known  image  revealed,  a  world  record  to

break.  But the highly complex causality leading to these

events plays a crucial role as well. Even when the process

is going on, one can measure the number of failure oppor-

tunities (any domino may fail to fall down) that make  Cw

quite huge. Unexpectedness, and therefore interest, comes

from the contrast between both complexity values.

We tested the idea that creative acts appear all the more

creative as observers are able to see them as unexpected. In

other words, the end result of a creative act must be both

simple and seemingly hard to reach.

The Poietic generator

To test the role of unexpectedness on creativity, we had to

find a situation in which the machine may explore a limited,

but still rich, gamut of actions. We also wanted to stay close

to a situation of artistic creativity, where no predefined task

is to be fulfilled. The Poietic Generator, created in 1986 by

Olivier Auber, offered us an ideal framework.

The Poietic Generator (PG) is a game with no rule. All

players see the same matrix, displayed on their screen, but

they control only one cell of the matrix. In the real game

(which  is  ongoing:  anyone  can  connect  to  http://poietic-

generator.net/ and play), players have a rich control of their

portion  of  the  screen,  in  which  they can  draw coloured

shapes. In the absence of any instructions, players start cre-

ating what might look like a random pattern from a dis-

tance. But the collective tends to self-organize somewhat,

with structures emerging from time to time, either locally

or globally,  as  shown in Figure 1 (see also animated re-

cordings at http://tinyurl.com/pgen1). 

Figure 1: Successive states in a PG session observed in 1996 at
Telecom ParisTech (9 participants, ~30 min). 

We decided to study how programs would behave on the

Poietic Generator  if  they followed the “principle of max-

imum unexpectedness.” The point is to see whether the ma-

chine appears to be creative and in what sense. This poses

several challenges. First, we must define what the machine

observes  and how it  computes  generation and description

complexity.  Second, we must define what we would con-

sider as ‘being creative’. And third, we should compare the

productions of the machine with what humans do.

To make  the  three  challenges  manageable,  we  had  to

simplify the game significantly.  In our simplified version

of the Poietic Generator (SPG), each cell of the matrix con-

sists in one pixel. Each player, as a result, can only control

one among  K colours.  Moreover,  all players  are instanti-

ations of the same decision rule. Even this way, the SPG

remains rich enough to offer the opportunity of being creat-

ive. It is not easy to predict what will happen, and it is not

easy  to  tell  in  advance  what  creative  actions  would  be.

However, it might be easier to tell after the fact that reach-

ing such or such state was (somewhat) creative.

Coding representations

Any artificial creative device must rely on a model of aes-

thetic  preference.  In  our  approach,  unexpectedness

provides such a hierarchy. The computation of U, however,

presupposes a cognitive model from which complexity can

be computed, for instance a neo-Gestaltist theory in which

simple patterns are group invariant (Leyton, 2006). To keep

things  simple,  we decided  to  use  a set  of  pre-computed
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simple  patterns  that  we  call  basic patterns.  This  is,  of

course, only acceptable for the SPG, and even for the SPG,

for small matrix sizes.

Figure 2 shows a rudimentary set of monochrome basic

patterns that we used to evaluate the SPG. Our implement-

ation of the SPG, however, accepts coloured basic patterns.

For instance, the definition of a trichromatic pattern relies

on three colours (c1, c2, c3)  that are not instantiated. The

distance H(sc, p) from a given state sc to a pattern p counts

all differing cells between sc and p for each possible colour

instantiation of the pattern and keeps the minimum value.

In the monochromatic case, computing H(sc, p) amounts to

taking the minimum between two Hamming distances.

Figure 2: Example of basic 55 monochrome pattern set.

The originality of our model is not only that it is based

on the notion of complexity, but also to distinguish genera-

tion from description.  Generation complexity  Cw depends

on players’ actions. In the SPG, the minimal causal history

leading from a reference state sr to a target state st consists

in indicating the location of each differing cell and how it

should  be  switched.  In  a  SPG  of  size  nn,  one  needs

2log2(n) bits to designates a cell in the matrix. The num-

ber of differing cells between sr and st is H(sr, st). For each

differing cell, one needs to indicate the target colour. If K is

the number of available colours,  we need log2(K) bits  to

designate  the correct  colour among the  K alternative de-

cisions. The complexity of generating the transition sr  st

can  be  written  as  the  minimum  amount  of  information

needed to transform sr into st.

Cw(sr  st) = H(sr, st)  (2log2(n) + log2(K)). (3)

The decision rule consists in searching a maximally un-

expected pattern. If we write  = 2log2(n) + log2(K), equa-

tion (2) now reads:

U(st) =  H(sr, st) − Cd(st). (4)

Equation (4) provides  a  hierarchy  of  attractiveness  for

the set of target patterns {st}. At the beginning of the game,

sr is set to the initial configuration of the grid. If the initial

state is random, then  H(sr, st) has roughly the same value

for all target states st. As a consequence, the most attractive

targets are the simplest ones: all-white and all-black.

The complexity of reaching targets may however obliter-

ate their attractiveness. ST takes this complexity into ac-

count  to  determine  how  much  actions  and  targets  are

wanted (Saillenfest & Dessalles, 2014). We transpose this

notion to the SPG by defining the  desirability of a given

target st seen from the current state sc:

D(sc, st) = U(st) −  H(sc, st). (5)

The term  H(sc, st) represents the complexity of gener-

ating st from the current state sc. We can see that the most

attractive states are not necessarily the most desirable ones.

If we put (4) and (5) together, we get:

D(sc, st) =  H(sr, st) − Cd(st) −  H(sc, st). (6)

There is a trade-off between three terms: the difficulty of

reaching the target from the reference state, its overall sim-

plicity and the easiness of reaching it from the current state.

The distinction between the reference state and the current

state is crucial here. Players are trying to produce an event

that will appear unexpected to a hypothetical audience. The

audience may be the community of players currently acting

on the grid. It may also be anyone connected to the game

just for watching in the case of the real Poietic Generator.

For this audience, a pattern will constitute an event if it is

unexpected as compared to the initial state, or later to sub-

sequent reference states. In the case of the toppling domin-

oes, the final event: all dominoes having fallen down, is only

unexpected in comparison with the initial state.

Our artificial SPG players base their strategy on a sim-

ilar comparison (equation (4)). When selecting an action to

perform, however, they measure the distance from the cur-

rent state to tentative goals (equation (5)). They begin by

selecting a mostly desirable goal st
°.

st
° = argmax(D(sc, st)). (7)

They change their colour only if it increases desirability,

which amounts to saying that  H(sc,  st) >  H(sc,  st),  where

sc is the state resulting from their changing colour.  Using

this strategy, the system is expected to converge on a simple

state, not necessarily a simplest one. Once such a target is

reached, the reference is set to that new state for all players:

sr = st
°. Due to this change, st

° is no longer desirable, as it is

no longer unexpected. The community of players starts look-

ing for another goal that it may then reach, and so on. The

emerging  result  is  that  the  SPG will  visit  various  simple

states  in  this  way.  This  travel  through  the  state  space  in

search for simplicity generates a basic form of creativity.

Implementing the SPG

The SPG is initialized as an nn matrix, where each cell is

set  to  white  or,  alternatively,  assigned  a  random colour.
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Each agent controls one cell of the matrix. It stores the ini-

tial global state of the game as its reference state. At each

time step, one among the n² agents is randomly selected to

play. This agent decides either to change the colour of its

cell or do nothing, depending on the decision procedure de-

scribed below. If the system reaches a state st that is max-

imally desired according to  (6), then  st becomes the new

reference state for all agents.

Evaluating desirability

When an agent is selected to play, it has to decide whether

to change colour or not. To do so, it evaluates the desirabil-

ity of reachable target states using (6). Figure  3 illustrates

how values  of   H(sc, st)  are  compared  for  different  tar-

gets st. When the target is a multicoloured pattern p, e.g. a
trichromatic pattern with variable colours  (c1, c2, c3),  we

add up the three Hamming distances computed only over

pixels that are ci-coloured in the pattern. The same compu-

tation is done over all instantiations of (c1, c2, c3); the smal-

lest result is taken as H(sc, p) and instantiates p.

Figure 3: Distance to 3 basic states in a 55 monochrome SPG.

It  is  reasonable  to consider  that  some target  states are

“too far” from the current state of the SPG to be considered

by an agent as candidate target states. We introduce the no-

tion  of  horizon,  which  is  the  value  of  H(sc, st)  beyond

which  agents  do  not  evaluate  potential  target  states.  In

other words, a state st is a candidate target state only if:

H(sc, st) ≤ horizon. (8)

To compute desirability according to (6), we need to es-

timate Cd(st) for any basic state st (figure 2). Details are not

crucial here, as long as the computation provides a reason-

able hierarchy of forms. The code we chose is based on the

following tuple that describes any basic state:

(colours, shape, configuration)

• colours is a tuple defining the pattern’s colours. For a q-
chromatic pattern, log2(K!/(K−q)!) bits are sufficient to
determine the colours tuple unambiguously.

• We need  at  most  log2(nshape) bits  to  discriminate  the
pattern’s  shape among the  nshape basic shapes (in the
example of figure  3, only three shapes are considered:
diagonals, lines and triangles).

• We need at most log2(nconfig) bits to determine one con-
figuration among the nconfig configurations that corres-
pond to the same shape. For example, in figure 2, there
are 10 possible configurations for the shape ‘line’.

We approximate the description complexity of  a  basic

state st using these upper values:

Cd(st) = Cd(colours) + Cd(shape) +

Cd(configuration | shape).

We get (logarithms are approximated by their upper in-

teger value):

Cd(st) = log2(K!/(K−q)!) + log2(nshape) + log2(nconfig).

(9)

Note that nshape and nconfig depend on st. Formula (9)

can be used to rank basic states by simplicity (see Table 1).

Table 1: Description complexity of basic states in a monochrome
55 matrix with 3 possible shapes (diagonals, lines, triangles).

Basic SPG state (colours, shape, configuration)

colours: (white, black)

or (black, white)

shape: None

   (             or              )

Example of code: (all-black)

[0, _, _]

Length: 1 + 0 + 0 = 1 bit

colours: (white, black)

or (black, white)

shape: Diagonal

(ex:            ,                )

Example of code: (white rising diagonal)

[0, 00, 0] 

Length: 1 + 2 + 1 = 4 bits

Colours: (white, black)

or (black, white)

shape: Triangle

(ex:            ,                )

Example of code: (white upper right triangle)

[0, 01, 01] 

Length: 1 + 2 + 2 = 5 bits

Colours: (white, black)

or (black, white)

shape: Line

(ex:            ,                )

Example of code: (white second horizontal 

line)

[0, 10, 0101] 

Length: 1 + 2 + 4 = 7 bits

Decision procedure 

Once the  desirability  of  candidate  target  states  has  been

computed by agents,  two things  may happen:  either  one

candidate state (ore more) is maximally desirable, or none

is desirable. When at least one state is maximally desirable,

it becomes the agents’ current target. Agents change their

colour only if  it  brings them closer  to  the target  for  the

H(sc, st) distance. Otherwise, agents perform no action.

At the beginning of the game, desirability is the same for

all candidate states  st (equation (6)):  D(sc, st) = D(sr, st) =
-Cd(st).  The same holds when a reference state has  been
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reached and the new reference is taken to be sr = sc. In these

situations,  none of  the  possible  target  states  is  desirable

(D(sr, st) < 0). A rational agent should not act in the absence

of goal. However, such an attitude would be counter-pro-

ductive in a creative context. In the case of the SPG, the

game would freeze, since all agents have the same refer-

ence state and the same horizon. We programmed agents to

change colour with a certain probability in the absence of

desirable state.

Results

Though we implemented SPG for  an arbitrary number of

colours, we evaluated it only for  K = 2 (black and white).

Our results vary somewhat depending on the value of hori-
zon. Figure 4 displays the fraction of the time during which

agents are able to find desirable states, as a function of hori-
zon. For small values of horizon, agents do not “see” any tar-

get state and no state is ever desired. At the other end, with a

high value of  horizon, agents can see desired states all the

time and are always in goal-oriented search. Moreover, the

distribution  of  desired  states  shows that  the  most  desired

states correspond most of the time to the simplest ones (i.e.
the two plain states). For some intermediate value of  hori-
zon, agents target a broader range of states.

Figure 4: Fraction of time playing agents find at least one state
desirable (matrix 5x5).

In the results presented here, parameters are fixed at the

following values:

• size of the matrix: 55, two colours, horizon: 7;

• when no state  is  desirable,  agents  change colour with
probability 0.5.

When the program runs, the state of the SPG changes

continuously  (see  http://spg.simplicitytheory.science).  From

time to time,  it  reaches  a low-complexity state.  Figure 5

shows  how  the  complexity  of  the  SPG  matrix  evolves

through time. In this figure, the complexity of the current

state sc is computed in reference to the closest basic state p,

by evaluating minp(H(sc, p)  +  Cd(p)).  We can observe its

“oscillations”  as  it  visits  basic  states  (figure 2)  and  then

moves away from them.

Figure 5: Evolution of the description complexity of the SPG mat-
rix over the first 1000 individual decisions.

Figure 6 corresponds to the same run. It shows the 100

first target  states that were successively reached. We can

see that the system visits almost all the “basic states” des-

cribed in figure 2.  A simple analysis  using periodograms

did not reveal any regularity in this sequence.

Note that transitions are not totally random. Figure  6 re-

veals that when a plain state has been reached, the next basic

step is likely to be a diagonal (among the 27 transitions from

a plain state to another basic state, 20 lead to a diagonal state

with same background). This observation makes sense. Seen

from a plain state, diagonals with same background colour

lie at Hamming distance 5, which is smaller than  horizon.

For most agents, changing colour would not bring them any

closer. Nine of them, located on the diagonals, can get closer

by one unit to a diagonal pattern, which becomes more de-

sirable  by    6 bits  (formula (6)).  Since  its  description

complexity amounts  to  4  bits  (Table 1),  its  desirability  is

now 2 bits. If one of those 9 agents is by chance next to play,

it will change colour. The diagonal then becomes desirable

to all agents. As a result, the probability that the next target

will be a diagonal when starting from a plain state must be

larger than 9/25 = 0.36. We measured 0.44. Table 2 shows

shape to shape transition frequencies computed after a single

run of the program (the number of observed transitions from

a given shape to another shape is indicated under the refer-

ence shape).
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Figure 6: Visited shapes in chronological order. Dot colours (black or white) correspond to shape background.

Table 2: Frequency of transitions between shapes measured in a 55 mat-

rix for the shapes of Table 1 during a single run of the program (bc=same

background colour; 1-bc = opposite).

Next shape

Plain Diagonal Triangle Line

Shape

taken as

reference

Plain

(1162 

transitions)

0.1

bc: 0

1−bc: 0.1

0.44

bc: 0.44

1−bc: 0

0.23

bc: 0.02

1−bc: 0.21

0.24

bc: 0.24

1−bc: 0

Diagonal

(764 

transitions)

0.26

bc: 0.23

1−bc: 0.03

0

bc: 0

1−bc: 0

0.12

bc: 0.06

1−bc: 0.06

0.62

bc: 0.6

1−bc: 

0.02

Triangle

(999 

transitions)

0.50

bc: 0.16

1−bc: 0.34

0.07

bc: 0.07

1−bc: 0

0.26

bc: 0

1−bc: 0.26

0.17

bc: 0.17

1−bc: 0

Line

(906 

transitions)

0.35

bc: 0.22

1−bc: 0.13

0.22

bc: 0.21

1−bc: 

0.02

0.43

bc: 0.23

1−bc: 0.20

0

bc: 0

1−bc: 0

Discussion

We showed that a simple strategy, the “principle of max-

imum  unexpectedness”,  leads  to  seemingly  creative  ac-

tions. From the definition of unexpectedness as complexity

drop between generation and description (formula (2)), we

derived the strategy of maximum of desirability (rules  (6)

and  (7)) that continually looks for simple patterns within

reach. This strategy, together with the notions of reference

state and of horizon, is sufficient to generate interesting be-

haviour in the SPG. When several instances of the strategy

play together the SPG, we observe an emerging behaviour

which consists in visiting simple patterns in an unpredict-

able way (see examples at http://  spg.simplicitytheory.science).

The  walk  through  simple  patterns  is  the  best  (in  the

sense of most creative) we could get in this simple imple-

mentation, at least  from a theoretical  point of view. Any

other emerging result among what the system could have

achieved  (fixed  point,  periodic  behaviour,  random walk)

would have been less  creative.  The program mimics  the

following features of creativity.

• Search for unexpected simple patterns,

• Co-existence of goal-free and goal-oriented actions,

• On-going goal change,

• Fresh start when a goal is achieved.

Unexpectedly simple patterns are essential to most forms

of artistic creativity. One extreme example is offered by the

“White on White” painting exhibited by Kazimir Malevich

in  1918.  Note  that  further  instances  of  so-called  mono-

chrome paintings (i.e. uniformly coloured surfaces) can be

felt as less creative than the very first one, as they are more

complex (more information is needed to discriminate them

from each other). More generally, any hidden structure dis-

covered by the observer in a painting makes it more inter-

esting  (Leyton,  2006).  According  to  Leyton,  the  more

circles  and  ellipses  our  eye  can  see  in  Picasso’s  “Les

demoiselles  d’Avignon”,  the  more  beautiful  the  painting

appears. This makes sense within ST’s framework: hidden

structure means unexpected simplicity. Any structural com-

ponent contributes to simpler description, as previously in-

dependent  components  can  now  be  summarized  by  the

structure.

In contrast to routine engineering activity which is goal-

driven,  some artistic  activities  are  carried  out  in  the ab-

sence of definite goal and they are able to invent their own

goals on the fly.  This is what our implementation of the

SPG does, despite its elementary character. This absence of

pre-definite goal is perceived by observers. As predicted by

(1), the interplay of seemingly random actions and oppor-
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tunistic  goal  generation  produces  a  series  of  complexity

drops  that  may trigger  feelings  of  beauty (Schmidhuber,

2009). Note, however, that the originality of ST is to define

compression through  (2) by making a distinction between

generation and description.

Our implementation of the SPG has elementary self-ob-

servation  capabilities.  It  knows when  an  interesting  cre-

ation  has  been  reached.  Our  program  stops  for  a  while

when it gets to a target configuration. These moments cor-

respond to local complexity minima. Then, by setting the

reference to the former goal state, the system is able to es-

cape from it. As equation (6) shows, the state is no longer

desirable once it has become the new reference. The sys-

tem automatically hunts for new simple states to spot and

reach.

When no desirable state is within reach, the decision rule

expressed in (6) and (7) does not apply. In such situations

of goal-free action, human individuals tend to perform ac-

tions anyway,  though in a biased manner (Auriol, 1999).

Our simulated players are not biased and switch their state

randomly.  This aspect of our implementation is not gov-

erned  by  any  principle  and  could  be  improved  in  more

elaborate versions of the SPG.

The desirability of target states expressed by (6) is inter-

esting because it includes two versions of generation com-

plexity Cw. We can write it in a more general form.

D(sc, st) = Cw(sr  st) − Cd(st) − Cw(sc  st). (10)

The latter term, Cw(sc  st), represents a low complexity

value  that  was  not  anticipated  when  the  system  started

from  the  reference  state.  A  target  st is  desirable  if

Cw(sc  st) << Cw(sr  st), which means that st is signific-

antly  easier  to  reach  than  anticipated.  The  same  phe-

nomenon  holds  in  other  forms  of  creative  productions,

such  as  fiction  writing.  Interest  in  a  narrative  may  be

aroused  when  some surprising  event  occurs,  but  then  is

perceived as making sense after all, because of some hid-

den line of reasoning (Saillenfest & Dessalles, 2014; Sail-

lenfest, 2015). Rule (10) offers a similar kind of surprise

when the system comes close to a simple state that was ini-

tially considered out of reach, but now appears to be just a

few moves away.

Limits and perspectives

Our experiment has obvious limits. It is a proof of concept

that does not aim at giving an illusion of genuine creativity.

We are indeed quite far from what a human observer would

regard as truly creative.

Human players in the true PG show significantly more

sophisticated behaviour.  They may form individual inten-

tions based on their personal history and context; they are

able to recognize many shapes and not only geometrical

ones: horses, houses or human figures; on the other hand,

they have limited patience and attention span. Differences

among  individual  players  may  lead  to  paradoxical  situ-

ations,  as  when  an  idle  player  becomes  a  stable  anchor

around which local activity gets organized, and emerges as

a local attractor for this activity.

Human players  may collectively produce simple emer-

ging patterns  such as  a  uniform area  or  a  checkerboard.

Most  emerging  patters,  however,  consist  in  recognizable

shapes:  a cow, a monster,  a sea shore,  an air strike or a

luncheon on the grass.  These patterns  may occur  in  one

part of the global image and may be inspired by the news.

Mimicking these human capabilities depends on the sys-

tem’s ability to select and recognize elaborate patterns. If

the size of the matrix is increased, the set of basic patterns

(lines, triangles…) becomes too sparse for the SPG to see

any target within the horizon. The situation would become

even more complicated if the set of possible actions is in-

creased to bring the SPG closer to the true PG: many col-

ours, more pixels controlled by each player. Populating the

set  of  simple  shapes  may solve  the  sparseness  problem.

However, the problem of computing the complexity Cd of

elaborate shapes is not a trivial task (think of recognizing

an air strike and its relation to the news).

Another  characteristic  behaviour  exhibited  by  human

players  consists  in  calling  attention  to  themselves

whenever possible. For instance, a player controlling a cell

in  the  middle  of  a  uniform  region  may  be  tempted  to

switch to a locally contrasting colour, as in the yin-yang

(Taijitu) symbol. This makes sense within ST. The theory

indeed predicts that the complexity drop that drives atten-

tion to the individual will be larger when her cell is isol-

ated. Its minimal description will be more concise if it is a

contrast with its surroundings. A way to improve our model

of creativity would be to include a second complexity drop

computation at the individual level, so as to allow artificial

players  to choose between collective creativity  and indi-

vidual signalling.

SPG can be seen as a first step toward a new class of cel-

lular automata that try to mimic some aspects of human

creative behavior. One possible perspective for further de-

velopments would be to design artificial agents able to play

in real PG games. Human players would be asked if they

are able to locate them. This experiment might be seen as a

visual version of the Turing test. It could become the basis

of an ‘open science’ initiative to study the specificity of hu-

man creative  behavior.  This  open  experiment  could also

help to deal with ethical questions about human-computer

entanglement in a manner that would be accessible to all

(Auber 2016).

All the above mentioned improvements of the SPG keep

fundamental principles derived from Simplicity Theory in-

tact. The decision rule expressed by (10) and (7) would re-

main essentially the same (except for the pattern distance
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(3) which cannot remain based on the Hamming distance if

more pixels are controlled by each player). Our little exper-

iment with the SPG was designed to be just sufficient to

implement the decision rule. This is why it is relevant to

study creativity

Conclusion

This study was motivated by the observation that simpli-

city and complexity drop play a crucial role in creativity.

We decided to investigate whether Simplicity Theory could

make an interesting contribution to the understanding of

creative action. ST was developed to offer a formal defini-

tion  of  interest  in  human  spontaneous  communication.

Quite naturally,  we wanted to explore whether interest in

creative situations could be governed by similar mechan-

isms.

The present study is meant as a proof of principle. We

proposed a simplified implementation of the Poietic Gener-

ator  to  verify  that  a  straightforward  application  of  ST’s

principles  could  lead  to  interesting  behaviour  even  in  a

simplistic setting.

The  “principle  of  maximum  unexpectedness”  (for-

mula (10))  that  we  derived  from  ST  makes  a  trade-off

between  three  values:  (1) the  simplicity  of  the  target,

(2) the difficulty  to  reach  it  from the  reference  situation

and (3) the easiness to reach it from the current situation.

This decision rule is claimed to apply to a wide range of

creative situations. We were able to show that these theor-

etical  principles  produce non trivial  behaviour even in a

simplistic  situation.  Our  suggestion  is  to  consider  these

principles when designing elaborate creative programs.
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