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Abstract

MuSyFlI is a system that tries to model an inspirational
computational creative process. It uses images as source
of inspiration and begins by implementing a possible
translation between visual and musical features. Results
of this mapping are fed to a Genetic Algorithm (GA)
to try to better model the creative process and produce
more interesting results. Three different musical arti-
facts are generated: an automatic version, a co-created
version, and a genetic version. The automatic version
maps features from the image into musical features non-
deterministically; the co-created version adds harmony
lines manually composed by us to the automatic ver-
sion; finally, the genetic version applies a genetic algo-
rithm to a mixed population of automatic and co-created
artifacts.

The three versions were evaluated for six different
images by conducting surveys. They evaluated whether
people considered our musical artifacts music, if they
thought the artifacts had quality, if they considered the
artifacts "novel’, if they liked the artifacts, and lastly if
they were able to relate the artifacts with the image in
which they were inspired. We gathered a total of 300
answers and overall people answered positively to all
questions, which confirms our approach was successful
and worth further exploring.

Keywords: Computational Creativity, Inspiration, Fea-
ture Translation, Genetic Algorithm, Music Generation

Introduction and Motivation

MuSyFI tries to model an inspirational creative process
by automatically and semi-automatically generating music
from images. Having chosen images as source of inspira-
tion, any image, it generates music that can be perceived
as being related to it. This relationship is subjective, since
there is virtually an infinite number of musical artifacts that
can be generated from an image. We do not target a sonifica-
tion endeavour as we do not merely translate visual features
into musical features to produce sound, but rather attempt to
model a possible creative inspirational process whose start-
ing point are images.

We aimed that our musical artifacts could be considered
creative, aesthetically pleasing, and that the music could be
relatable to the images that inspired them. Each one of these
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goals is subjective, which makes evaluation harder. This was
positively evaluated through questionnaires answered from
300 respondents.

The rest of the paper is organized as follows: We start by
reviewing related work. Next, we discuss feature extraction
from images and describe the main features extracted. We
then explain in detail the pursued visual to music mapping.
Afterwards, we describe the genetic algorithm developed in
this work, along with all its processes and the tests we did to
validate our parameter choices. We present and discuss our
results, and conclude the paper with both a critical summary
as well as some indications for future work. Our musical
artifacts and respective images can be seen and heard on our
website!.

Related Work

There are several systems that generate music computation-
ally - EMI (Cope 1989), GenJam (Biles 1994), MuseNet
(Payne 2019), to name a few - using different approaches
- from Knowledge-Based Systems (KBSs) to Artificial Neu-
ral Networks (ANNs). However, few try to model inspira-
tion. In one such work, Horn et al. (2015) extract the domi-
nant colours from an image and shape a 3D vase according
to those colours, effectively implementing an inter-domain
mapping of features.

Later, Teixeira and Pinto (2017) generated music inspired
in images, outputting three versions: raw, harmonized and
genetic. For the raw version, the image is divided into quad-
rants which are then mapped to measures. The colours in
each quadrant determined the notes and the chords played in
each measure. The notes were chosen from a diatonic scale,
and chords were major or minor, depending if the colour was
warm or cold, respectively. The rhythm was picked from 44
drum patterns from a database, based on the emotion state of
the quadrant given by its visual characteristics. The harmo-
nized version adds a bass line to the raw version, and limits
chords to three or four for the whole artifact, obtained from
the whole image. Likewise, only two drum patterns are used
in this version. Finally, the genetic version applies a GA to
a population of 24 individuals (the raw version, the harmo-
nized version, and 22 other variations thereof). The GA’s
fitness function is a combination of seven different criteria.

"http://web.tecnico.ulisboa.pt/ist1 78488/



Our work addresses the same problem as Teixeira and
Pinto but takes a very different approach. For example, the
authors divided the image into a grid of quadrants and anal-
ysed the image quadrant by quadrant, whereas we divide the
image into its saliencies and non-salient background. Addi-
tionally, Teixeira and Pinto use pixel based features, whereas
we also added shape and position related features.

Both approaches produced interesting and promising re-
sults. The difference lies in the path chosen to arrive at
the same goal. Both paths are valid and both paths lead us
through interesting landscapes, which, by its very nature, at-
tests to the subjectivity involved in this approach and the
weight personal aesthetics has in the final result.

Image Feature Extraction

To use images as an inspiration source, we first need to ex-
tract features from them to map these into musical features.
In other words, we need to process the image.

Saliencies

Saliencies are features that draw attention to us when look-
ing at an image or a series of images and saliency de-
tection is an active research subfield of computer vision.
OpenCV (Bradski 2000) has a saliency detection module
with two static saliency? detection algorithms. One of those
algorithms is the StaticSaliencyFineGrained (Montabone
and Soto 2010). The authors based themselves on center-
surround differences our eyes use to identify saliencies in
images. An example of the saliency map obtained from this
algorithm is shown in the second image of Figure 1, next to
the original image. As can be seen, either the dog or parts
of it are identified as being salient, as well as some parts of
the grass. However, the dog is not identified perfectly as a
whole.

To improve upon this result, we used another image
processing algorithm, GrabCut (Rother, Kolmogorov, and
Blake 2004), also implemented in the OpenCV library. It
segments the image into foreground and background homo-
geneous regions. The GrabCut algorithm usually needs a hu-
man to indicate where the background and foreground are.
However, by using the saliency maps, we can bypass the hu-
man input and still obtain accurate and autonomous results.
If we classify each pixel in the saliency map as one of the
algorithm’s four possible values®, we can then feed the im-
age to the algorithm and use its output to obtain the correct
saliencies of the image. We can observe this process in Fig-
ure 1.

Contours A contour is a curve that joins all the continuous
points along a boundary which encircles a region of pixels
that have the same colour or intensity. Contours were used to
study the shape of the saliencies we extracted. We used the
findContours function from OpenCV which receives a
binary image as input and finds its contours. It is based on

2Static saliencies are detected specifically in single images
rather than in image sequences or video.

3Foreground, Probable Foreground, Probable Background,
Background.
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Figure 1: Clockwise, starting from the top left image: Orig-
inal image, its saliency map, and respective GrabCut output
and input images.

(Suzuki 1985) and it works by applying border following to
the binary image, labeling the borders it finds. Here, border
and contour are used interchangeably.

We then find the contour’s centroid and plot the distance
to the centroid along the border, starting from the mini-
mum distance point and continuing along the border, coun-
terclockwise. This contour distance plot can be seen in Fig-
ure 2 with respect to the dog image of Figure 1. The y-axis
represents the distance to the centroid relative to its maxi-
mum value, and the x-axis represents the number of pixels
along the contour. This means each plot always has a peak
of value 1 and that, since bigger saliencies have bigger con-
tours, bigger saliencies generate larger contour plots as well.
The triangles in the plot are explained in subsection Melody.

Colour

We use both Hue, Saturation, Value (HSV) and Hue, Satura-
tion, Lightness (HSL) colour models to extract what we call
the dominant colours of an image. We divide the 360 hues
into 12 main hue bins. If a hue bin has at least 10% of all
the image’s pixels, then it is considered a dominant hue tone.
The 10% value was obtained empirically, and while it might
seem low, it allows us to retain important colour informa-
tion about the image that would otherwise be lost. We can
then plot the dominant colours histogram. In Figure 3 we
show the histogram for the original dog image. The y-axis
represents the number of pixels and the x-axis represents the
respective hue bin. All hues whose bars are higher than the
black horizontal line (representing the 10% threshold) are
dominant colours. We should note that, for each bin, we
have two overlapping bars: the first one represents the re-
spective hue with max saturation and max lightness, and the
second one represents the same hue but with the average sat-
uration and average lightness extracted. We do this to have
an idea of the pure hue and an approximation of the actual
hue that is present in the image. In Figure 3, an example
of this are the two bars representing the main hue marked
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Figure 2: Contour distance plot for the dog image saliency with peak triangles fit onto them.

with number 2, one bar being lime green and the other being
a darker shade of the same green. The bins are numbered
from [0, 11].
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Figure 3: Colour histogram for the original dog image of
Figure 1.

Edges

Edge detection is a classical image processing problem that
tries to identify points in an image where brightness changes
abruptly. The set of these points forms a set of curved
lines called edges. John F. Canny developed a staple al-
gorithm for edge detection that was eventually named after
him, the Canny edge detector (1986) which is implemented
in OpenCV’s Canny function. The high and low thresholds
were defined empirically and subjectively as 30 and 200, re-
spectively, and we used the same thresholds for every image
in our dataset.
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Feature Mapping

Having presented the visual features and how we extracted
them, we now explain the visual to musical feature mapping
we conceived by explaining how general features of our arti-
facts were defined, as well as how the melody and harmony
for our musical artifacts were pieced together.

General Composition Features

Before defining the melody and harmony parts of our musi-
cal artifacts, we first define their time signature, tempo, and
key/scale.

The most common time signature in music today is §,
while other time signatures (like § for example) are usually
used to compose more complex musical pieces, so we de-
cided to define the time signature for all our musical artifacts
as being  as well.

Regarding the tempo of our musical artifacts, we chose
to associate it with the number of edges in an image. Im-
ages with more edges seem, in our opinion, more frenetic
and having a faster pace than an image that does not have as
many edges. We defined a minimum tempo of 60bpm and
a maximum of 150bpm since they are relatively slow and
fast tempos, respectively. We apply the Canny edge detector
algorithm, count the number of non-zero pixels (edge pix-
els), and divide them by the total number of pixels in the
image, obtaining what we call the edge_ratio. This ratio is
then divided by 0.3 to normalize it, since that was the max-
imum observed edge ratio in our dataset with our parameter
choice. We use this new ratio to define the tempo of the
song, being that O corresponds to 60bpm, 1 corresponds to
150bpm, and other ratios are distributed linearly according
to Equation (1).

edge_ratio 0
0.3
Finally, regarding the key, we decided to generate tonal
musical artifacts so our pieces have a tonal center with which
a diatonic scale is associated with. To choose the tonal cen-
ter of our scale, we used colour. We extract the most dom-

tempo = || x (150 — 60) + 60|



inant hue tone of the image, and use the association of Fig-
ure 4, where we overlap a 12 hue tone circle with the Circle
of Fifths* since similar hue tones harmonize well with each
other (ex.: red and orange) as well as adjacent notes in the
Circle of Fifths (ex.: C and G). We use 12 hue bins so as to
make a direct association between colours and semi-tones.
We should note that the first association made was that red
be associated with A, since 440 Hz is the standard tuning
pitch and corresponds to the A tone, and in the visual spec-
trum, 440 Hz corresponds to the colour red, which is its first
visible colour.

Figure 4: Colour and tone association according to the Cir-
cle of Fifths.

To define whether the scale chosen is major or its rela-
tive minor, we turned to the average Value (from the HSV
colour model) that dominant colour has. If it is lower than
or equal to 0.5, the scale chosen is the minor one. If it is
higher than 0.5, the scale chosen is the major one. This was
done because major scales sound “brighter”, while minor
ones sound “darker”.

Melody

Melody is usually what stands out in a song. With this in
mind, we decided to associate the melody part of our musical
artifacts to the saliencies we extracted.

We wanted to use the shape of our saliencies and map it in
some way into the melody of our musical artifacts. We as-
sociated more angular shapes to higher-pitched sounds, and
flatter shapes to lower-pitched sounds. A similar association
was studied by Ramachandran and Hubbard (2001). Fur-
thermore, sharper shapes give, in our opinion, a bigger sense
of urgency and speed when compared to rounder shapes. So
we associated the first type of shapes with quicker notes
strung together, and the second with slower, longer notes.
We can see different shape examples in Figure 5.

To measure the different types of shapes, we find the
saliencies’ contour plot peaks, fit triangles onto them, and
then measure shape properties through the triangles. To be
able to draw triangles onto the peaks, we need three points
for each one. The first point is the peak point itself. The

“The Circle of Fifths is a musical tool that depicts the relation-
ship between the 12 different tones on the chromatic scale.
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Figure 5: Different types of shapes.

other two are the baseline points, for which we first need
to define the baseline value of the triangle. This is done by
finding the halfway points between the peak and the previ-
ous/next peaks in the contour. Then, we define the baseline
value as the median value between these two halfway points.
Having the baseline value (fixed y), we just need to find the
z coordinates for the triangle’s baseline points. We do this
by intersecting the baseline and the contour plot and find-
ing, to the left and to the right of the peak, the points whose
values are closest to the baseline to form the triangle®. We
define the neighbourhood where we search for these points
as being 2 x (peak_value — baseline) X contour_size to
both sides of the peak, where peak_value, baseline, and
contour_size represent the ordinate of the peak, the ordi-
nate of the baseline, and the number of pixels of the contour,
respectively. Then we minimize the error for each of the
neighborhood’s points (z,y), given by Equation (2):

error = |baseline — y| x 1000+ |peak_x — x| < 0.06 (2)

peak_x is the abscissa of the peak. The weights, 1000
and 0.06, were attributed empirically. After drawing the tri-
angles onto the contour distance plot, we obtain a plot as in
Figure 2.

Each triangle maps to a single note and we add notes onto
the musical sheet sequentially from left to right. The first
note corresponds to the minimum contour distance point.

To turn the triangles into notes, we need to define the
notes’ pitch and duration. For the pitch, we calculated the
peak’s angle using trigonometry. We fit a whole scale be-
tween the minimum and maximum angles of the contour
plot, and every note in between is uniformly distributed,
with more acute angles representing higher notes and vice
versa. Also, our angle to pitch distribution is not deter-
ministic. To generate more diversity between notes, but
still choosing a similar note to the one picked, we fit a

gaussian around the chosen note with a standard deviation

i 2 .
o = 3 x repeatednote” whore repeated_note is the number

of times that note is chosen consecutively.

5The contour plot is not continuous, so we need to find the clos-
est point of the intersection and not the exact points.



For the duration, we calculate the triangle area to contour
distance’s integral ratio over the triangle’s baseline points.
We rounded the ratios to the decimal point and, since higher
ratios means a good fit between the triangle and the peak,
i.e., a sharp peak, and a lower ratio a rounder peak, we de-
fined that whole notes correspond to ratios rounded to 0.0,
half notes correspond to ratios between 0.1 to 0.4, quarter
notes correspond to ratios between 0.5 to 0.7, eighth notes
correspond to ratios rounded to 0.8, and sixteenth notes cor-
respond to ratios rounded to 0.9 and 1.

Rests were also defined from contour distance plots. We
measure the relative distance between peaks - that is, we
count the number of pixels between peaks, and divide them
by the total number of pixels of the contour - and then round
it to the decimal point. These relative distances are usually
very small, so we associated them with rest durations as fol-
lows: if the relative distance is rounded to 0.0, no rest is
added between notes; if it is rounded to 0.1, an eight-note
rest is added; if it is rounded to 0.2, a quarter note rest is
added; every value higher than that corresponds to a half
note rest being added between notes.

To define the octave of our melody tracks, we use the
saliency’s most dominant colour average Lightness (from
the HSL colour model): the higher the lightness, the higher
the octave and vice versa. We defined the range of possi-
ble octaves from CO to C6. Then, we divided the range of
possible Lightness values into seven different bins, classi-
fied the average Lightness into one of these bins linearly,
and directly associated lightness bins with octaves.

Regarding the timbre of the saliencies’ melody lines, we
decided to use the most dominant colour of each saliency -
since timbre is also known as tone colour - and we mapped
different hue tones to different families or groups of instru-
ments. This association is completely subjective and could
have been done in many different ways, but we tried to ar-
range families so that neighbouring families were associated
with similar colours. Since Lightness determines the octave
of our tracks and for the same Hue we can have very differ-
ent Lightness values as the two colour channels are indepen-
dent, Hue only determines the instrument family and not the
instrument itself. Accounting for Lightness, our association
is presented in Table 1. Minimum and maximum Lightness
values, which roughly correspond to black and white, were
associated to Timpani and a Piccolo Flute since they are low
and high register instruments, respectively.

Finally, each saliency inspires a melody line, so when an
image has more than one saliency, multiple melody lines are
generated. They are played radially, that is, they start sooner
if their respective saliency is closer to the center of the image
and vice versa.

Harmony

We associated harmony to the non-salient background, i.e,
the image that remains when we remove the saliencies. We
analyse the non-salient background as a whole, defining one
harmony track per image. First we extract the non-salient
image’s dominant colours, and we use the same associa-
tion of Figure 4 to define the tonality of the harmony track’s
chords. However, we define for each tonality five different

Proceedings of the 12th International
Conference on Computational Creativity (ICCC '21)
ISBN: 978-989-54160-3-5

107

types of chords: major and minor chords, augmented and
diminished chords, and power chords®.

If the chord’s dominant colour has a Lightness of 0.9 or
higher, the chord is associated with an augmented chord; if it
is lower than 0.1, it is associated with a diminished chord. If
its Saturation is lower than 0.25 (with its Lightness between
0.1 and 0.9), the chord becomes a power chord. If none of
the cases above happen, the colour is associated with a major
or minor chord. In that case, the type of chord is defined as
follows: if the Value of the dominant colour is 0.5 or lower,
the colour is associated with a minor chord; if it is higher
than 0.5, a major chord is used.

We assigned one chord to each of the musical artifact’s
measures. The chord for each measure is chosen according
to the dominance of its dominant colour in the image: more
dominant colours are more likely of being selected and vice
versa. The range of possible octaves for the harmony track
is between C2 and CS5, inclusively. To assign it, we calculate
the median octave between the melody tracks of the artifact
and subtract one to this value.

For the timbre, we tried to measure if an image used
colour tones close to each other, or colour tones that con-
trasted each other. We calculate the relative distance be-
tween each dominant colour and the most dominant colour
of the image around the colour circle, and calculate the av-
erage colour distance for the whole image. Then, we as-
sign the harmony track’s instrument by picking the longest
track’s dominant hue as the hue center, and then traversing
that distance in the colour circle in a clockwise or counter-
clockwise fashion (randomly picked between the two) to de-
cide the harmony track’s hue, and, consequently, the har-
mony track’s instrument, using our hue to instrument asso-
ciation from Table 1.

If an image has only one melody track, its harmony track
is comprised of a chord line, that is, at each measure all notes
from its previously defined chord are played. If the image
has several melody tracks, the harmony line consists only of
a bass line, so only the tonic of the chord is played at each
measure.

Two versions are presented at this stage: an automatic ver-
sion and a co-created version. The automatic version is ob-
tained using the mapping we explained in this section, with
harmony lines solely comprised of whole notes. The co-
created version stems from the automatic version, but its har-
mony track is selected from a set of manually composed har-
mony tracks. In total, we composed 24 harmony lines: one
bass line and one chord line for each family of instruments
from Table 1. The chord or bass line is chosen according to
the instrument family.

Genetic Algorithm

Up until this point, our work can be interpreted as feature
translation between domains and, although we believe our
feature mapping is novel and rich, feature mapping alone
does not model any creative process. While we could argue
it possibly models the underlying inspirational process of

STechnically not a type of chord, but comprised by the tonic
note and its perfect fifth.



Octaves

Marimba(13)

Clarinet(72)

Bassoon(71)
Baritone Sax(68)

Timpani{48)
Timpani{48)
Timpani{48)

Marimba(13)
Clarinet(72)
Bassoon(71)

Timpani(48) | French Horn(61)

Timpani{48) Tuba(59)

Timpani({48) | Church Organ(20)

Timpani{48)  Harpsichord(7)

Oboes/Bassoons(2)
French Horn/Saxophones(3)
Brass(4)
Organ(5)

Church Organ(20|
Harpsichord(7)

Timpani{48)
Timpani{48)
Timpani{48)

Contrabass(44)
Piano(1)
Celesta(9)

Cello{43)
Piano(1)
Celesta(9)

Instrument Families/Groups

Timpani{48) Tubular Bells{15)

Timpani(48) Orchestral Harp(47) Orchestral Harp{47)

Tubular Bells{15)

Cc3 C5 C6

Xylophone(14) |Piccolo(73)

Flute(74) Flute(74) Piccolo(73)

English Horm(70) Oboe(69) Oboe(69) Piccolo(73)
Tenor Sax(67) Alto Sax(66) Soprano Sax(65) |Piccolo(73)
Trombone(58) Trumpet(57) Trumpet(57) Piccolo(73)

)J'| Church Organ{20) | Church Organ(20) | Church Organ(20) |Piccolo(73)
Harpsichord(7) Harpsichord(7) Harpsichord{7) |Piccolo(73)

Piccolo(73)

Violin(41) Piccolo(73)
Piano(1) Piccolo(73)

Celesta(9) Piccolo(73)

Glockenspiel{10) |Piccolo(73)

Table 1: Hue to instrument family association.

a creative process, we need something more to model the
exploratory component of creativity. With this in mind, and
also to try to improve upon our results, we use a genetic
algorithm.

Structure

We first generate the initial population by using our fea-
ture mapping n times to produce n musical artifacts, where
n = 100 denotes our population size. We use a mixed ini-
tial population of 50% automatic musical artifacts and 50%
co-created artifacts. Our Selection step is standard, with an
elitism factor of 25%. Then, each pair of individuals se-
lected has a 90% chance of being crossed over and each one
has an 80% chance of being mutated. We continue select-
ing individuals for 300 iterations after which we output the
fittest individual, which represents our genetic version.

Validation

A study was conducted where we observed how the fitness
function evolved to select the values for population size,
number of iterations, and percentages of crossover and mu-
tation. We first tested different population sizes - 25, 50
and 100 - and we observed that the fitness of individuals
increased the more we increased this number, but we set-
tled for 100 since a larger number made the program slower.
Next, we tested the number of iterations, starting with 50,
then 100 and finally 300. We observed significant improve-
ments over the fitness values of individuals, but a stagnation
at around 300 iterations, so we fixed that parameter at that
value. Finally, we initially set our crossover and mutation
percentages as 90% and 80% respectively since both mech-
anisms are extremely important in the evolution of our musi-
cal artifacts. We then dropped each one individually to 10%
and observed that the fitness values obtained were worse, so
we kept the initial parameters of 90% for crossover and 80%
for mutation.

Crossover

Crossover happens between a pair of individuals and it al-
ways involves half of each musical artifact’s measures, al-
though not necessarily the same half each time.

There are three different types of crossover that can hap-
pen: melody track crossover, harmony track crossover, and
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mixed crossover. The first type happens between the melody
tracks of the two selected musical artifacts. Harmony
track crossover is identical, but between the artifacts har-
mony tracks’ measures. Finally, mixed crossover combines
both previous types of crossover, switching both the cho-
sen melody track’s measures, and the same harmony track’s
measures across two musical artifacts.

The crossover step is crucial since it is what allows for
a mixed harmony line in our genetic version. We use the
fitness function’s last criterion to try to group the genetic
version’s harmony line into uniform groups of the other ver-
sions’ harmony lines. Hence, the genetic version’s harmony
line tends to switch between the two periodically.

Mutation

Mutation can happen to any selected individual. In a mu-
tation, one feature of the selected individual is changed. In
our GA, we defined six different types of mutations: note
duration, note pitch, note switch, chord type, chord pitch,
and melody track instrument.

The note duration mutation changes the duration of a ran-
domly selected note, pitch mutation affects its pitch, and
note switch mutation simply switches two contiguous notes.
Chord type mutation changes the type of a randomly se-
lected chord to another type (M, m, Aug, Dim, or PC), and
chord pitch mutation changes its tonic to another pitch from
the pitches associated with the dominant colours of the non-
salient image. Finally, melody track instrument mutation
simply mutates a randomly selected melody track’s instru-
ment to one of its neighbouring colour’s instruments accord-
ing to our association. The only type of mutation with a
different probability of occurring is the melody instrument
mutation with only a 1% chance of happening. Otherwise,
the different mutations are distributed uniformly, each hav-
ing a 99%/5 = 19.8% chance of happening.

Fitness Function

The fitness function evaluates how fit individuals are. In
other words, it defines how ”good” or ”bad” individuals are,
according to some criteria established a priori. It is usually
defined as a set of criteria that optimize a function, but since
there are no optimal musical compositions, the criteria we
present here are subjective, even if based in music theory



concepts. With f being the final fitness value, we defined
our criteria as follows:

o If the musical artifact starts or ends with the tonic chord:
f+ f+100.

¢ If the musical artifact starts or ends with a note that be-
longs to the chord of that measure: f < f + 100.

* Every time the underlying chord appears in three consec-
utive measures: f < f—60. If the harmony line is played
by a bass line instead of a chord line, we check the tonic
itself.

* For each melody track and for each of its measures, when
there is a note on the strong beat: f <+ f 4+ 10 x
note_duration, where note_duration denotes the dura-
tion of the note.

* For each melody track and for each of its measures, when
its strong note belongs to the measure’s chord: f < f +
40 x note_duration.

* For every melody track note, if that note belongs to its
respective chord: f < f + 30 X note_duration.

* For every melody track note that does not belong to either
its respective chord or its respective scale: f < f — 60.

* For each melody track, if each of its measures has its re-
spective chord notes: f < f + 100 per chord note.

* If a melody track’s measure has no notes that belong to its
respective chord: f < f — 200.

 If an interval between melody track notes is bigger than
12 semi-tones: f « f — 2 x pitch_difference, where
pitch_difference is the difference between the notes’
pitches.

e If there are multiple melody tracks that are played by the
same instrument: f < f — 50 per repeated instrument.

e Finally, f < f — 200x the standard deviation from
the groups of co-created vs automatic harmony lines. At
the start of the GA, since all musical artifacts only have
groups of one type: f < f — 200 X number_measures,
where number_measures denotes the number of mea-
sures of a musical artifact.

The overall fitness value of an individual is the linear com-
bination of the different criteria values. Some of these crite-
ria were given stronger predominance and hence higher val-
ues. These values were defined subjectively and empirically,
and are relative.

Evaluation

The hypotheses we wanted to verify were if people thought
our musical artifacts had quality, if they thought they were
novel, if they enjoyed listening to them, and if they could
relate them to their respective images. Since all of our goals
are subjective, to evaluate our results we decided to survey
people. The hypotheses questions were evaluated with a
Likert scale from 0-5.
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Evaluation methodology

We evaluated our system for six different images. The
images were selected in order to have a balance between
more abstract and more concrete images, images with
different colour spectra and edge predominance, as well
as images that had only one predominant saliency, im-
ages with several saliencies, and images with no appar-
ent saliencies at all. The images selected can be seen at
http://web.tecnico.ulisboa.pt/ist1 78488/ and they include an
Elf image, a Dog image, Rothko’s Green and Maroon, Pol-
lock’s Blue (Moby Dick), Picasso’s Girl Before a Mirror,
and Mondrian’s Composition No.10.

For each image, we generated three different musical ar-
tifacts, or versions - an automatic one, a co-created one, and
the genetic one. That means that in total we evaluated 18
different musical artifacts. We split the six different images
between four different surveys, two images per survey, one
of the surveys repeating two of them, but paired differently.
The surveys are identical in terms of the questions asked and
their structure, the only differences were the images and the
musical artifacts presented in each one.

Regarding the structure of each survey, we first profile the
respondents by age, gender, degree of musical knowledge,
and music genre(s) they are most familiar with or prefer best.
Both the degree of musical knowledge and music genre pref-
erence are asked to see if we could find any patterns among
people of the same groups, regarding those categories, but
only the former was relevant as discussed in the Result Anal-
ysis. The other demographics did not amount to any relevant
findings either.

Then, we present people one of the three different ver-
sions for one image. We first ask people if they think the
sound sample has quality, if they think it is novel - with a
description the term -, and if they enjoyed listening to the
sound sample. Only after having answered these questions
we present the respondent with the image from which the
musical artifact was generated. We then ask if they relate
the sound sample to the image shown. These questions are
evaluated using a Likert scale of 0-5. We do not tell the re-
spondent the sound sample was inspired by the image. Then
we repeat this for each of that image’s other versions. The
order in which we present the different versions is differ-
ent for each image. Since we have three different versions,
the possible ordered arrangements we can make with them
are exactly six (matching the number of different images we
chose to evaluate our system with), so we choose a different
permutation for each image. This was done to avoid order
bias, i.e., preventing people from getting too familiar and not
answer each musical artifact’s questions independently from
the other ones.

We also decided not to limit our respondents to people
who did not know a priori about our project to try to obtain
a larger number of answers and to be able to study for any
bias regarding their previous knowledge of our musical arti-
facts being made by a computer. We asked people this at the
end of each survey. The surveys were mainly distributed via
social networks.



Result Analysis

Analysing the answers as a whole, we obtained exactly 300
answers in total, of which 87% of the respondents said they
considered our musical artifacts as music, with only 13%
saying they did not. Regarding the four main questions
asked (Figure 6), generally speaking results are fairly pos-
itive across all four questions, particularly regarding quality
where the most answered value is 4.

Do you think the sound sample has quality? Do you consider the sound sample to be novel?
31,89% 35,00% 31,17%

27.05%

~~~~~ ,00% 17,00%

. oo o

. o -

R . s 44 I
P P P

(a) Quality assessment question (b) Novelty assessment question

Do you relate the sound sample to the image
shown?

How much did you enjoy listening to the sound
sample?

217

1o8% e
s 0 1 2 s s s

(c) Aesthetics assessment ques- (d) Relationship
tion question

2%
9,50%

el

assessment

Figure 6: Assessment of our main hypotheses.

Next, we separate people who knew about the project (106
answers) from people who did not (194 answers). In general,
people who knew about our project tend to lower their ex-
pectations and evaluate our artifacts as being better, and the
opposite can be said about people who did not know any-
thing about it. A note should be made about musicians or
people with a degree in music however: they are the com-
plete opposite, i.e., those who know about our project give
our artifacts the worst scores, but those who do not evaluate
them extremely positively. However, we should also point
out that in total we had 12 answers for this category, 6 of
people who knew and 6 of people who did not, so, while it
is an interesting hint worth further exploring, we acknowl-
edge that personal bias might be a factor here with such a
small sample size. We also divided the overall results by
version (Figure 7) and we can see the genetic versions were
generally preferred.

Finally, we examined together the quality and novelty val-
ues for the images included in our surveys. The results are
shown in Tables 2 and 3, where we present, for each image’s
versions, the median value, the Interquartile range (IQR),
the average, and the weighted average of the answer distri-
bution for each question. The weighted average takes into
more consideration stronger opinions and is given by Equa-
tion (3) where w_av represents the weighted average, and
f(2) the absolute frequency for answer value i. The cells
shaded in red are the worst evaluated versions for each ques-
tion and each different average, whilst the green ones are the
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best evaluated versions.

S0 oi % f(i) % (12,5 —i| x 2)
S0 o f(0) X (12,5 — ] x 2)

w-_av =

3

Do youthink the sound sample has
quality?

Do you consider the sound sample to be
novel?

(a) Quality assessment question (b) Novelty assessment question

How much didyou enjoy listening to the
sound sample?

Do yourelate the sound sample to the
image shown?

1 2 3 s s 0 1

(c) Aesthetics assessment ques- (d) Relationship  assessment

tion question

Figure 7: Assessment of our main hypotheses for the three
different versions of our system.

There is only one version whose average quality values
are below 2.5 (the neutral value, considering the Likert scale
used), all the other averages - including all novelty ones -
are above this value. Taking these results into account, as
well as Boden’s creativity theory (2009) stating that creativ-
ity is some sort of combination between value and novelty,
we can affirm that all our artifacts can be considered creative
from a qualitative point of view. We should point out that a
person who does not like a particular genre (subjective point
of view) might still acknowledge that a particular song has
quality, from an objective point of view. In that sense, we
chose to ask if the artifacts had qguality instead of what value
they had.

Discussion

Recalling our goals once again, we aimed at generating mu-
sical artifacts that could be considered music and creative,
aesthetically pleasing, and that could be related to the im-
ages in which they were inspired. After analysing results, we
can safely say that our goals were met: the surveyed people
generally considered our artifacts valuable and novel - and
hence creative -, they generally enjoyed listening to them,
and considered them to be music. Lastly, although results
were more polarized, there were still more overall positive
answers than negative ones regarding the relation between
images and their respective musical artifacts. This is only
natural since such relation is highly subjective. We can also
conclude from the surveyed data, combining the answers for
all the images, that our genetic version appears to be pre-
ferred over the other two versions, which also legitimizes its
implementation.



Do you think the s.ound sample has e pollock2 - ‘ Do you consider the sound sample to be - pollock2 .
quality? novel?
Version A cc G A cc G A cc G Version A cc G A cc G A cc G
Median 4 4 4 3 3 3 4 4 4 Median 3 3 3 3 3 3 3 3 3
[o13 1 1 1 2 2 2 1 1 1 IarR 2 2 2 2 2 2 2 2 2
Average 3,4929 | 3,5786 | 3,5714 | 2,7407 | 3,0123 | 2,9877 | 3,4688 | 3,5625 | 3,6563 ‘ Average 3,0786 | 3,1643 | 3,3214 | 3,0247 | 3,0123 | 3,0288 | 3,0247 | 3,0123 | 3,0288
Weighted Average 3,9176 | 3,966 | 4,0372 | 2,8556 | 3,2568 | 3,2563 | 3,9018 | 4,0964 | 4,095 Weighted Average 3,3521 | 3,5031 | 3,5901 | 3,2687 | 3,3797 | 3,3029 | 3,2687 | 3,3797 | 3,3029
Do you think the sound sample has - — o Do you consider the sound sample to be — T o
quality? novel?
Version A cc G A cc G A cc G Version A cc G A cc G A cc G
Median 4 a4 4 3 3 3 3 4 a4 Median 3 3 3 3 3 3 3 3 3
QR 1 1 1 2 2 2 2 1 1 QR 2 2 2 2 2 2 2 2 2
Average 2,2609 | 2,8406 | 3,029 | 2,8352 3 3,1868 | 3,1209 | 3,3187 | 3,5165 Average 2,8406 | 2,8261 | 2,7536 | 2,989 | 3,1758 | 2,9341 | 2,8791 | 2,8791 | 2,6044
Weighted Average 2,1317 | 3,0519 | 3,2803 | 2,9507 | 3,1706 | 3,4728 | 3,4389 | 3,5983 | 3,9079 Weighted Average 2,9461 | 3,0403 | 2,7712 | 3,1805 | 3,5561 | 3,2275 | 3,0876 | 3,1077 | 2,6054

Table 2: Quality metrics across each of the different image’s
versions.

Conclusions and Future Work

MuSyFlI is a computer program that takes inspiration from
images and is capable of generating three different versions
of musical artifacts: an automatic version, a co-created ver-
sion, and a genetic version. We wanted to model an inspi-
rational exploratory creative process, therefore we used im-
ages as a source of inspiration and we implemented a genetic
algorithm.

For the automatic version, a feature translation was es-
tablished according to subjective and empirical criteria. We
did not aim at making direct mappings or any sort of soni-
fication, choosing instead indirect and innovative methods
of feature translation across domains. We also added sim-
ple harmony lines composed by us to make the co-created
versions, effectively making our program a co-creative en-
deavour as well.

Our GA combines both automatic and co-created versions
into one genetic version. The musical artifacts generated are
fairly interesting and we can notice the influence both have
on the final genetic version. We should note that, while all
genetic versions artifacts follow a certain aesthetic guideline
which is noticeable (defined by the GA’s fitness function),
they still differ considerably amongst themselves inside that
conceptual space. Furthermore, our genetic algorithm adds
both cohesion and diversity to our musical artifacts by guid-
ing them through the evolutionary process according to a
fitness function, which in turn is based on music theory con-
cepts.

All three versions were evaluated across six different im-
ages for a total of eighteen musical artifacts evaluated. Our
goals were to be able to generate musical artifacts that could
be considered creative, that could be considered music and
aesthetically pleasing, and that could be related to their re-
spective images. To evaluate our musical artifacts on such
subjective goals, we surveyed people and asked their opin-
ions. We gathered a total of 300 answers, which allowed a
thorough evaluation of our musical artifacts. Results were
fairly positive, with most people answering favourably to all
the hypotheses we set out to validate, inviting further ex-
ploration of different methods of generating music from im-
ages.

That said, much work can still be done, both from an im-
age processing perspective - trying to extract semantics from
images or dealing with saliencies in another way for exam-
ple - as from the music generation point of view - adding
motifs and structure to the musical artifacts, and using other
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Table 3: Novelty metrics across each of the different image’s
versions.

sounds than just MIDI sounds, to name a few.

Trying to combine machine learning techniques with a ge-
netic algorithm could also be worth exploring further. Since
machine learning techniques are usually good at finding pat-
terns, we could try to find what “patterns” a song usually
follows - what type of melodies, structure, chord progres-
sions, rhythmic sections are used, etc. - and in that way try
to measure its value, and then feed those outputs to a genetic
algorithm with which we would try to add more diversity
and novelty, exploring different possible outputs on top of
those musical artifacts. There is also space for improvement
regarding our GA, namely coping with a multiple objectives
fitness function, or using a different evaluation framework
like SPECS (Jordanous 2012), for example.
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