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Abstract
Previous Computational Social Creativity work has im-
proved the performance of automated creators using so-
cial mechanics inspired by human behavior. However,
these simulations have often focused on generic or as-
sumed human behaviors rather than on specific anthro-
poligical data. In this work we take a more focused ap-
proach by comparing simulated social behavior to ob-
served behavior in large social networks of human cre-
ators. We analyze social patterns among human creators
by defining metrics for social behavior within creative
communities and collecting data for three online com-
munities of creators: Scratch, FanFiction, and r/ArtCrit.
We introduce the Architecture for Multi-Agent Creative
Societies (AMACS), a modeling tool which controls the
social activity of automated creators and can be adapted
to any creative discipline. We demonstrate AMACS’s
ability to recreate a wide range of network-level social
behaviors, including the behaviors observed in three hu-
man societies.

Introduction
Social interaction has long been understood to be an es-
sential component of the creative process (Csikszentmihalyi
2014; Boden 1992; Glăveanu 2013; Jennings 2010). Social
interactions help creators in many disciplines by facilitating
encouragement, correction, inspiration, and mentorship. A
creator’s social circles provide opportunities to test out new
ideas, collaborate, and hone skills. This is true in disciplines
ranging from pottery to programming to dance.

Past research on the role of social interaction in the cre-
ative process has typically taken one of two approaches.
The first approach has been to analyze social networks of
creators directly and identify quantitative and qualitative
trends relevant to specific facets of creativity (Sylvan 2007;
Sylvan 2010; Xu and Bailey 2012; Crain and Bailey 2017;
Marlow and Dabbish 2014; Campbell et al. 2016; Evans
et al. 2017; Pace et al. 2013). The second approach has
been to simulate networks of creators in fully automated so-
cial environments (Linkola and Hantula 2018; Hantula and
Linkola 2018; Gómez de Silva Garza and Gero 2010; Green-
field and Machado 2009; Alnajjar and Hämäläinen 2018;
Hämäläinen, Alnajjar, and others 2019). These simulations
tend to focus on generic or assumed rules of human be-
havior rather than on quantitative data, and while they have

the potential to inform our understanding of human creativ-
ity (Saunders and Bown 2015) they are often more con-
cerned with improving the performance of simulated cre-
ators. Surprisingly, these approaches have rarely - if ever -
been mixed. Researchers have attempted to observe or sim-
ulate the social behavior of creators, but not both.

In this work we combine these two approaches of measur-
ing and simulating user behavior. To our knowledge it is the
first attempt to quantitatively measure and then replicate the
social behaviors of creators acting in a social network. This
data-driven and focused approach allows for more meaning-
ful analysis of simulated creators, making simulation a vi-
able tool for understanding human creativity and potentially
improving automated creative social systems.

We also introduce an Architecture for Multi-Agent Cre-
ative Societies (AMACS), a simulation architecture imple-
mented in Python that controls the social activity of auto-
mated creators and can be adapted to any creative discipline.
We make AMACS publicly available and hope it will act as a
common test bed for future researchers experimenting with
social mechanics for automated creative agents.

Related Work
Many researchers, both in the field of psychology and in arti-
ficial intelligence, have sought to define and understand the
role of social interaction in creativity. For example, Csik-
szentmihalyi (2014) argued that creativity is only possible
when a creator interacts with a domain of cultural knowl-
edge and a field of peers, making creativity an inherently
social process. Boden (1992) discussed creativity in terms
of conceptual spaces, which she defined as being “familiar
to (and valued by) a certain social group” rather than belong-
ing solely to an individual. Jennings (2010) proposed using
socialization as a tool for increasing the autonomy of sim-
ulated creators. Glăveanu’s framework of creativity (2013)
elevated the importance of socialization in creativity by in-
cluding audience as a key member of the creative process.

Parallel to the effort to define the social aspects of creativ-
ity has been the effort to quantitatively observe them, specif-
ically in online social environments. Sylvan (2007; 2010)
used the term ‘Online Community of Creators’ (OCOCs) to
describe social network sites where creators share and re-
ceive feedback on their work. She selected two OCOCs -
The Village and Scratch - and attempted to track how ideas



spread through these online communities by finding quali-
ties correlated with influential individuals and artifacts. Xu
and Bailey (2012) analyzed interactions between users in the
online photography critique community PhotoSIG, focus-
ing specifically on critique mechanisms. Crain and Bailey
(2017) analyzed how users engage with criticism on three
art critique subreddits, focusing on the quality of feedback
and how it impacted a creator’s willingness to iterate on
published artifacts. Marlow and Dabbish (2014) investi-
gated how users of Dribble gradually become more skilled at
their craft. Campbell and associates (Campbell et al. 2016;
Evans et al. 2017) also explored how OCOCs allow creators
to improve, framing their findings with a model they call
distributed mentoring. Pace et. al. (2013) mapped theories
concerning more traditional (i.e. offline) creative communi-
ties to OCOCs while analyzing the role of leaders in the Etsy
community.

There has also been much work done to simulate the
social behavior of creators, a task which Saunders and
Brown (2015) describe as ‘Computational Social Creativ-
ity’. Hantula and Linkola (Linkola and Hantula 2018;
Hantula and Linkola 2018) study collaborator selection in
a simulated society of image-generating agents with various
changing tastes. Gómez de Silva Garza and Gero (2010)
introduce a network in which agents are engaged in either
creating or evaluating simple visual designs. Greenfield and
Machado (2009) use the same distinction between agents,
calling their agents ‘artists’ and ‘critics’. Critics in their sys-
tem compare agent-generated artifacts to human-generated
ones via representative vectors. Alnajjar and Hämäläinen
(2018; 2019) use a social network which contains only a
master and an apprentice. The master generates training data
for the apprentice and curates a dataset of human-generated
examples for the apprentice to learn from.

There are examples in which multiple simulated agents
work together to generate a single artifact (Pérez y Pérez et
al. 2010; Boyd, Hushlak, and Jacob 2004; Wright, Purver,
and others 2020). Because these social networks are focused
only on collaborating (rather than sharing and evaluating fin-
ished artifacts, forming relationships, etc.) they fall outside
the scope of the creative societies we are interested in here.

To our knowledge, the present work is the first attempt
to both observe and simulate the social interactions between
creators, an important bridge between these previously dis-
jointed approaches. It also introduces the first discipline-
agnostic simulation tool for creative societies of which we
are aware. Our hope is that this combined approach and the
accompanying software package will add more meaning and
focus to future approaches at social simulation.

Analyzing Creative Societies
The purpose of this work is to create a data-driven simula-
tion of the social behaviors of creators. In order to validate
that simulations are acting in a human-like manner, we need
a framework for analyzing and describing both human and
automated societies so that different societies can be mean-
ingfully compared with one another.

To this end we introduce a quantitative analysis frame-
work that consists of four metrics: Creator to Agent Ratio,

Reciprocity, Clustering, and Attention Concentration (each
defined below). These metrics were chosen because they
each affect the experience of individual agents and can be
calculated based on publicly available information as de-
scribed below.

Creator to Agent Ratio (CAR) is the percentage of com-
munity members that create original artifacts (paintings,
songs, programs, etc.) as opposed to only commenting on
the artifacts of others. CAR is defined as |C|

|A| × 100, where
C is the set of all creators in the network and A is the set of
all agents (both creators and non-creators) in the network.

A network’s CAR is important in defining the relationship
between creators and fans. A high CAR can make it difficult
for creators to build audiences because the have more com-
petition, while a low CAR might make it difficult for fans to
find creators they like.

Reciprocity is the tendency for an agent to return the fa-
vor when another agent gives feedback on one of their arti-
facts. In an online setting, feedback can include comments,
‘Likes’, or any other publicly observable recognition of the
artifact. We define reciprocity as P (A ▷ B | B ▷ A) × 100,
where A and B are distinct creators in the network and X▷Y
denotes that an agent X has provided feedback for an artifact
generated by agent Y at some point in the past.

Reciprocity describes one way in which network agents
form relationships with one another. If agents are inclined
to reciprocate positive attention or feedback, then it becomes
easier for a relationship to form out of a single agent’s desire
for a connection. High reciprocity also means that a network
rewards good behavior through reciprocation, which incen-
tivizes agents to be generous with one another.

Clustering is the tendency for an agent to be friends with
its own friends-of-friends. Highly clustered networks indi-
cate the presence of cliques and sub-communities within the
larger network. The definition of clustering depends on a
definition of ‘friendship’, which takes different forms in dif-
ferent types of communities. For consistency, we notate that
two distinct agents A and B are friends using A ⋄ B and
say that A ⋄ B ⇐⇒ (A ▷ B) ∩ (B ▷ A). In other words,
if two creators have commented on each others artifacts at
least once each, we call them friends.

Given a definition of friendship, we define clustering as
P (B ⋄C |A⋄B,A⋄C)×100 for any three distinct creators
A, B, and C in the network. This is equivalent to the global
clustering coefficient for graphs if we consider each agent as
a node and each friendship as an undirected edge.

A network’s clustering rate can serve as an indicator
for how opinions and ideas spread through a population
of agents (Malik and Mucha 2013; Centola 2010; Jackson
2019). Tight clusters can cause agents to become more sim-
ilar to their direct contacts, but they can also insulate agents
and slow the spread of globally popular beliefs (Granovetter
1973).

Attention Concentration measures how popular the
most popular artifacts in the network are, where popularity
is defined as the volume of comments received. We mea-
sure attention concentration using the Gini coefficient (Gini
1912), a metric commonly used to describe the wealth in-



Figure 1: Visualization of the Gini Coefficient, used to mea-
sure the concentration of attention within a network of cre-
ators. The curved line shows the percentage of all comments
received by the corresponding percentage of artifacts, which
are sorted by ascending popularity. The diagonal line shows
a hypothetical society where all artifacts receive an equal
number of comments. The Gini Coefficient is the area of A
divided by the sum of the areas of A and B.

equality of a population. We refer to (Dorfman 1979) for a
mathematical definition, but a basic explanation is provided
in Figure 1. The Gini Coefficient can be understood as a real
number in the range [0, 1] where 0 indicates that all artifacts
receive an equal amount of feedback and 1 indicates that all
feedback is directed at a single artifact.

Attention concentration can be a significant pain point for
human creators, especially in online environments. Xu and
Bailey (2012) found that over 80% of artifacts on a photog-
raphy sharing community received fewer comments than av-
erage users considered useful, while other artifacts received
many comments. If most attention is being directed at a
small handful of popular artifacts, it can be difficult for new
creators to feel engaged with the network.

Data Collection
In order to understand the social behavior of human com-
munities, we apply this analysis framework to several com-
munities of creators. Our purpose is to collect quantitative
data that can then be used to validate simulations of social
behavior. In this work we focus on online communities of
creators that are large, include mechanisms for artistic cri-
tique in the form of comments, and permit legal scraping
of user and artifact data. After considering nearly a dozen
communities, we select three that best fit the above criteria:
Scratch, FanFiction, and the r/ArtCrit community on Red-
dit. These communities are oriented towards programming
projects, creative writing, and visual artwork respectively.

To collect data for Scratch, we use a Selenium-based web
scraper to collect several thousand of the most recent arti-
facts published in the ‘Music’ category of coding projects.
For each recent project we then find the user who created
that project and collect data on each project published by

Table 1: Observed behavior in three online communities of
creators using four network-level metrics.

Community CAR Reciprocity Clustering AC
Scratch 17.1 1.2 6.3 0.901

FanFiction 23.2 11.0 15.6 0.762
r/ArtCrit 59.6 0.5 1.0 0.489

that user. For each project we collect the project ID and the
list of all users who have commented on that project. We col-
lect a total of 91,506 projects and 82,952 comments posted
by 39,631 users.

Following (Milli and Bamman 2016), we scrape FanFic-
tion data using Python-generated HTTP requests and parse
responses with the BeautifulSoup library. We select 32 of
the most popular book ‘canons’ (the original works that Fan-
Fiction stories are based on) and scrape all stories and com-
ments related to those canons, excluding anonymous com-
ments. We collect 189,076 stories and 7,789,744 comments
posted by 387,253 users.

We access r/ArtCrit data using Cornell University’s Con-
voKit toolkit (Chang et al. 2020). The dataset includes
14,201 posts and 33,451 comments made by 11,992 users.
We filter out posts or comments made by users who have
since deleted their accounts (as these are effectively anony-
mous), comments that are responses to other comments
rather than to posts, and comments made by the same user
as the post being commented on.

Anonymized copies of the collected data are available
upon request. In accordance with the privacy policies of
Scratch and FanFiction, this anonymized data will include
only the metadata necessary to calculate the four metrics de-
scribed above, not user data or content of the posted artifacts
or comments themselves. All scraping that we performed
was in accordance with the respective site policies.

Human Analysis Results
The results of applying our framework to these three com-
munities are found in Table 1. We note that there is a wide
variance in the behavior of these three communities. For
example, r/ArtCrit’s CAR is more than double the other two
communities’ and FanFiction has a much higher Reciprocity
and Clustering rate than the other two. Further analysis of
these results are provided in (Andrus 2021), but for our pur-
poses here we are primarily interested in recreating these
quantitative behaviors in a simulated environment.

AMACS: the Architecture for Multi-Agent
Creative Societies

Having observed several human creative societies, we are
now prepared to simulate them. To this end we introduce
AMACS: the Architecture for Multi-Agent Creative Soci-
eties. AMACS is a flexible, task-agnostic architecture im-
plemented in Python that defines how automated agents gen-
erate and evaluate creative artifacts. It also defines how
agents form relationships with and are influenced by one an-
other. Any designer who desires to use AMACS to simulate

https://scratch.mit.edu/
https://www.fanfiction.net/
https://www.reddit.com/r/ArtCrit/


the behavior of agents in a given creative discipline need
only implement functions for evaluating and generating ar-
tifacts within that discipline; AMACS handles the rest, in-
cluding content discovery, social mechanics, and the chang-
ing aesthetic tastes of agents. We hope that it will serve
as a test bed and reference point for future researchers who
wish to perform experiments in a common setting. The
full AMACS implementation and three example instanti-
ations are provided online at https://github.com/
bandrus5/amacs.

AMACS Methodology
An AMACS network, similar to previous simulated creative
societies (Hantula and Linkola 2018; Linkola and Hantula
2018; Gómez de Silva Garza and Gero 2010; Greenfield and
Machado 2009), is composed of a pool of agents capable of
generating and evaluating creative artifacts. Agent aesthetic
tastes change over time as agents interact with and are influ-
enced by one another. Unlike previous works, an AMACS
network can be implemented for any creative task (e.g. writ-
ing poetry, designing furniture, or composing music), and it
includes hyperparameters that can be tuned to elicit specific
human-like behaviors.

Following Hantula and Linkola (Hantula and Linkola
2018), each agent in an AMACS network has individual aes-
thetic tastes represented by numeric scores. In Hantula and
Linkola’s simulations, which use image generation as the
creative task, each agent’s tastes are represented by a single
number that corresponds to their preferred value along some
evaluative spectrum such as Symmetry, Contrast, etc. We
expand this evaluative paradigm with a multidimensional
“artifact space”. Unlike in Hantula and Linkola’s simula-
tions, the AMACS artifact space can have as many dimen-
sions as needed, and all agents share the same artifact space.
We consider the artifact space to be an application of Bo-
den’s conceptual space (Boden 1992), albeit a relatively
simple one.

Each dimension of the artifact space corresponds to some
evaluative function. The nature of these evaluation functions
will depend on the creative task of the network. For exam-
ple, in a music-generation AMACS network, dimensions of
the artifact space might correspond to tempo, key, and sen-
timent. Dimensions can represent binary distinctions (e.g.
whether or not a poem conforms to a 5-7-5 syllabic pattern)
or real value measurements (e.g. the type-token ratio of a
short story). They can even be unbounded (e.g. the length
of a song), though in many cases there will be an inherent
lower and upper limit (e.g. the percentage of image pixels
that are blue cannot fall outside the range [0, 100]).

Points within the artifact space can be used to describe
both artifacts and agent preferences. Each artifact is as-
signed a score vector S which situates that artifact within
the artifact space. We represent an agent’s preferences with
a taste vector T and a taste weight vector W . T describes
which point within the space the agent considers to be ‘per-
fect’, and W allows the agent to scale the artifact space and
choose which dimensions it cares most about. S, T , and W
each have the same dimensionality as the artifact space.

Some dimensions of the artifact space may have a “cor-
rect” answer, meaning that all agents share the same taste
values in those dimensions. This allows an AMACS de-
signer to enforce artistic constraints, such as that all poems
must rhyme or that all songs must be in a major key. In the
other dimensions agents are free to set their own tastes, giv-
ing them creative freedom to choose, for example, the key a
song is written in or the dominant color used in a painting.
The fact that agents are fixed in some dimensions and not in
others allows for a shared understanding of which artifacts
are valid but individual understanding of which artifacts are
good. This is partially inspired by Wiggins’s (2006) rule
sets R and T for constraining and traversing a conceptual
space respectively. In AMACS, agents and artifacts are con-
strained in membership dimensions (analogous to Wiggins’s
R) and are free to traverse attribute dimensions (analogous
to Wiggins’s T ). Future work may attempt to simulate more
transformative creativity by allowing agents to ignore mem-
bership dimensions of the artifact space under specific con-
ditions or invent new attribute dimensions and add them to
the global artifact space. This latter approach was described
but not implemented by Ventura (2019).

On each network time step, each existing agent has an
opportunity to generate a new artifact, analogous to a hu-
man creator sharing a new piece of artwork with their social
network. The decision of whether to produce an artifact is
based on whether the agent produced anything on the pre-
vious time step and the average value of W , which along
with scaling the artifact space is used to model the agent’s
confidence in its own tastes.

Once all agents have had an opportunity to generate arti-
facts, each agent evaluates a small number of artifacts from
the current or past time steps. Each agent is given a list
of recommended artifacts, and the agent randomly samples
from the recommendations based on its own criteria. It then
evaluates each chosen artifact a using the following value
definition:

value(a) = −
n∑

i=1

|Si − Ti| ∗Wi (1)

where n is the number of dimensions in the artifact space
and S is the vector representing a’s location in the artifact
space. This is equivalent to the negative weighted Manhattan
distance between T and S.

The agent can then choose whether to leave publicly ob-
servable feedback for the artifact, which can take several dif-
ferent forms. The simplest form of feedback, which we use
in our experiments, is a binary feedback system analogous
to the ‘Like’ button found on many online platforms for cre-
ators. If an agent’s evaluation of an artifact falls above some
threshold, the agent gives the artifact a ‘Like’ and the evalu-
ation is classified as favorable. A more ambitious feedback
system could include agents leaving some sort of comment
on the artifact with details about what they liked or didn’t
like. Alternatively, an agent could provide feedback on an
artifact by editing it to something the evaluating agent likes
better and sharing the ‘enhanced’ version of the artifact with
the original creator. We leave these more complex mecha-

https://github.com/bandrus5/amacs
https://github.com/bandrus5/amacs


nisms to future work.
The final process on each time step is for agents to adapt

based on what they’ve experienced on the current time step.
First, agents change their taste weights to reflect their chang-
ing confidence. Taste weights go up if agents received posi-
tive feedback from their peers and/or they evaluated artifacts
that they liked. Otherwise taste weights go down. Next,
agents have a small probability of changing their tastes. The
higher their taste weights, the lower probability their tastes
will change. If an agent chooses to change its tastes, it typ-
ically moves towards its most recently evaluated artifacts,
although in some cases it will move away. Finally, agents
choose whether or not they will generate an artifact on the
next time step. All changes to tastes and taste weights hap-
pen independently in each dimension of the artifact space.

In our experiments we initialize each AMACS network
with a pool of 42 agents with random tastes and taste
weights. We run the network for 30 time steps, adding 4 new
agents to the network on each time step to simulate the com-
munity growing over time. There are many other population
mechanics that could be explored in future work depending
on the specific human behavior being simulated.

We increase AMACS’s flexibility by defining 11 hyper-
parameters that affect agent behavior, specifically in how
they select new artifacts to interact with. Each hyperparam-
eter loosely corresponds to design decision that community
administrators control, which makes them useful for tuning
AMACS networks to resemble specific communities. They
are:

• Agent Taste controls how personalized the recommen-
dations made to AMACS agents are. This is analogous
to the level of customization on websites used by human
creators to find new content.

• Creator Familiarity controls how much an AMACS
agent prefers to review artifacts created by other agents is
has interacted with in the past, regardless of whether those
interactions were positive or negative. Creator Favora-
bility is similar, but it includes only positive interactions.

• Mutual Contact controls an agent’s preference to review
artifacts created by other agents who share a mutual con-
tact. Mutual Friend is similar, but it includes only con-
tacts where most interactions have been positive.

• New Artifact controls the extent to which AMACS pro-
motes artifacts generated on the most recent time steps.

• Popular Artifact controls whether AMACS promotes ar-
tifacts based on their number of positive reviews.

• New Creator controls the extent to which AMACS pro-
motes artifacts generated by agents who have not gener-
ated many artifacts in the past.

• Popular Creator controls the extent to which AMACS
promotes artifacts generated by agents who have gener-
ated other popular artifacts.

• Gratitude controls an agent A’s willingness to view arti-
facts generated by agent B because B has done the same
for A in the past. Note that this is highly related with the
concept of Reciprocity introduced in the previous section,

but in AMACS Gratitude only becomes Reciprocity when
the reciprocated reviews end up being positive.

• Recommender Ranking controls an agent’s willingness
to evaluate the first artifacts that are recommended to them
as opposed to considering many options.

We experiment with the effects of each of these hyperpa-
rameters and show how they can induce specific behaviors
later in the paper.

AMACS Instantiations
In order to demonstrate the diversity of tasks to which
AMACS can be applied we present three instantiations,
each focused on a different creative discipline. Creating a
new AMACS instantiation is as simple as implementing the
agents’ generation process and defining an artifact space by
writing evaluation functions. The examples provided here
are relatively simple, allowing us to focus on the social me-
chanics of AMACS rather than the generation and evalu-
ation details which will vary from application to applica-
tion. AMACS is equally capable of modeling interactions
between creative agents with more sophisticated processes
than those described here.

We provide only brief descriptions of the creative tasks
and the evaluation functions used in each instantiation. Fur-
ther details on how agents generate and evaluate artifacts can
be found in the AMACS code repository.

AMACS for Image Generation In this AMACS instan-
tiation agents generate 16x16 grayscale images. All agents
try to generate images that are symmetrical and that have
a small cross pattern in any of the four corners. We note
that these constraints are arbitrary and were chosen only
to demonstrate the idea of a universal aesthetic standard
amongst agents. There are two dimensions along which
agents can choose their tastes: the overall brightness of the
image and the average contrast between columns in the im-
age. Generation is accomplished using a genetic algorithm.

AMACS for Title Generation In this AMACS instanti-
ation agents generate plausible titles for academic papers.
“Plausibility” was measured using two methods: a neu-
ral network trained on 46,198 examples, and hand-coded
rules designed to detect failure modes of the neural net-
work. Agents chose their own tastes along three dimensions,
each measuring the degree to which artifacts belong in one
of three subclasses: Computer Science papers, Medicine
papers, and Humanities papers. Each dimension is mea-
sured with an LSTM trained to detect whether a title be-
longs to the corresponding subclass. We train the LSTMs
separately (though on overlapping data) so that a single ti-
tle could theoretically score high on all three classifiers, al-
though it is easier to earn a high score on just one. See El-
gammal et. al. (2017) for a demonstration of why subclass
membership is a powerful consideration for creative agents.
Title generation is accomplished using a genetic algorithm.

AMACS for Policy Generation Agents in this AMACS
instantiation create policy look-up tables for a robot con-
trol problem inspired by (Mitchell 2009, p. 130–142). In



Figure 2: Full range of behavior observed in AMACS using
all three instantiations and both SPM and TPM. AMACS
demonstrates considerable flexibility in Reciprocity, Clus-
tering, and Attention Concentration. It has limited flexibility
in the Creator to Agent Ratio metric.

our version of this problem, a simulated robot lives in a 4
x 4 grid with blue and red trash scattered throughout. The
AMACS agents compose instructions for the robot on how
to navigate through the world and collect trash. All agents
want to help the robot avoid running into walls, and each
agent gets to choose the percentage of red and blue trash the
robot collects. Agents generate policies using a genetic al-
gorithm. We also implemented a Monte Carlo Tree Search
approach for policy generation, but found that it was slower
and caused agents to be less satisfied with their own artifacts.

Demonstrating the Flexibility and
Applicability of AMACS

Given the human social behavior data and the simulated net-
works described earlier, we are ready to quantitatively vali-
date that AMACS is capable of exhibiting human-like social
behavior. Specifically, in this section we will demonstrate
that by manipulating AMACS hyperparameters we can in-
duce a wide range of behaviors, including the behaviors ob-
served in human communities. Our purpose is not to demon-
strate that AMACS always acts the same way as human or
responds to stimuli in the same way as humans; rather, we
seek to show that AMACS has enough flexibility that it can
be coaxed into demonstrating the same network-level behav-
ior as specific human social networks.

Experiment Setup
We discover the range of possible AMACS behavior with
two sets of experiments in which we manipulate the 11 hy-
perarameters described in the previous section. In the first
set of experiments, we change one hyperparameter’s value at

a time while keeping all other hyperparameter values fixed,
which we refer to as Single Parameter Modulation (SPM).
In the second set of experiments we introduce more noise by
randomly and independently modulating the values of all 11
hyperparameters simultaneously, which we refer to as Total
Parameter Modulation (TPM).

To perform SPM, we define a set of hyperparameter val-
ues V = {-20, -10, -1.0, -0.5, 0.0, 0.5, 1.5, 2.0, 10, 20,
30, 40}. The purpose in selecting these specific values is to
measure what happens when we go far below, slightly be-
low, slightly above, and far above a default value of 1.0. We
refer to the set of all hyperparameters as P . For each hyper-
parameter p ∈ P and each hyperparameter value v ∈ V , we
produce a combination c of network inputs where p is set to
v and all other hyperparameters are set to 1.0. For each gen-
erated combination c, we run all 3 AMACS instantiations 4
times, after which we record the four resultant network-level
metrics. In total this requires 1,584 network runs.

To perform TPM, we split V into two subsets, VS = {-1.0,
0.5, 0.0, 0.5, 1.0, 1.5, 2.0} and VL = {-20, -10, 0, 10, 20, 30,
40}, where S and L stand for “small” and “large” and refer
to the magnitudes of the included values. For each subset,
we generate 700 random combinations of hyperparameter
values in which each value is used 100 times for each hyper-
parameter. The purpose of splitting V into two subsets for
TPM is to avoid situations in which large value changes in
one hyperparameter drown out small value changes in other
hyperparameters, i.e. we first modulate all hyperparameters
on a small scale and then again on a large scale. We run each
combination of hyperparameters for 30 generations each on
all 3 AMACS instantiations. In total this involves 4,200 net-
work runs.

Between SPM and TPM we perform a total of 5,784 net-
work runs. Collectively these give us a broad understanding
of the types of behavior AMACS is capable of modelling.

Simulation Results
Figure 2 shows the full range of metric values observed in
all AMACS runs. We can see that AMACS is remarkably
flexible with respect to observed Reciprocity and Clustering
values; AMACS has produced the full range of possible val-
ues, and the spread is wide enough that no possible value
can be classified as an outlier. AMACS also exhibits a fairly
wide Attention Concentration spread, with values ranging
from 3.6 to 86.5 including outliers. AMACS appears to be
the least flexible in its Creator to Agent Ratio (CAR). The
vast majority of AMACS runs had CARs less than 20, and
even the highest magnitude outlier is only 55.5. This is lower
than the r/ArtCrit CAR, meaning that some human behavior
is outside the range of what AMACS can produce, at least
with the instantiations and hyperparameters tested here. Fu-
ture efforts to model a wider spread of CAR behaviors may
consider changing the rules for how agents choose whether
to be creators.

In order to validate AMACS’s relevance as a tool for
modelling human behavior, we compare AMACS runs to
the human communities analyzed (Scratch, FanFiction, and
r/ArtCrit). For each community we find the AMACS run
which was the most similar to human behavior in each indi-



Figure 3: Comparison of AMACS behavior to the Scratch
community. The blue shaded area represents human behav-
ior. The red and green lines show the AMACS runs most
similar to the human community in each individual metric
and over all four metrics, respectively. The purple line shows
average AMACS behavior and is included for reference.

vidual metric and which was the most similar over all four
metrics (measured with Euclidean distance). These results
are visualized in Figures 3-5. We see that AMACS does
fairly well at replicating the behavior of the Scratch and Fan-
Fiction communities, including nearly matching Scratch’s
remarkably high Attention Concentration. It is less suc-
cessful at replicating r/ArtCrit’s behavior, particularly in the
CAR metric which, as noted earlier, is where AMACS is cur-
rently the least adaptable. AMACS is largely able to repli-
cate the behavior of these three communities, indicating that
it will likely be successful at modelling many other human
creator networks.

Implications for Human Creators
The described parameter modulation experiments demon-
strate the range of possible AMACS behaviors, but they also
enable us to analyze the quantitative relationships between
each hyperparameter and each network-level metric. Under-
standing these relationships is helpful for future AMACS de-
signers hoping to induce specific behaviors from automated
agents. This information can also help administrators of hu-
man creative communities to maximize the experiences of
their members, provided that AMACS trends hold for hu-
man communities as well. Trends found in AMACS are not
guaranteed to exist in human communities, but they indicate
possibilities that may warrant further investigation.

To analyze the effects of each hyperparameter, we find the
Pearson correlation between each hyperparameter and each
network-level metric over all 5,784 network runs described
above. Results are shown in Figure 6.

The strongest correlation observed is between the Popu-
lar Artifact hyperparameter (AMACS’s tendency to promote
popular content) and Attention Concentration. This is unsur-
prising, as recommending popular artifacts creates a positive
feedback loop that keeps a few artifacts at the center of atten-

Figure 4: Comparison of AMACS behavior to the FanFic-
tion community. The blue shaded area represents human be-
havior. The red and green lines show the AMACS runs most
similar to the human community in each individual metric
and over all four metrics, respectively. The purple line shows
average AMACS behavior and is included for reference.

tion. This relationship matches the recommendation in (Xu
and Bailey 2012) that administrators of online communities
of creators can spread attention by increasing the personal-
ization of user’s ‘Browse’ or ‘Explore’ pages, as opposed
to only recommending globally popular artifacts. New Ar-
tifact (AMACS’s tendency to promote new content) shows
a strong negative correlation with Attention Concentration,
indicating another possible way that online platforms could
spread attention when increased personalization is not pos-
sible.

The strongest indicator of a network’s Reciprocity is the
Gratitude hyperparameter (which represents how willing an
agent is to review a peer’s work because that peer has given
positive reviews in the past). If administrators of online plat-
forms want to increase the reciprocity of their communities,
they might consider adding features that encourage grati-
tude, such as notifying users of generous actions and en-
couraging them to return the favor. For example, when a
Reddit user receives a new follower, they receive a notifi-
cation saying “[USERNAME] just followed you. Go check
them out to learn more about them.” This type of call to
action encourages gratitude and, by extension, reciprocity.

For Clustering, the strongest indicator is the Mutual Con-
tact hyperparameter (which controls an agent’s desire to
view artifacts created by agents with whom they share a
mutual contact). There are two ways an administrator of
an online social platform might use this information to in-
crease Clustering. The first is by explicitly calling out the
existence of mutual contacts in the site’s UI. Facebook does
this by listing the number of mutual friends user’s have with
each other, encouraging users with many mutual friends to
connect. The second, more subtle approach is to use mu-
tual contacts in determining which artifacts to recommend
to a user on their “Browse” or “Explore” pages, which many
social media sites already do.

Perhaps the most surprising strong correlation is between



Figure 5: Comparison of AMACS behavior to the r/ArtCrit
community. The blue shaded area represents human behav-
ior. The red and green lines show the AMACS runs most
similar to the human community in each individual metric
and over all four metrics, respectively. The purple line shows
average AMACS behavior and is included for reference.

Agent Taste (the personalization of AMACS’s artifact rec-
ommendations) and Creator to Agent Ratio. AMACS agents
become creators when they are confident in their own tastes,
so the most likely reason for this correlation is that increased
personalization leads to increased confidence, as agents con-
sistently find artifacts that reinforce their current tastes.

Out of the eleven hyperparameters tested, ten showed sta-
tistically significant correlations with at least one metric, and
8 showed significant correlations with more than one metric.

We look forward to future work that may validate the de-
gree to which these trends hold for human societies and dis-
cover other ways in which modelling tools can help inform
our understanding of human behavior.

Ethical Considerations
One might reasonably ask if it is wise to study the ways in
which community administrators can induce desired behav-
iors in their communities, as this might be interpreted as ma-
nipulation. The authors of this paper believe that studying
the power of platform administrators in a public and aca-
demic setting adds transparency and accountability to the
larger discussion of ethical platform administration. Design
decisions affect users whether we understand their effects
or not; this line of research empowers administrators to be
more deliberate and thoughtful with the influence they al-
ready have. It is our hope that educating both users and ad-
ministrators will help both parties make decisions that are
beneficial to everybody.

Conclusion
In this work we have introduced a data-driven and task-
agnostic architecture for modelling the social behavior of
creative agents. We have studied real-world communities
of creators and replicated many of their behaviors in an au-
tomated setting using AMACS: the Architecture for Multi-

Figure 6: Pearson correlation between each hyperparameter
and metric in AMACS. Darker colors indicate larger magni-
tudes, and ∗ indicates significant relationships (α = 0.01).

Agent Creative Societies. AMACS is designed to be flexible
and user-friendly, and we hope it will provide a useful test
bed and common setting for future experiments. Future ar-
eas of improvement could include defining more robust and
descriptive metrics for understanding network-level social
behavior, collecting data on more human creator communi-
ties, and investigating the experience of individual network
participants rather than analyzing aggregated data.

We look forward to future work that will use socialization
both to improve the efficacy of artificial creative agents and
also “to contribute to the understanding of human creativity”
(Saunders and Bown 2015). Learning from from human be-
havior, as we have done here, has the potential to improve
our models and the performance of computational creativity
systems. Using real-world data to validate automated sys-
tems also allows information to flow the other way; phenom-
ena that emerge in our simulations give us clues about how
human creativity may work. We hope that this and future
work continues to improve the experience of human creators
and the performance of automated ones.
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