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Abstract

Co-creative artificial intelligence systems go beyond
one-click generative AI solutions and enable users to
participate in the generative process. A key component
of co-creative interfaces is the ability to suggest multi-
ple options to the user, to avoid constraining the process
and help overcome creative blocks. We explore this di-
versification problem in a vector drawing synthesis-by-
optimisation setting and propose algorithms for generat-
ing diversity among user-defined characteristics. Exper-
imental results show improvement in terms of behaviour
coverage and image diversity.

Introduction
Co-creative systems built on generative AI models expand
upon the latter’s increasingly impressive expressive capac-
ity by offering their users additional control and creative
agency. This additional agency is critical in the early
stages of creative tasks across a wide variety of domains.
In creative professions such as art, interface design, en-
gineering, and architecture, sketching is an important as-
pect of this early conceptual exploration (Goldschmidt 1991;
Gero 1998). At the outset of the creative process, artists and
designers typically lack a clear idea of what they are looking
for, or accept that their current ideas may change entirely as
the process progresses. In the context of design, those who
approach creative tasks without this level of ideational flex-
ibility often fail to achieve their goals (Dorst 2015), while
those who embrace flexbility have been shown to produce
more-creative output (Suwa, Gero, and Purcell 2000). This
is because designing, especially in its early stages, is not a
mere process of synthesising given requirements, but rather
an iterative process of discovering and refining both those
requirements and how they might be fulfilled. This has been
described as a co-evolution: a concurrent emergence of both
the problem (the requirements) and its solution (the design)
(Poon and Maher 1997). Current research in co-creative sys-
tems is exploring how this co-evolution can be supported by
AI tools (Lawton et al. 2023; Gero, Liu, and Chilton 2022;
Williford et al. 2023).

While the notion of “diversity” depends on context, this
paper operationalises co-creative diversity with reference to
some observable characteristics quantifiable by numerical
values, that can be chosen depending on the context. The

values of any given output can then be thought of as a mul-
tidimensional point in what is usually called a behaviour
space. Subsequently, the breadth of the distribution of a
set of points in the behaviour space provides a domain-
appropriate measure of diversity. This is related to the no-
tion of a generator’s expressive range (Smith and Whitehead
2010), although there user-chosen characteristics are used
to assess a generator’s diversity in a space, while the term
“behaviour space” derives from the quality-diversity (QD)
literature, where generators actively seek to cover their be-
haviour spaces (Pugh, Soros, and Stanley 2016).

In this paper we introduce this QD approach to the
CICADA model (Ibarrola, Lawton, and Grace 2022), a
drawing agent designed to work cooperatively with a hu-
man designer. Previous analysis of user experience with a
CICADA-based co-creative system suggests that the capac-
ity to select from between different drawing options would
be of value to users (Grace, Lawton, and Ibarrola 2023).
Given that CICADA consists of an end-to-end differentiable
generation-by-optimisation process, we build on previous
approaches for enforcing diversity in a differentiable setting,
such as OMG-MEGA (Fontaine and Nikolaidis 2021). This
algorithm stochastically explores behaviour space, but we
show it to be ill-suited for our context on account of the
properties of CICADA’s parameter space, and propose an
alternative for this kind of settings. In this paper we de-
scribe OMG-MEGA along with its shortcomings in our con-
text and propose two better-suited variants.

Method
The general setting of our approach consists of a parameter
space Y (or the genome space in evolutionary computation
parlance), associated to a differentiable generative model
h : Y → X . Additionally, two differentiable functions
f : X → R and g : X → B ⊂ RN map the elements
of X into an objective score (or fitness) in R and behaviour
dimensions b ∈ B, associated to some characteristics of
x ∈ X in which we want diversity.

We pursue the issue of finding diverse alternatives in a
generative process as an exploration of the behaviour space
B. That is, we want to generate a set of solutions that “be-
have” differently in terms of the outputs of g. We explore
this problem in the setting of co-creative design using CI-
CADA (Ibarrola, Lawton, and Grace 2022), where the pa-



Figure 1: Distribution of populations generated with different algorithms in the (colorful, large) behaviour space.

rameter space Y ⊂ RM is the set of arrays of parameters that
determine the width, color and spatial locations of the set of
Bézier curves that constitute a sketch or drawing. Also, h is
a differentiable rasterizer (Li et al. 2020) that generates an
RGB image x from an array of parameters y. Additionally,
we define the objective function

f(x; t)
.
= ⟨cimg(x), ctxt(t)⟩,

as the normalised inner product between the CLIP (Radford
et al. 2021) encoded latents of the image x and a text prompt
t, provided by the user as the drawing’s description.

In a similar fashion, we can define behaviours in terms of
CLIP losses by addressing how well x matches additional
characteristics. In our experiments below, we define

g(x)
.
= ( ⟨cimg(x), ctxt(large)⟩ , ⟨cimg(x), ctxt(colorful)⟩ )

to set CLIP interpretations of size and chromatic variance as
the behaviour dimensions.

We shall then consider the problem of producing a popu-
lation of CICADA-drawn images {x1, . . . , xK} ⊂ X such
that the elements xk are maximally behaviourally diverse
(i.e. in this case small-to-large and colourless-to-colourful).

OMG-MEGA
A recently developed and end-to-end differentiable ap-
proach to the quality-diversity problem is the Objective
and Measure Gradient MAP-Elites via Gradient Arbores-
cence (OMG-MEGA) algorithm (Fontaine and Nikolaidis
2021) (’measure’ is the authors’ term for what we call a
behaviour). In brief, this consists of iteratively picking an
existing element xk from an existing population, generating
a new individual by modifying yk according to

yK+1 = yk + |α0|∇yf(yk) +

2∑
n=1

αn∇yg ◦ h(yk),

where αn ∼ N (0, σI),∀n = 0, . . . , N . In other words,
by using gradient descent over both the objective and the
behaviours, but with random weights (positive-only in the
case of the objective).

While this model is really good for thoroughly exploring
the behaviour space, it is not very well suited for the CI-
CADA problem, where drawings typically spend hundreds

of iterations progressing towards recognisable shapes. We
contend that for synthesis-by-optimisation tasks such as ours
OMG-MEGA does not allow for significant enough per-
iteration changes to each individual before randomly vary-
ing the objective and behaviour weightings, which jeopar-
dises the algorithm’s capacity to converge on images that
are recognisable as a representation of the prompt.

OS-MEGA
To address the lack of convergence in OMG-MEGA on CI-
CADA tasks, we propose to optimise for longer between se-
lecting new coefficients. We also wish to avoid duplicat-
ing work by re-searching areas that have already been well-
traversed, so we additionally want to enforce the random co-
efficients to be biased towards directions that purposefully
lead them away from explored regions of behaviour space.

We start by picking an element at random from the cur-
rent population, and build a new individual by moving away
from the population centroid in the direction of least vari-
ance. That is, let {b1, . . . , bK} be the set of two-dimensional
behaviour scores of the population, such that g(xk) = bk ∈
R2, and let b̄ and C be the associated empirical mean and
covariance matrix, respectively. Also, let v be the eigen-
vector of C with the smallest eigenvalue, i.e. the direction
the population is least diverse in. Then, we can build a new
individual by starting with y = yk and iteratively running

y′ = y +∇yf(y)− λ∇y∥g ◦ h(y)− bk − σv∥2,

where λ > 0 and σ are weighting parameters, and the sign of
σ is the sign of ⟨v, bk− b̄⟩, meaning the optimisation process
is directed “outwards” from the explored area along the di-
rection that has been least explored thus far. We refer as this
algorithm as Outbound Scattering MEGA or OS-MEGA.

MOS-MEGA
In addition to directing the search in the behaviour space
“outwards”, the characteristics of our problem space suggest
we may be able to improve on the diversity of the search by
directly introducing noise through smart “mutation” strate-
gies. OMG-MEGA replaces the traditional “mutation” ge-
netic operator designed to introduce genetic diversity with
the random coefficients on the objective and behaviours,



which have the effect of adding noise to the search. How-
ever, the resulting changes are local and small-scale, and in
our vector image context larger changes may be more ef-
fective. We take advantage of our vector representation to
modify paths that are not significantly contributing to the
objective, replacing the least-contributing with new, random
traces. This operation is not differentiable, so we perform it
after choosing an individual from the population but before
conducting gradient descent.

Let us assume we have chosen an individual k, and let
P = {p1, . . . , pJ} be a partition of the set of parameters
yk, such that every pj contains the parameters of a single
trace. Then, we can compute a set of “irrelevance scores”
{s1, . . . , sJ} where sj is the objective score of the image
generated from yk after subtracting (i.e. not drawing) the
j-th trace. A low value of sj means that discarding the j-th
trace undermines the quality of the drawing. Consequently,
we may improve diversity by adding Gaussian white noise
with variance sj to every pj , obtaining a drawing which
maintains the relevant traces of the original but differs in
those that do not significantly contribute to the objective.

From here on, we can proceed with the gradient descent
iterations as in the OS-MEGA algorithm. The full pro-
cess (which we call Mutated Outbound Scattering MEGA
or MOS-MEGA) is outlined in Algorithm 1.

Algorithm 1 MOS-MEGA
Initialization

Build starting population {x1, . . . , xK}
B = [g(x1), . . . , g(xK)]

for t = 1, . . . , T

Mutation Phase
Choose a random k ∈ {1, . . . ,K}
Compute the irrelevance scores {s1, . . . , sJ}
for j = 1, . . . , J
pj ← pj + η, η ∼ N (0, s2j )

y = [p1, . . . , pJ ]

Optimisation Phase
b̄ = mean(B)
C = (B − b̄)T (B − b̄)
v = eigenvector with min eigenvalue of C
σ = sign(⟨v, bk − b̄⟩)
for i = 1, . . . , I
y ← y +∇yf(y)− λ∇y∥g ◦ h(y)− bk − σv∥2
K ← K + 1

Results
In order to test how the proposed algorithms work, we run a
few examples using CICADA, starting from a partial sketch
of “a red chair” and generating three random completions,
whose behaviour scores are depicted in blue in Figure 1.
From there, we run OMG-MEGA, OS-MEGA and MOS-
MEGA. We run all algorithms for 1,000 seconds, to be able
to fairly compare their performance, as they are intended to
use in a co-creative setting, where time is a relevant factor.

The results are illustrated in Figure 1, where it can be seen
that while OMG-MEGA produces more individuals, both of
our proposed variants, OS-MEGA and MOS-MEGA cover
a larger area of the behaviour space.

Figure 2 shows some (randomly chosen) examples of the
actual images obtained, making it clear that the observed
greater coverage in Fig. 1 translates to much more visible
variance in the images. As previously stated, OMG-MEGA
does not produce significant variations between CICADA
images (at least not without prohibitive amounts of com-
pute), whereas OS-MEGA significantly changes the char-
acteristics of the drawings, and MOS-MEGA moreso again.

Visual comparison has a high degree of subjectivity, so we
have made use of the Truncated Inception Entropy (TIE), as
introduced in (Ibarrola, Lawton, and Grace 2022), to quan-
tify the diversity of each of our resulting sets of drawings.
TIE uses the same feature space as the well-known FID im-
age quality measure, but assesses variance rather than com-
paring two sets of images. This is computed as

TIE(A;K)
.
=

K

2
log(2πe) +

1

2

K∑
k=1

log λk, (1)

where A is the population being evaluated, λk are the eigen-
values (in descending order) of their covariance matrix, after
mapping with an inception network, and K is a truncation
parameter. High values of this metric are associated with
high population diversity.

Four completion tasks of sketches of common household
items (“a chair”, “a lamp”, “a hat” and “a blue dress”) were
run starting with the same populations for the three algo-
rithms, and the obtained TIE scores (using K = 16) are
shown in Figure 3. The larger TIE values obtained with OS-
MEGA, and larger still using MOS-MEGA corroborate the
effects observed in Figure 2. Some examples of the obtained
results can be seen on Figure 4, showcasing variety in size
and chromaticity.

Conclusions

In this paper we have proposed new ways to explore be-
haviour space in the setting of co-creative drawing based
on vector image optimisation. Experiments show that the
proposed algorithms result in better coverage of behaviour
space in the same CPU time, as well as greater diversity as
attested by visual inspection and the TIE diversity metric.
While our explorations have thus far focused only on the
CICADA drawing context, we hope they may generalise to
other quality-diversity contexts.

Future work will focus on how well the proposed algo-
rithm works in a real co-creative setting, including both the
time taken to usably generate different suggestions and the
user ratings of their appropriateness and utility. Further-
more, additional studies are needed to explore the difficul-
ties that may arise when the users are to define the behaviour
space on their own (i.e. providing arbitrary prompts for both
objective and behaviours).
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Figure 2: Each row shows four images randomly chosen from the population branched out from the initial image on the left,
using one of the three algorithms.

Figure 3: TIE values for the populations obtained with dif-
ferent algorithms. The experiments were carried using four
different partial sketches.
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