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Abstract

In this paper we present a proof-of-concept of how co-
creative systems could guide their users to appreciate
artefacts that are currently too novel. Given that too-
novel artefacts are off-putting, and domain experience
reduces novelty, this situation will arise often when a
co-creative system has more domain experience than
its user. We present some experiments demonstrating a
strategy for generating sequences of concepts to present
to users. These sequences are designed to provide the
necessary background to allow users to appreciate a
highly-novel “target” artefact. Our strategy is based on
generating and then traversing “surprise space”, a form
of conceptual space in which concepts which are sur-
prising in the same contexts are proximal. We imple-
ment this strategy, which we call a “surprise walk”, in
the domain of recipes using a word embedding algo-
rithm with a modified objective function that co-locates
features that are similarly surprising.

Introduction

Consider the case where a human and computer are collab-
orating on a creative task (aka “co-creativity”), but the lat-
ter knows more than the former. Where we are today, at
the very beginning of usable co-creative systems, that might
seem like an edge case. We contend, however, that in time
it might describe the majority of such interactions. Imagine
a future in which co-creative systems are commonplace: it
is likely that the majority of their users will not be experts.
It follows that co-creative systems will often possess knowl-
edge their users do not, even discounting situations in which
they are explicitly being used for education.

This creates a challenge for systems that generate con-
tent more novel than their users are currently prepared to
accept. Under the Wundt curve model (Berlyne 1966;
Saunders and Gero 2001), there is a peak level of novelty
at which positive affective response is maximised. Either
side of that peak the response becomes negative: either
too boring (insufficient novelty) or too alien (overwhelming
novelty). Creative systems operating with more knowledge
than their users will often generate artefacts that are desir-
ably novel to the system, but (if we accept the Wundt curve
model) overwhelmingly so to their users. Greater knowl-
edge would lead to more accurate expectations, and thus less
surprise.

If the human has decision-making power in the creative
task, as is common in co-creative systems, then a co-creative
system must convince its users of the benefits of its cre-
ations. How could a co-creative system “guide” a human
towards a creative (i.e. novel and valuable, (Newell, Shaw,
and Simon 1959)) region of the space of possible artefacts,
even if those artefacts were currently overwhelmingly novel
to the user? One answer is for systems to seek “user appro-
priate” rather than maximal novelty. Another is persuasion.

In this paper we explore how computationally creative
systems might persuade humans to appreciate more novel
artefacts. We propose “surprise walks”, a strategy for gener-
ating sequences of increasingly surprising concepts. These
sequences start with a goal concept that the system desires
the user be able to appreciate. The strategy is then to work
backwards, decreasing the level of surprise, until a concept
that the user can appreciate is reached. A creative system
could then expose its user to artefacts exhibiting each con-
cept in turn. Where necessary, multiple artefacts exhibiting
a concept could be presented until the user appears to have
comprehended or accepted it. The intent is to pique user
curiosity over time, and maintain that curiosity state while
working towards a goal (Grace and Maher 2015). That the
user is being taken for a “surprise walk” may or may not be
communicated to the user, which raises a variety of ethical
issues which we return to in the discussion.

We present a model of the surprise walk process and addi-
tionally introduce the concept of “surprise space” on which
the process is based. A “surprise space” is a specialised
kind of conceptual space in which proximal concepts are
similarly surprising, rather than being literally similar them-
selves. We also present a prototype implementation of a sur-
prise walk generator, capable of accepting a target surprise
and a simple artificial user profile and outputting sequences
of concepts. We present and discuss the results of this proto-
type, comparing the sequences that can be generated using a
surprise space to those generated by the same process using
a conceptual space based on literal similarity.

Background

This research occurs at the intersection of two literatures:
co-creativity and computational models of surprise and cu-
riosity. To date, most research in co-creative systems has
not explicitly considered the idea of imbuing such systems



with the desire to spark curiosity. Similarly, most research
in computational curiosity has not considered the context of
co-creativity.

Co-creative systems

A variety of co-creative systems are able to influence their
user’s behaviour. The Drawing Apprentice (DA) is a co-
creative drawing partner that collaborates with users on a
shared drawing (Davis et al. 2016; 2018). The system anal-
yses the user’s input and responds with complementary ob-
jects to inspire the user’s creativity and sustain engagement
over time. The Sentient Sketchbook is a co-creative game
level design tool that leverages user input to generate design
alternatives that may surprise the user and support their cre-
ativity (Liapis, Yannakakis, and Togelius 2013). Clark et al.
(2018) describe a machine-in-the-loop writing system that
provides surprising and unpredictable output designed to in-
spire user creativity. Similar systems include Creative Help
(Roemmele and Gordon 2015) and Say Anything (Swanson
and Gordon 2012).

In none of the above systems is there a capacity to reason
beyond the next step in designing the current artefact. That is
not an criticism, doing so is simply out of their scope. They
assist human creators by providing in-the-moment sugges-
tions. This research explores a way for co-creative systems
to form longer-term goals.

Computational surprise

The concepts of novelty, unexpectedness and surprise have
been the subject of many definitions in the computational
creativity, artificial intelligence and cognitive science litera-
tures. For the purposes of this study we define novelty as the
degree to which an artefact differs from those that have come
before within that creative domain. There are many ways to
operationalise that definition, but building on our previous
work we argue that the best way to do so is by quantifying
the expectations of the agents acting in that domain, and then
measuring the degree to which those expectations are vio-
lated by an artefact (Grace and Maher 2014). We call this
an unexpectedness based approach to novelty. Similar ap-
proaches have been adopted by Macedo and Cardoso 2001
and Gravina et al 2016.

In most of our work expectations are defined in terms
of sets of features that co-occur regularly, with unexpected
artefacts being those which exhibit sets of features that co-
occur only infrequently. “Surprise” is an agent’s response
to unexpectedness, although in most contexts this can be
used interchangeably with unexpectedness. We measure the
amount of surprise using the negative base-2 log of ratio of
the co-occurrence probability of those features to their prob-
ability of them occurring separately. “Surprise walks” are
thus an exploration of how a co-creative system could ex-
pose an individual to a sequence of surprising artefacts, each
not only similar but more unlikely than the last.

Computational curiosity

Berlyne (1966) describes the prevailing psychological theo-
ries of curiosity as curiosity-as-state and curiosity-as-trait.

Curiosity-as-trait refers to an innate ability of a person,
and individuals differ in how much curiosity they have.
Curiosity-as-state refers to a motivational state of a person
that causes the person to seek novel stimuli, and it varies
within each person according to their context. Curiosity-
as-state is malleable: curiosity can be encouraged by exter-
nal events or contexts. A computational model of state cu-
riosity is one that seeks surprising events or objects and in
co-creativity a computational model of surprise can present
stimuli that encourages user curiosity. Curiosity-as-state has
been integrated into cognitive systems in the past, such as
Saunders and Gero (2001) and Merrick and Maher (2009) .

Berlyne additionally proposed that state curiosity can be
considered along two dimensions: epistemic vs perceptual,
and diversive vs specific. In the first dimension, percep-
tual curiosity is the drive towards novel sensory stimuli and
epistemic curiosity is the drive to acquire new knowledge.
Our surprise walks could theoretically be applied in either
case, but we are exploring epistemic applications. Along
the second dimension, Berlyne describes diversive curiosity
as unguided search for any new information or stimuli and
specific curiosity is search for a novel solution to a specific
problem or goal. The majority of current models of compu-
tational curiosity are diversive in nature, such as Saunders
and Gero and Merrick and Maher mentioned above as well
as Schmidhuber (2010). Our surprise walks are adopting the
concept of specific curiosity: how a system could influence
a user towards a novel goal.

Surprise Spaces

A conceptual space in a creative domain captures the order-
ing principles or underlying structure of that domain’s con-
cepts. In some conceptual spaces the artefacts are described
in terms of dimensions that are meaningful to that domain
(Girdenfors 2004). If a conceptual space is constructed in
this manner then the “concepts” are dimensions, and each
point represents a hypothetical artefact. In other approaches
globally meaningful dimensions are not required, instead
proximal concepts are always similar (Boden 1996). In this
approach each point in space represents a concept, and an
artefact is composed from one or more concepts.

A surprise space is a particular kind of conceptual space
in the latter tradition: proximity implies similarity. However
the concepts that are distributed through that space are com-
binations of artefact features, each of which is assigned a
surprise based on measures described in our previous work
(Grace et al. 2017). As a simple example, consider a sur-
prise space in the domain of recipes in which each point rep-
resents the combination of two ingredients. Some of those
combinations (such as onion and garlic) will be of low sur-
prise, while others (such as chocolate and garlic) will not.
A surprise space need not be constructed of these simple
unordered pairwise combinations of features, but could in-
stead contain any combination of two or more elements that
is meaningful to the domain: consecutive phrases of music,
visual features combined with a particular caption word, or
triplets of named entities appearing together in news articles.
A surprise space is intended to augment, rather than replace
any other form of conceptual space in a creative system’s



reasoning. We do not suggest that this way of constructing
conceptual spaces is in any way superior to any other — it is
simply different.

The principle of organisation in surprise space is the sim-
ilarity between surprises. By carefully traversing this space
we could construct a sequence of surprises that are increas-
ingly but also similarly surprising. That sequence could
transport a user from the borders of their current knowledge
to some as-yet-too-alien combination. This journey through
surprise space, which we call a “surprise walk”, leverages
the unique structure of a surprise space as a metacognitive
aid. It guides a creative system’s behaviour as a means for
influencing the behaviour of its human collaborators.

But what does it mean for two surprises to be similar?
There are several possible approaches here, and we proto-
type two in the proof-of-concept detailed below. The sim-
plest is to average the similarity of each feature (or set of
features) in the combination, using the best possible map-
ping between features to do so. For example, assume that
each point in surprise-space represents a combination of two
or more ingredients in a recipe. Given (A,B) and (C,D) as
two such combinations, we can take the similarity between
the two surprises as being:

max(s(A,C) + s(B, D)), (s(A, D)+ s(B,C)))/2

Where s(x,y) as a similarity measure for features = and
y. Note, again, that this is specifically the similarity between
two surprises, (A, B) and (C, D).

An alternative approach would be to construct a similar-
ity measure between surprises. This is akin to comparing
between two differences: how similar is the difference be-
tween A and B to the difference between C' and D, to take
the example above? In our recipe example this could be
measured using a physiological model of taste, a molecu-
lar gastronomical model of chemical compounds, or the co-
occurrence of ingredients. We introduce a hypothetically
domain-independent approach below that performs this kind
of surprise-to-surprise comparison based on whether the in-
gredients are surprising in similar contexts. Let’s say A is
soy sauce, B is chocolate, C' is mushrooms and D is icing
sugar (confectioner’s sugar in North American English). Is
the way soy sauce differs from chocolate similar to the way
mushrooms differ from icing sugar? Our prototype says yes:
soy sauce is surprising when combined with a similar list of
things as mushrooms are, and the same with chocolate and
icing sugar. For example, both soy sauce and mushrooms
are surprising in combination with vanilla, apples, and bar-
becue sauce. Similarly, chocolate and icing sugar are both
surprising in combination with steak, black pepper, and tofu.

In our proof-of-concept implementation we have imple-
mented both approaches: literal feature similarity compari-
son as well as comparing the similarity of surprises directly.

Surprise Walks: Navigating surprise spaces

Our motivation in conceiving of “surprise walks” is to ex-
plore how co-creative systems could encourage their users
towards appreciating concepts that they could currently con-
sider too novel. We define a surprise walk as a sequence

of combinations in a surprise space that a) are of monotoni-
cally increasing surprise, b) are sequentially proximal in the
space, c) start with a combination familiar to the user and d)
end with a target combination of (currently) overwhelming
novelty. That target combination is not only novel, but so
novel that the user cannot or will not appreciate it: it is off
the right shoulder of their personal Wundt curve.

Additional constraints on the sequences might be desir-
able, such as ensuring that adjacent elements are not too
dissimilar in their surprise ratings. The intent is that these
sequences act as a long-term plan for the behaviour of the
co-creative system. They could allow it to curate the new
experiences of their human user and thereby influence that
user’s Wundt curve until the target combination is no longer
overwhelming. This definition is sufficiently broad to permit
a large variety of approaches to sequence generation. We de-
scribe one such approach below in the domain of recipes.

s-GloVe: A prototype surprise space

Our prototype surprise walk system is based on a word em-
bedding algorithm called “GloVe” (Pennington, Socher, and
Manning 2014), used for representing each word in a corpus
of documents as a vector of numbers. We call our surprise-
based modification of it “s-GloVe”. Word embedding algo-
rithms map each word that occurs in a corpus of documents
(typically one in which each document is represented as a
bag of words, i.e. a count of all words that occur, ignoring
word order) into an abstract continuous space. This space
typically has a few hundred dimensions. We selected GloVe
for this work as it approximates the matrix of co-occurrences
between features, a desirable quality in a model of unexpect-
edness. We treat each ingredient as a “word”.

Representing each word as a continuous vector allows for
capturing similarity between words: similar words are prox-
imal in vector-space. The most common approach to mea-
suring the “similarity” between two words is based on the
concept of distributional semantics, or the idea that you can
“know a word by the company it keeps” (Firth 1957). More
precisely, distributional semantics states that similar words
have similar distributions over what other words are likely to
occur nearby (Harris 1954): they occur in similar sentences.
Constructing a word embedding model such that words with
similar contexts occur nearby in vector space makes all
kinds of similarity-based tasks easier, including clustering,
thematic analysis, document classification, and augmenting
the training of other machine learning algorithms.

GloVe has become a standard for word embeddings as it is
simple, scalable and robust. It operates by learning a vector
of arbitrary numbers for each word in the corpus. Its ob-
jective is to construct those vectors such that the vectors of
any two words can be used (via a mathematical transforma-
tion) to calculate how those co-occur. What exactly it means
for two words to “co-occur” is dataset specific: it could be
that they are both within the same sentence in a news ar-
ticle, within the same line in a poem, or within the same
section in a scientific paper. The result is that the vector rep-
resentation for each word encodes how that word correlates
with every other word. When these word vectors are inter-
preted as points in space, nearby words co-occur with all



other words in similar ways. Or, to put it another way, they
share distributional semantics. GloVe uses gradient descent
to construct its vectors, with the objective of minimising the
difference between the true co-occurrence of words and the
one reconstructed from the word vectors.

A full description of the GloVe algorithm can be found
in the original paper, but two points are relevant to how we
modified the algorithm to discover similar surprises. Firstly,
GloVe’s vectors exhibit locally linear relationships between
words that capture their meanings. This means that the dif-
ferences between similar pairs of words are themselves simi-
lar. The difference between woman and man (the subtraction
of those two vectors) is similar to the difference between
queen and king, or between aunt and uncle. Similarly, the
differences between US cities and their zip codes are all sim-
ilar, as are the differences between Fortune 500 companies
and their CEOs. This extends also to grammatical struc-
ture, with the difference between comparative and superla-
tive forms of the same adjective (e.g. “softer” vs “softest”)
being highly similar. We exploit this property in our proto-
type.

Secondly, to speed up training and produce more robust
vectors the original GloVe algorithm lowers the impact of re-
construction error for rare words using a weighting function.
It is by replacing this weighting function that we re-imagine
GloVe as a space of similar surprises.

s-Glove: The distributional semantics of surprise

GloVe captures the meaning of words by quantifying the
company they keep. S-GloVe captures the way words are
surprising by quantifying the company they don’t, or rather,
the company in which they are unexpected. This is still a
kind of distributional semantics, as it defines words by the
statistical properties of their context. In practice, however,
it leverages almost the opposite information to the basic
GloVe approach. S-GloVe encodes the co-occurrence be-
tween only those word-pairs that are surprising. In doing
so it effectively disregards all the commonly co-occurring
words, which are the key information leveraged in the ma-
jority of distributional models. This creates a space where
nearby surprises are similar because of why they are sur-
prising, not because of what they are. This could permit a
system to reason about why a particular combination is sur-
prising/novel.

The GloVe cost function includes a weighting against rare
words (Pennington, Socher, and Manning 2014). For the
technical details consult the original paper, but in short it
reduces the impact of the error in reconstructing the co-
occurrence between words if that co-occurrence is low. The
effect of this is that rare co-occurrences are not encoded as
strongly in the word vectors, and do not affect word-word
similarity as much. We replace this with a function that re-
duces the impact of co-occurrences which are unsurprising.

We use a test for statistical significance — the one-tailed
version of Fisher’s exact test — to quantify the evidence for
whether a pair of words occur less frequently together than
one would expect were they independent. This test draws
from the word occurrence and co-occurrence data, and pro-
vides a p-value for the chance that they are actually signif-

icantly surprising. A sufficiently low p-value lets us reject
the null hypothesis that this pair of words is not surprising
(i.e. either independent or actually more likely to occur to-
gether). The specific weighting function we use in s-Glo Ve,
which replaces f(X;;) in Pennington et al (2014), is:

f(Xij) =1 —min(pij, @) )]
where p; ; is the p-value of the left tail of the Fisher test
for independence of words ¢ and j, and « is a parameter
controlling how small the impact of unsurprising word-pairs
will be on the word vectors. As a approaches 0 unsurpris-
ing word pairs have effectively no impact as p-values above
0.999 are common. We used o = 0.1 in our tests after some
experimentation, as with higher values the s-GloVe space
began to more strongly resemble the original GloVe space.

Dataset Description & Preprocessing Pipeline

We began with the Now You’re Cooking dataset!, as used
in Kiddon et al 2016. The dataset contains around 80,000
unique recipes that have been shared on the Internet since
the 1990’s. The recipes are provided with their names, in-
gredients, quantities, units, preparation steps and tags. In
our experiments we use the ingredient set and cuisine tags
only, discarding for now the titles, quantities and prepara-
tion steps. We treated each ingredient, post-processing, as a
single feature in our model, such as “white wine” or “parme-
san cheese”.

We used the New York Times’ ingredient-phrase tagger’
to extract from strings like “1/3 cup freshly shredded let-
tuce” the name of the ingredient itself (here “lettuce’). Man-
ual cleaning of about 10% of recipes was required after this
step, presumably due to differences between the NYT tag-
ger’s training data and our dataset. We also combined a
number of less common ingredients (e.g. varieties of soy
sauce or orange liqueur) into single categories for the pur-
pose of simplicity. After parsing, cleaning, duplicate elimi-
nation, and deleting those recipes with less than three ingre-
dients we ended up with 73,000 recipes. Figure 1 presents
an example of our pre-processing, transforming complex in-
gredient strings into simple, corpus-coherent ingredient fea-
tures.

Results: ingredient-ingredient similarity

To validate our ideas about what proximity in s-GloVe space
represents, we compare the most similar ingredients to a
target ingredient, i.e. the nearest neighbours in the vector
space. We use cosine similarity in each case, and compare
the same six ingredients between GloVe and s-Glove. In
both cases (and throughout this paper) the ingredient vectors
have 64 dimensions. In the case of the original GloVe paper
the xmax parameter is set to 0 to prevent de-emphasising
rare words. We arbitrarily selected five highly dissimilar
words as test cases: pine nuts (occurs in 485 recipes), cu-
cumbers (1007 recipes), cayenne powder (1714 recipes),

"https://github.com/uwnlp/neural-checklist

*https://github.com/NY Times/ingredient-phrase-tagger, as dis-
cussed at https://open.blogs.nytimes.com/2015/04/09/extracting-
structured-data-from-recipes-using-conditional-random-fields



liver

onions
vegetable_oil
black_pepper
sage
soy_sauce
lemon_juice
parsley

1/2_Ib calf_or beef_liver

2 eamed . onions, sliced 2 t vegetable_oil 1/4 t pepper
1/4 t ground sage

2 t soy_sauce -LRB- importedif_avail ~-RRB-
1tlemon_juice

1 x chopped parsley

Figure 1: A set of “raw” recipe ingredients and the
cleaned list used by our system, based on already-partially-
preprocessed data by Kiddon et al (2016).

lentils (400 recipes), and apples (2270 recipes). The results
are shown in Tables 1 through 5.

At the system’s current level of development it is not yet
feasible to objectively compare, via quantitative metrics or
user feedback, the results of the s-GloVe surprise works to
those of GloVe. Some interpretation must be permitted to
judge the relative strengths and potential of the approaches.
The results presented here are thus for the reader’s own sub-
jective digestion, although we believe they represent suffi-
cient promise to continue investigating.

Table 1: Most similar to “pine nuts”.
Word (GloVe) | cosine || Word (s-GloVe) | cosine

feta 0.60 tomatoes 0.63
olive oil 0.64 capers 0.67
currants 0.65 hazelnuts 0.69
zucchini 0.68 sesame seeds 0.69
basil 0.69 chili peppers 0.70

Table 2: Most similar to “cucumbers”.
Word (GloVe) | cosine | Word (s-GloVe) | cosine

scallions 0.53 basil 0.60
radishes 0.53 peas 0.64
red onions 0.58 green beans 0.68
lettuce 0.61 beef broth 0.68

white vinegar 0.64 balsamic vinegar | 0.71

These results show that the GloVe algorithm is capturing,
as expected, the similarity between words that occur in simi-
lar contexts. Note that this is not the same as saying that they
occur in the same recipes: lentils and brown rice may not oc-
cur together often, but when they occur separately they do so
in the company of the same sorts of ingredients.

The s-Glove algorithm, however, is placing ingredients
near to others that are surprising when combined with the
same sorts of ingredients. GloVe suggests cucumbers are
similar to radishes and red onions because (at least in our
database) they occur in simmilar contexts, such as a vari-
ety of salads and Mediterranean dishes. S-Glove, however,
finds cucumbers to be similar to ingredients like basil and
peas, because it finds pairings like (cucumber, cocoa pow-
der) and (cucumber, vanilla) to be highly similar to pairings

Table 3: Most similar to “cayenne powder”.
Word (GloVe) | cosine || Word (s-GloVe) | cosine

cumin 0.47 lemon juice 0.69
jalapenos 0.47 lemons 0.70
paprika 0.49 lime juice 0.74
chili powder 0.52 salt 0.74
garlic 0.55 celery 0.75

Table 4: Most similar to “lentils”.
Word (GloVe) | cosine || Word (s-GloVe) | cosine
brown rice 0.47 barbecue sauce 0.69
eggplant 0.47 steak 0.70
peas 0.49 brisket 0.74
kidney beans 0.52 ghee 0.74
barley 0.55 whiskey 0.75

like (peas, cocoa powder) and (peas, vanilla).

While this is only a cursory validation, we can conclude
from this that the s-GloVe algorithm is able to measure the
similarity between when ingredients are found surprising.
We hypothesise, and in the following section explore, that
this property can be used to generate interesting suggestions
for guiding users towards more novel content.

Results: surprise-surprise similarity

We used the s-GloVe vector model described in the previous
section and calculated the pairwise vector subtraction be-
tween all pairs of ingredients. This represented every com-
bination of two ingredients, even those that had not occurred
in any of our recipes, as a 64-dimensional vector. In this
we are inspired by the linear local substructures observed
in other word embedding experiments (Agres et al. 2015;
McGregor, Purver, and Wiggins 2016).

This space satisfies our notion of a surprise space de-
fined earlier. It is a space of combinations of concepts, each
with a location and a surprise rating, in which proximity
implies similarity between why those combinations are sur-
prising. To give an example, the closest concept to the sur-
prising combination of mozzarella and brown sugar (exclud-
ing those that share either) is sausage and molasses. Despite
their similar locations the two combinations have quite dif-
ferent surprise values: mozzarella and brown sugar is quite
surprising (surprise /5), while sausage and molasses is only
slightly surprising (surprise ~2).

As an initial exploration of the potential of this space, we

Table 5: Most similar to “apples”.
Word (GloVe) | cosine || Word (s-GloVe) | cosine

raisins 0.46 ginger 0.68
cinnamon 0.53 icing sugar 0.71
nutmeg 0.54 walnuts 0.71
cranberries 0.55 currants 0.72
apple juice 0.57 cream 0.75



have implemented a simple — even trivial — surprise walk
algorithm. Our motivation with surprise walks is to gener-
ate a sequence of combinations that can be incorporated into
artefacts shown to a user. This sequence is intended to (grad-
ually, perhaps with repeated exposure to artefacts containing
each combination) guide the user towards being able to ap-
preciate the “target” combination at the end of the sequence.
That “target” is assumed to be outside of the “Wundt win-
dow” (i.e. off the right shoulder of the Wundt curve) for that
user. It, along with a model of the user’s familiarity with
concepts in the domain, is the input to our model of surprise.

In our prototype we adopt a trivial synthetic user model:
our prototype user is familiar with all surprises of less than
4 wows, as calculated by the method in (Grace and Maher
2016). This is based on the same co-occurrence matrix that
is the input to the GloVe and s-Glove algorithms. Exam-
ples of combinations near this threshold are baking soda and
tomatoes, apples and cumin, and lemongrass and walnuts.
This threshold was chosen as it represents unusual but not
(to the authors, at least) unheard of combinations, making it
a good placeholder for the knowledge of a competent cook.

Our “surprise walk” algorithm, given a target surprise,
first generates a list of the 25 nearest combinations. Those
which are more surprising than the target are discarded. The
system then iteratively greedily selects from that list the in-
gredient combination that most greatly reduces the surprise
of the target without reducing it by more than a pre-defined
“maximum surprise difference. In our experiments we set
this threshold to 3 wows. If the selected combination is not
familiar to the user then it becomes the new target and the
greedy selection repeats. That means that if a target surprise
is rated at 9 wows, then the system will pick the least surpris-
ing combination from the list of nearby combinations that is
at least 6 wows, then repeat the process with a threshold of 3
less than that. At this point the combination would likely be
less than our 4-wow threshold for the dummy user, and the
sequence generation process would terminate.

This search is both greedy and naive. It is undirected,
and would likely not work well with a more complex user
model. A more nuanced approach would be to use a heuris-
tic search algorithm like A* to find a path between the target
and the user’s “familiarity boundary”. Despite its simplicity,
this approach lets us explore the potential of traversing sur-
prise spaces to generate goals for co-creative systems. Goal
(re-)formulation has been suggested as a critical capacity for
creative systems related to both autonomy (Jennings 2010)
and metacreativity (Linkola et al. 2017).

Table 6 shows the result of a simple surprise walk on an
ingredient combination that is only moderately surprising:
bananas and basil. Both GloVe and s-Glove suggest one sin-
gle combination as a sufficient stepping stone for the target
combination. The suggested combination is familiar to our
user (recall that our dummy user profile is familiar with all
combinations of less than 4 wows) in both cases. This fa-
miliarity means that a co-creative system would likely only
need to prompt the user with a few recipes before they are
sufficiently primed as to appreciate bananas and basil.

GloVe suggested prompting the user with a combination
of strawberries and thyme, highly literally similar to the tar-

get combination, but less surprising. Recipes involving this
combination are typically pastries, jams®, or cocktails. S-
Glove suggested the less immediately obviously connected
combination of applesauce and marjoram. Recipes involv-
ing this combination typically also involve pork, sausages,
or game such as deer or partridge. s-GloVe considers ap-
plesauce and bananas to be quite similar (in terms of what
they are surprising with), while GloVe does not. From this
example it’s hard to judge the quality of the two methods,
although the difference in their approaches is clear.

Table 6: Surprise walks for bananas and basil.

Using GloVe:

Ingredient 1 Ingredient 2 | cosine | surprise
strawberries thyme 0.34 2.51
bananas basil - 4.69
Using s-GloVe:

Ingredient 1 Ingredient 2 | cosine | surprise
applesauce marjoram 0.42 3.01
bananas basil - 4.69

A similar case seems to be occurring in Table 7, which
shows the recommended steps for a user to appreciate the
highly surprising combination of parmesan and vanilla. This
combination is found in a few unusual salads and cakes as
well as one weird pasta recipe. GloVe suggests the user ap-
proach it by first trying artichokes and icing sugar, then cap-
sicum and icing sugar®. As in the first example these ingre-
dients occur in the same contexts as those in the target.

Table 7: Surprise walks for parmesan and vanilla.

Using GloVe:

Ingredient 1 Ingredient 2 | cosine | surprise
artichokes icing sugar 0.29 2.23
capsicum icing sugar 0.26 4.36
parmesan vanilla - 7.14
Using s-GloVe:

Ingredient 1 Ingredient 2 | cosine | surprise
mozzarella figs 0.43 2.11
cheese chocolate 0.39 4.25
parmesan vanilla - 7.14

By contrast s-Glove suggests that the user first try moz-
zarella and figs, then cheese and chocolate, then the target
of parmesan and vanilla. Note that “cheese” here seems, on
manual inspection of the dataset, to refer to the mild ched-
dar that is the typical “default” cheese in the Anglosphere.
The left-hand side of this sequence seems to be based in lit-
eral similarity — all three are types of cheese, and two are
prominent in Italian cuisine. This may be because all three
are surprising in similar contexts (in addition to being lit-
erally similar), but it may also be an effect of the non-zero

3“Jam” most closely translates to “jelly” or “preserves” in
North American English.

““Capsicum” and “icing sugar” are “bell peppers” and “confec-
tioner’s sugar” in North American English.



weighting of unsurprising co-occurrences (as controlled by
« in Equation 1). The right-hand side is more interesting,
and begins to demonstrate the value of s-Glove. Chocolate is
similar in context to vanilla, but not as similar as some of the
other baking additives. Figs in turn are similar to chocolate,
but not as similar as many other confections. What s-Glove
provides is that the combination of cheddar and chocolate
is supposedly like parmesan and vanilla in terms of why it
is surprising. In other words, s-Glove suggests that some-
one could be better prepared for the high-surprise combina-
tion of parmesan and vanilla following this sequence than
by following the literal recommendations of GloVe. We can
as of yet offer no validation of this beyond our own opin-
ions. Starting with mozzarella and figs (a common cheese-
and-sweet-item combination found often alongside prosci-
utto, honey, or pistachios) and then proceeding to (cheddar)
cheese and chocolate (less common, but still found in baked
goods and more adventurous desserts) as a primer for trying
parmesan and vanilla seems both plausible and palatable.

Table 8: Surprise walks for worcestershire sauce and
vanilla.
Using GloVe:
Ingredient 1 Ingredient 2 | cosine | surprise
ketchup icing sugar 0.25 3.45
paprika icing sugar 0.25 6.17
worcestershire | vanilla - 7.82
Using s-GloVe:
Ingredient 1 Ingredient 2 | cosine | surprise
kidney beans chocolate 0.44 1.19
mustard ice cream 0.44 4.87
worcestershire | vanilla - 7.82

Table 9: Surprise walks for soy sauce and chocolate.

Using GloVe:

Ingredient 1 Ingredient 2 cosine | surprise
ginger cocoa powder 0.28 3.16
cabbage cocoa powder 0.28 5.6
soy sauce chocolate - 8.55
Using s-GloVe:

Ingredient 1 Ingredient 2 cosine | surprise
capsicum jam 0.48 4.87
mushrooms almond extract | 0.43 6.22
soy sauce chocolate - 8.55

Tables 8 and 9 show similar trajectories to the first two
examples. Both are combinations of sweet and savoury in-
gredients, a common theme among highly surprising com-
binations in our dataset. In Table 8 GloVe again goes with
icing sugar as the closest ingredient to vanilla, this time
pairing it with ketchup (as in some salad dressings) and
then paprika (as in some moderately unusual baked goods).
GloVe identifies similarly literal pairings in the soy sauce
& chocolate case. S-GloVe, in Table 8 again suggests a se-
quence of seemingly unconnected but on deeper-inspection

flavour-appropriate pairings: mustard ice-cream seems like
excellent preparation for whatever unusual recipe could fea-
ture worcestershire sauce (a complex and pungent fermented
condiment) and vanilla. Beans and chocolate are common
combinations in Mexican and Mexican-inspired cuisine, but
are still conceptually similar enough to mustard and ice-
cream to serve as preparation.

In the final example s-GloVe appears to have selected
what is (to the authors) a more unusual and less palatable
combination, presented here for the purposes of showing
that our preliminary models are far from flawless. Mush-
rooms are gastronomically quite similar to soy sauce, but the
sequence of starting with capsicum and jam, then moving on
to mushrooms and almond extract does not, to us, seem as
appropriate a preparation for the combination of soy sauce
and chocolate. Further developments in the construction of
the surprise spaces, the representation of the data, and the
algorithm for generating “surprise walks” are needed.

Discussion

In this paper we have presented a proof of concept for how
a co-creative system might take planned, sequential action
to change human opinion. To our knowledge, this is the
first such work, with prior co-creative systems focussing
on turn-taking and not conceiving explicitly of longer-term
goals. The majority of current interactive creative systems
typically do not engage in creative dialogues: they present,
re-generate, and present again independently.

The capacity for planned, sequential interactions with cre-
ative systems raises a number of possibilities. Systems de-
signed to educate less-expert users could introduce creative
artefacts in sequences designed to broaden user horizons.
Diverting creators away from low-novelty clusters of arte-
facts could also be useful outside explicitly educational con-
texts, given the prevalence of fixation in human designers
(Jansson and Smith 1991). Similar approaches have been
suggested in data mining contexts as a way to introduce
users to the complex nuances of a dataset in an optimal way
(Wagstaff et al. 2013). Alternatively, systems designed to
diversify the behaviour of their users over time could have
benefits for health and nutrition (Grace et al. 2017), using
curiosity to overcome orthorexia and neophobia.

Any attempt to influence human behaviour with technol-
ogy must necessarily be accompanied by an ethical frame-
work. Investigations of what that might entail have arisen
from the field of persuasive technology (Berdichevsky and
Neuenschwander 1999; Verbeek 2006). Is it right to de-
sign systems that seek to change the desires of their users by
manipulating their attention and curating their experiences?
We, as creativity researchers, can decide that novelty and
diversity are worthy of pursuit, but in doing so we implic-
itly devalue the traditional and the conservative. Luckily, in
the contexts we see as near-future applications (education,
design and nutrition, for example), it is simple enough to
secure user consent in advance. In other contexts, such as
using curiosity modelling to customise the news a user con-
sumes, ethical minefields abound.

The most critical next step in this area of research will
be to establish how “surprise walks” can be evaluated. The



proof-of-concept results in this paper show that the concept
has promise, but any further development will require more
robust methodologies. One approach would be to devise lab-
oratory experiments in which users are exposed to person-
alised sequences of artefacts and rate them for novelty, in-
terest, value, etc. This would require “bootstrapping” a user
model of knowledge and behaviour in a lab environment.
Another approach would be to develop ways to quantify
the difference between s-GloVe’s “surprise space” and tradi-
tional conceptual spaces like GloVe. A final option, and one
which remains a long-term goal of our research, would be to
develop and evaluate an interactive system for diversifying
behaviour by inspiring curiosity through surprise walks.
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