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Abstract

Quality-Diversity algorithms are a useful tool for cre-
ative search because they can evolve artefacts with dif-
ferent search strategies that focus on different criteria
such as behavioral novelty or improving quality. These
different strategies find diverse solutions with high qual-
ity. However, Quality-Diversity algorithms can exhibit
inefficiency and a lack of control when exploring a
genome space for diverse solutions. We propose two
different approaches that connect the genome space of
artefacts to their phenotypic behavior. The approaches
may allow a computationally creative system not only
to explore the space of solutions more quickly but also
to guide its search towards underrepresented and sur-
prising behaviors.

Introduction
Artefact-producing computational creative (CC) systems fo-
cus on generating artefacts that exhibit qualities like typ-
icality, novelty, and quality. Developing metrics to eval-
uate these criteria is a challenging task, and so is finding
the right balance for this multi-objective optimization prob-
lem: an insufficient focus on novelty would lead to arte-
facts that are merely good; an insufficient focus on typ-
icality would lead to artefacts that are merely weird; an
insufficient focus on quality would lead to artefacts that
are merely artefacts. Accordingly, the subject of creative
search has long been a focus of CC research (Boden 1992;
Wiggins 2006). A key concept in this debate has been the
contrast between exploratory and transformational creativ-
ity, with the former involving the search of a pre-defined
space, and the latter being search that combines both re-
definition and search of a space. Transformational creativ-
ity, viewed as the more significant of the two, is motivated
by studies in the cognitive science of creativity showing it-
erative problem re-framing and the gradual emergence of
both a problem and its solution (Maher and Poon 1996;
Schon and Wiggins 1992). The basic nature of search al-
gorithms implies a fixed space, and creative search has been
operationalized as a kind of “meta-search”—a higher-level
search over the space of search spaces permitting some level
of transformational creativity in the original space.

Quality-Diversity (QD) algorithms are evolutionary algo-
rithms (EA) that simultaneously optimize one fitness func-

tion (for “quality”) while producing a set of solutions with
good coverage of one or more other functions (or “behav-
iors”, for “diversity”). QD algorithms only allow a solution
to compete against its neighboring solutions; for example,
it may not make sense to compare Edgar Allen Poe’s hor-
ror poems to Shel Silverstein’s comedic poems, but we may
aptly compare Poe’s poems with Emily Dickinson’s horror
poems. They enforce diversity by developing behavioral
niches to stratify solutions while also finding quality solu-
tions within those niches, leading to a collection of diverse
solutions, each with high quality relative to their neighbors.
The QD approach is not strictly a kind of meta-search, hav-
ing a static genome space and being better understood as a
kind of multi-objective search for a set of solutions. How-
ever, we argue that it exhibits some of the same properties,
in that the diverse high-quality artefacts it tends to produce
were evolved using different search strategies (i.e. combi-
nations of the behavior and fitness functions), and tend to
achieve their quality in very different ways (as the behavior
space is likely nonlinear with respect to the genome space).
QD algorithms are particularly useful in a co-creative CC
context, where a set of diverse, high-quality options can be
presented to a user, resulting in increased novelty in the fi-
nal product and offering the potential for transformational
creativity from the perspective of the user, who may have
preconceptions about the space being searched.

Unfortunately, QD algorithms often struggle to search
complex spaces thoroughly in reasonable amounts of time,
as they make the assumption that the fitness and behavior
evaluations can be run millions of times (Chatzilygeroudis
et al. 2021). One approach to addressing this is intro-
ducing a surrogate evaluation—some rapid approximator of
the more-expensive fitness and/or behavior functions (Ong,
Nair, and Keane 2003). While surrogates have been applied
to some CC domains (Zhang et al. 2022), for many domains
the evaluation functions—as well as the expression from
genotype to phenotype—are both expensive and challeng-
ing to approximate. As the dimensionality of the genome
and the number of desired behaviors increases, many QD
algorithms expend considerable resources exploring and re-
exploring well-travelled and low-potential regions.

In this paper we propose two different approaches to im-
prove QD search, particularly motivated by the CC context.
Both approaches are based on attempting to predict how the



behavior space will change based on changes in the genome
space. Our first approach is a low-level and local one: learn-
ing local gradients of individual behaviors and adapting in-
dividuals along them. Our second approach is a high-level
and global one: trying to discover latent behavioral structure
in the genome space.

Background
MAP-Elites (Mouret and Clune 2015) is one of the most in-
fluential QD algorithms to date. MAP-Elites maps an in-
dividual to a point in the behavior space B, which speci-
fies different behavioral qualities of the individual’s pheno-
type. For example, we could map the space of stories to
k behaviors, such as the amount of humor, horror, and ro-
mance contained within the story. MAP-Elites then searches
the genome space to find quality solutions within behavioral
niches such as the best story with a lot of humor and ro-
mance, but little horror.

The approach requires definition of a genome space G;
phenome space P; genome to phenome map T : G → P;
behavior function B : G → Rk, where k is the number
of behavioral attributes; fitness function P : G → R; and
an archive of the elite solutions (P,X), where P stores the
fittest score for each behavioral niche and X stores the fittest
individual for each behavioral niche.1 For example, let P be
the domain of stories, G some genomic representation (such
as a plot graph), T a story generator, and k = 3 behav-
iors: humor, horror, and romance. If B maps each behavior
to a real value between 0 (e.g. not scary) and 1 (e.g. the
scariest), then our behavior space B = [0, 1]3. B is then dis-
cretized along all k dimensions to form the phenome’s be-
havioral niches. If horror and romance are discretized into
bins, [0, 0.5), [0.5, 1], meaning a story is considered either
not scary (not romantic) or scary (romantic), and humor is
discretized into bins, [0, 0.33), [0.33, 0.66), [0.66, 1], so that
a story can be mapped to low, medium, and high levels of
humor, the result is twelve behavioral niches.

MAP-Elites randomly samples an individual g ∼ G, re-
trieves its behavioral niche b ← B(g) and performance
p ← P (g), and checks if g is the fittest within its behav-
ioral niche p > P[b]. If it is, then the archive of elites is
updated: P[b] ← p and X[b] ← g. After enough random
samples, MAP-Elites starts searching the genome space by
performing genetic operations, e.g. crossover and mutation,
among the elite solutions in X.

Approximating Behavior Gradients
When a genome is mutated, the resulting child g usually ex-
hibits a change in behavior ∆b. Unfortunately, it is difficult
to determine what specific change ∆g led to ∆b. Further-
more, it is unclear whether additional mutation in the di-
rection of ∆g leads to additional behavior change in the di-
rection of ∆b. This is a credit assignment problem. Our lo-
cal, “low-level” approach is an attempt to alleviate this prob-
lem by approximating the gradient of our behavior function,
∇B, so that we can correctly assign credit to each gene.

1B and P measure phenotypic behavior and fitness, respec-
tively, so each includes an implicit use of the mapping T .

By utilizing a differentiable regression model fθ : G→ B
as a surrogate for B, we can approximate ∇B by instead
computing ∇fθ. To compute fθ, a genome g ∈ G can be
mutated to generate neighbors gi; their corresponding be-
haviors bi retrieved; and fθ trained to minimize error, i.e.
minθ∥fθ(gi) − bi∥. We can then either apply ∇fθ(g) di-
rectly: g ← g ± ∇fθ(g) or increase the mutation rate in
the direction of ∇fθ(g). Biasing mutation in the direction
of maximal expected behavioral change could reduce the
time an algorithm like MAP-Elites (which applies Gaussian
noise as its mutation operator) spends searching regions of
the genome space that have little chance of producing im-
provements in either quality or diversity.

The utility of this approach as an efficiency improvement
would depend on the amount of data required to train a lo-
cal behavioral regressor and the size of the region in genome
space that said regressor could reasonably approximate gra-
dients over. If a single global fθ is accurate enough to re-
semble B, then utilizing ∇fθ over the entire genome space
would significantly speed up search. This might be possible
if an underlying structure between G and B exists; that struc-
ture could be discovered with a neural network fθ. However,
it is unlikely that a single global fθ will suffice, and there-
fore it may be necessary to employ multiple local regression
models to approximate B in piecewise fashion.

A naı̈ve first approach would define some radius around a
genome and build a regressor on the mutations taken around
the genome. If the search ever moves beyond the radius of
the genome then we create a new regressor. Simple linear
regressors could be trained with few data examples to give a
quick approximation of a genome’s local behavior gradient.

It might also be useful to utilize both global and lo-
cal regressive models. Ensemble disagreement (Lakshmi-
narayanan, Pritzel, and Blundell 2017) or randomized prior
functions (Osband, Aslanides, and Cassirer 2018) can be
built with regressive neural networks to simulate Bayesian
uncertainty, which can allow EAs to exploit the global re-
gressive model’s gradient approximation when the global
model’s uncertainty is low and utilize a local regressive
model when its uncertainty is high.

Our approach is comparable to natural evolution strate-
gies (Wierstra et al. 2008) and covariance matrix adapta-
tion evolution strategies (Hansen 2016), which also adapt
mutation towards an approximate gradient; however, by un-
coupling our gradient approximators from the current search
we can use them for purposes other than finding the next
population artefacts, such as backtracking or exploring the
genome space on a different behavioral axis. Our approach
also includes the possibility of using a global gradient ap-
proximator. Local gradient approximation is also analogous
to “local explanation”, an approach used as a form of ex-
plainable ML such as LIME (Ribeiro, Singh, and Guestrin
2016), which model the local environment around a data-
point using a simple, scrutable model, allowing the reasons
for its classification to be made clear.

Even with gradient approximation, it can still be diffi-
cult to navigate the genome space to find some expected
behavior—sometimes moving towards one behavior axis
can move you away from another behavior axis.



Learning a Genome-Behaviour Latent Space
There may exist behaviorally-induced global latent structure
within the genome space that may be discoverable during
search. For example, a variational autoencoder (VAE) could
be utilized to construct a latent space that is easier to explore
(than genome space), because it clusters the genomes be-
haviorally, allowing sampling from the VAE’s simple prior
distribution to get genomes within each cluster—sampling
and decoding from the latent space facilitates “intelligently”
jumping around the genome space. To ensure the VAE’s la-
tent structure captures the desired behavior, the prior, en-
coder and decoder may be conditioned on that behavior
(Sohn, Yan, and Lee 2015).

There are two challenges we see in this approach. First,
VAEs commonly use continuous latent distributions to rep-
resent the data, most notably the multivariate Gaussian,
which typically has a smoothness artefact that biases the
mapping from similar latent values toward similar decoded
outputs; however, dissimilar genomes may share behavioral
features. They can also suffer from posterior collapse, where
an overparameterized decoder will largely ignore most of
the latent structure. In such cases, discretized latents, such
as vector-quantized or categorical latents, may prove use-
ful for alleviating these issues (van den Oord, Vinyals, and
Kavukcuoglu 2017; Hafner et al. 2021).

The second and potentially more challenging issue is re-
trieving the necessary data to train the VAE; VAEs learn by
maximizing the evidence lower bound, but what serves as
the evidence for the genome space? If all genomes are con-
sidered equally likely, then the expected fitness of a VAE
sample should approximate the expected fitness of the entire
genome space, which may be extremely low in large genome
spaces. The VAE likely wouldn’t be a useful tool in this sce-
nario. A possible solution to this problem might be to weight
genomes based on their fitness, similar to how EAs perform
parent selection; however, careful attention is required to en-
sure that the few high-performing genomes do not dominate
as the evidence, since the VAE will likely overfit on the few
samples and not generalize to other high-performers in the
genome space. Similarly, we could weight genomes in un-
derrepresented behavioral niches more heavily to enhance
the coverage of behaviors.

Assuming a well-trained VAE model, with likelihood (en-
coder) pθ(z | g, b), prior p(z | b), and posterior (de-
coder) qϕ(g | z, b) distributions, one can sample from the
model to find elites in the neighborhood of other elites:
g′ ∼ qϕ(g | z, b) where z ∼ pθ(z | g, b) is a sample near
the encoding of an elite g ∈ X with corresponding behav-
ior niche b. We can also sample for a new elite in a be-
havorial niche b where no elite exists yet, by sampling our
prior z ∼ p(z | b) and retrieving a genome from our poste-
rior g ∼ qϕ(g | z, b). It is important to note that although
g ∼ qϕ(g | z, b) is conditioned on behavior b, it does not
guarantee that B(g) = b. However, this allows us to under-
stand where behavior is not well understood within our mod-
els; we can use VAE samples to analyze whether their true
behavior matches the given conditional behavior as a way
to measure the information gap of behaviors in the genome
space, e.g. Ez∼p(z|b) [∥b−B(qϕ(g | z, b))∥].

Genome-Behavior Models and QD Curiosity
In complex genome spaces, the number of datapoints re-
quired to train the models in either approach may be large
enough to eliminate any efficiency gains. Yet if either of
these approaches is effective at connecting the genome and
behavior spaces in QD applications—and we stress that if,
because at present we haven’t tested either approach beyond
toy problems—then there may be more benefit to CC than
any gains in efficiency. Maximizing coverage of one or more
behavior functions is interesting, in that it offers a stepping
stone to more CC-relevant concepts like novelty, but outside
of the co-creative “offering diverse suggestions to a human”
use case it is actually somewhat conceptually unsatisfying
as a step towards creative search.

Creative search—and the transformational creativity it
seeks to enable—are fundamentally motivated by the dis-
covery of specific radically new solutions. The constant out-
ward pressure of QD algorithms, however, values the en-
tire behavior space equally at all times. Radically new solu-
tions may emerge but are treated no differently than incre-
mentally more-fit or more-diverse ones. This evokes 1960s
“ideational fluency” notions of creativity (Torrance 1966),
in the sense that QD algorithms produce the largest possible
set of meaningfully different solutions to a problem. Being
only a half-century behind the psychologists is still not bad
for a CC algorithm, but it’s possible we can do better by
rethinking the problem definition for a CC context.

In classic QD algorithms the selection of where to search
next is random—either by selection of a random existing
elite in MAP-Elites and its differentiable derivatives like
OMG-MEGA (Fontaine and Nikolaidis 2021), or by sam-
pling from a distribution learned over the genome space in
evolutionary strategy derived QD approaches like CMA-ME
(Fontaine et al. 2020). This randomness seems unavoidable:
QD algorithms are driven to explore the behavior space but
cannot act directly within it—they must instead search the
genome space and hope that doing so illuminates new be-
havior. The approaches we propose in this paper, however,
offer an opportunity for a curiosity-motivated QD algorithm,
grounded in a connection between genome and behavior. A
“Curious Quality Diversity” algorithm might choose where
to search next (within the genome space) based not on direct
predictions of behavior, but on a drive to improve the qual-
ity of those predictions. This curiosity drive could be used
to dynamically nudge QD search towards regions where be-
havior is not well understood—which may indicate potential
for radically new (and potentially high-quality) artefacts.

The term “curiosity” has been used in QD algorithm se-
lection before, with the “curiosity score” assigned to each
elite in (Cully and Demiris 2017) being the expected prob-
ability that selecting that elite and mutating it would lead
to offspring that are themselves elites (i.e. are either suffi-
ciently different to all known elites or better than all elites
they are similar to). In a sense, this is a model of what
Berlyne would call “general curiosity”, the drive towards
any new stimulus (Berlyne 1960), which is consistent with
the overall aim of QD algorithms. By contrast, “Curious
QD” gives preference to new individuals that would im-
prove the system’s model of the behavior space, consistent



with Berlyne’s “specific curiosity” and other similar “learn-
ing progress” notions (Oudeyer 2004; Schmidhuber 2010;
Grace and Maher 2015).

While we admit to not having yet implemented any of
these ideas, “Curious QD” could be implemented using ei-
ther of our above approaches for connecting behavior and
genome space combined with techniques from the field of
Bayesian optimization (BO). BO techniques are active learn-
ing approaches that (when applied to learning a Bayesian
ML model like a Gaussian Process) define an information-
theoretic acquisition function over where to look next. Typ-
ical acquisition functions include upper confidence bounds
(i.e. picking the spot that could theoretically be best, given
uncertainty) and expected information gain (i.e. picking the
spot that will reduce uncertainty the most). Applied to either
of our proposed approaches, which would by necessity be
learned in an active learning context, these BO techniques
could produce the kind of medium-term search dynamics
more recognizable as specific curiosity.

Conclusion
We have proposed two approaches that work in conjunction
with the QD algorithm MAP-Elites. Our approaches focus
on connecting a genome space to its phenotypic behavior
space, either by approximating the local gradients of the be-
havior functions, or by finding a latent structure that corre-
lates the genome space with the behavior space. These ap-
proaches not only may promote efficiency of creative search,
but also, by modelling the behavior space, they offer an abil-
ity to control how a CC system explores that space. We also
offer some initial thoughts about “Curious QD” and how a
CC system could utilize these models of the behavior space
to find specific, radically novel artefacts with high-quality.
Although this work is still in the preliminary stages, it ap-
pears encouraging as a way to think about and operationalize
the concept of transformational creativity.
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