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Abstract. It is demonstrated that the chaotic properties of neu-
ral networks (in this case networks defined by the generalized delta
procedure) can be used to improve their learning performance. By
adaptively varying the learning-rate parameter an annealing mecha-
nism can be introduced that is founded in chaos. The proposed mecha-
nism, chaos-based learning, provides faster convergence than standard
back-propagation and also seems to provide a computationally less in-
tensive alternative to other back-propagation accelerating techniques
by using adaptive step-size control.

Introduction

In the study of neural networks most attention is directed to their perfor-
mance given stable behavior. The chaotic properties of neural networks,
however, have become well established [5, 6, 13, 14, 17]. In our own work
we have concentrated on the chaotic behavior of standard neural networks
[19, 20]. We have shown that for these network types the learning parameter
71 could be used to introduce chaotic behavior independent of network size.

From an engineering point of view chaos in neural networks seems ineffi-
cient. This implies that it should be suppressed. I would like to illustrate,
however, that chaos can provide dynamical systems like neural networks with
an inherent fast-search mechanism. As an example the chaotic properties of
error back-propagation networks will be used to improve their performance.
The generalized delta procedure (GDP) will be extended with an annealing-
like mechanism that is controlled by the learning-rate parameter n. In this
learning scheme, chaos-based learning (CBL), annealing will take place from
a chaotic phase to a stable phase.

Before elaborating on CBL, the chaotic properties of GDP will be de-
scribed briefly.
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The generalized delta procedure

GDP [8, 12, 15, 21] describes the interaction of multilayered neural networks
and is a connectionist implementation of the classical optimization method
of gradient descent. GDP networks can be trained to learn to associate a set
of input patterns £# (u = 1,..., P) with a set of output patterns that are
a transform of these input patterns f(&*). This mapping is established by
minimizing the averaged error Q*(w) between the expected output, f(£#),
and the output calculated by the network, g(£#, w), which is a function of
the input pattern presented, £¥, and the weights and biases in the system,
w. The error function Q(w) can be expressed as:
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To implement gradient descent the weights are updated according to
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in which 7 determines the learning rate.

The error surface on which gradient descent takes place is defined by (1)
and has as many dimensions as there are weights and biases in the system.
The system is supposed to make steps along the error surface until ) is min-
imal and a representation of the input-output mapping has been found. The
trajectory made is determined by the mapping to be learned, the presenta-
tion strategy, and the step sizes. These step sizes are determined by @, w,
and the learning rate parameter 7 (equation (2)).

The error surface defined above has three general properties. First, it
can have very little slope, which implies that @ will only decrease after a
considerable number of steps. Second, the error surface of GDP contains
local minima that can trap the system in a non-optimal solution. Third, the
error surface contains many global minima.

In every simulation experiment, however, one cannot perform strict gra-
dient descent, which would require infinitesimally small step sizes. For every
finite step size the dynamics in weight space can at the most be an approx-
imation of gradient descent; the accuracy of this depends critically on the
curvature of the error surface. Therefore, for finite step sizes, local minima
in which the system will not be trapped can be postulated.

Chaos

In Verschure et al. [20] the chaotic properties of GDP are demonstrated by
means of bifurcation diagrams, pseudo-phase plots, Lyapunov exponents, and
power spectra. Here, as an illustration of these chaotic properties, a small
network consisting of 2 input units, 3 hidden units, and 1 output unit will
be submitted to the classical exclusive-or task for increasing values of 7. As
a measure of the behavior of the system the error function —@Q is used.
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Figure 1: Bifurcation diagram of GDP performing the exclusive-or.
n = 1.0 to 4.0.

In figure 1 the development of —@Q over the range n = 1.0 to 4.0 is
shown. For every value of n, 3000 learning cycles were performed in which the
four patterns constituting the exclusive-or were presented. Before a learning
sequence commenced, the weights and biases were initialized at the same
values, which were chosen randomly. The values of —Q are only depicted
from cycle 1000 to 3000 to assure that only stationary behavior is shown. In
this simulation the patterns are presented periodically and the weights are
updated after every pattern presentation.

For 7 in the range 1.0 to 1.25, the development of —@ is stable; the system
has converged to a stable solution. After n = 1.25 the system ends up in a
chaotic regime. Between n = 1.6 and n = 2.3 some bifurcations are clearly
visible.

The control parameter 7

The speed of convergence of GDP is strongly dependent on the properties of
the error surface along which gradient descent takes place. When the error
surface is practically flat or the direction of the negative gradient vector—
which directs the update of the parameters—does not point toward the global
minimum of the surface, the rate of convergence will be slow. On the other
hand, when the error surface is strongly curved the step size can become too
large, which can lead to an overshoot. To find an optimal adjustment of the
step size, adaptive tuning of the learning rate parameter n dependent on the

properties of the error surface seems appropriate [3, 18].
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A number of heuristics for adapting 7 have already been proposed (see
[2] for an overview). In defining these heuristics, one is confronted with a
dilemma. High values of ) lead to a quick approximation of convergence and
seem appropriate when the error surface is relatively flat. Unfortunately,
high values of 1 also imply that the system will probably not settle into the
detected minimum, but will overshoot. Low values of n imply that the system
could take a very long time to reach a minimum. Also, in this case there is
no guarantee the system will remain at this solution. In choosing an optimal
step size, we seem to be confronted with a speed-stability trade-off.

In dealing with the speed-stability trade-off two strategies seem appro-
priate. The first tries to specify the relation between the properties of the
task domain and optimal initial conditions. A second approach would rely
on equipping the system with internal mechanisms that would allow it to
adapt to task demands. The present proposal is an example of the second
strategy.

Chaos-based learning

In CBL learning takes place in three phases. In the first or stabilizing phase
a semi-stable state is established using a predetermined value of 7. In the
second or chaos detecting phase the system searches for the chaotic domain of
the system by adaptively increasing 7. When the error function becomes very
variable chaos is inferred, and the third or cooling down phase is initiated.
In this last phase, the system cools down from a chaotic domain to a stable
domain with 7 as the control parameter. In all phases learning takes place
according to GDP after every pattern presentation.

Phase 1: Stabilizing

During a number of learning cycles, the pattern mapping is learned with
a predetermined value of n until the error function becomes stable. In the
first few training cycles the error function can go through rapid changes.
After these rapid changes the dynamics mostly settle into a relatively stable
state, which is related to a low slope area of the error function mentioned
earlier. Since chaos is expressed in strongly varying values of the error func-
tion @, the system could erroneously classify these early changes as chaotic
behavior. Therefore, after every presentation cycle ¢ (in which all P pattern
combinations are presented) the ratio of the error function at ¢ and ¢ — 1
is determined. If this ratio does not significantly differ from 1, stability is
reached and the next phase is entered.

Phase 2: Chaos detection

Learning proceeds by adding a predetermined step size An (An < n) to the
initial value of n. For a predetermined number R of presentation cycles, the
learning task is performed with this new value of 7. The subsequent series
of R presentation cycles with increasing values of 1 are called search cycles.
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Within every search cycle, n is held constant. Between subsequent search
cycles, n increases.

Within every search cycle the average of the error function @ is deter-
mined after every completed presentation cycle c. After the last presentation
cycle of a search cycle (c = R) the ratios between the last value of @ and all
earlier values of @ within the search cycle are determined. If all the ratios
significantly differ from 1.0, and Q is not steadily decreasing, chaos is inferred
and cooling down can begin. If one or more of these ratios, however, does
not differ significantly from 1.0, n is increased and the next search cycle is
initiated.

The increments of 7 in this chaos detection phase are dependent on the
variability of @ in the search cycle. After one search cycle is terminated
the standard deviation og of @ over the previous R presentation cycles is
determined:

ZR—l(Qc — @)2
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The new value of the step size An is determined by the product of the
ratio of the value of the standard deviation of @ for the previous search cycle,
the present search cycle, and the difference between the associated values of
7. When we index the search cycles with s, this product can be expressed as

s—1

an= (%) b =) @

This definition of An assures that, when the variance of @ is low, which
probably indicates a flat error surface, the step sizes will increase markedly.
In case variance is high, the step sizes are decreased to allow a fine-tuned
chaos detection.

Phase 3: Cooling down

The previous chaos detection phase increases n until chaotic behavior is in-
ferred. This last value of 1 constitutes the upper limit of the control pa-
rameter 7 in the cooling down phase. The step size An in this phase is the
average value of all earlier step sizes. This average step size also defines the
lower bound of 7 in cooling down.

Changes in 7 are determined using a Metropolis-type algorithm [11]. The
probability P, of accepting a given value of n after presentation cycle ¢ given
the performance of the system, expressed in @, is determined by P, = 1—Q..
If P. exceeds a randomly chosen criterion that is between 0 and 1, 7 is
decreased by P,An. Otherwise, 1 increases by (1 — P,)An.

The upper and lower bounds of 1 function as reflecting barriers. If the
upper bound is reached, 7 is set at 0.75(n — An). If the lower bound is
reached, 7 is set at 0.5(n — An). The constants 0.75 and 0.5 are determined
on the basis of simulation studies. The lower reflecting bound counteracts
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Figure 2: (a) CBL performing the exclusive-or: the first 200 cycles.
The upper panel displays the development of Q. The lower panel
represents the development of 1. The vertical lines between the two
panels represent the annealing schedule. n and An were initialized at
0.1 and 0.001. respectively. Chaos was detected at n = 1.7749. The
step size and the lower bound in the cooling down phase were set at
0.0508. Final @ = 0.00409566. After 1000 cycles Q had decreased to
0.00048217.

stages of slow convergence. If only 7 decreases then there is a large proba-
bility that n will take on a minimal value quickly. while convergence is not
reached or approached. In this situation larger values of n would be more
appropriate. The upper reflecting barrier forestalls that n exceeds the chaotic
domain found earlier. which would make the system jump out of the basin
of attraction of the minimum it is approaching.

Simulation results

As an illustration of the properties of CBL. a 2-3-1 network was submitted
to the classical exclusive-or task with the same initial values used to obtain
figure 1. In these simulations the patterns are again presented periodically.
In figures 2(a) and 2(b) the results of the experiment are shown for CBL
and GDP. respectively. The upper panel of figure 2(a) displays the develop-
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Figure 2: (b) GDP learning the exclusive-or: the first 1000 cycles.
n = 0.1. Final @ after 1000 cycles is 0.0057026.

ment of —Q* during 200 presentation cycles. The lower panel of the figure
represents the development of 7. The vertical lines between the two pan-
els represent the cooling down schedule. When the line points upward, P,
exceeded the randomly chosen criterion and 7 was lowered. When the line
points downward, n was increased. The point along the axis representing the
cycles where the annealing sequence commences indicates the start of the
cooling down phase.

In this experiment, 1 was initialized at 0.1 with a first step size of 0.001.
Chaos was detected after 112 cycles at 7 = 1.7749. The cooling down step
size and lower bound was set at 0.0508. The final value of Q (averaged over
the four patterns) after 200 cycles was 0.00409566. After 1000 cycles @ had
further decreased to 0.00048217.

The relation between the cost function @ and 7 in determining the step
sizes (equation (4)) in the chaos detection phase is clearly demonstrated. If
Q stabilizes, An rapidly increases in search of chaos; otherwise An decreases
in order to be able to come to a precise determination of the chaotic level.

Figure 2(b), which is constructed in the same way as the upper panel of
figure 2(a), displays the behavior of GDP given identical initial conditions
and network architecture. GDP gave a final @ of 0.0057026 after 1000 cycles
for n = 0.1. When comparing figures 2(a) and 2(b) it is evident that CBL
adjusts n very rapidly in such a way as to counteract the slow convergence
phase that is expressed in the behavior of GDP.

To demonstrate that CBL has properly detected the chaotic domain of
the dynamics, the pseudo-phase plot related to the time series generated with
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Figure 3: Pseudo-phase plot of the time series generated with the
chaotic level of n detected by CBL. = 1.7749. The Lyapunov expo-
nent of this time series was 0.30587, indicating chaos.

1 = 1.7749—the chaotic level of 7 in the previous experiment—is depicted in
figure 3. The Lyapunov exponent [9, 22] related to this time series has the
value 0.30587, clearly indicating chaos.

As an illustration of the independence of the performance of CBL on
network size, the parity problem in a 10-3-1 network was also tested. The
results are shown in figure 4. n and An are initialized at 0.1 and 0.01,
respectively. Chaos is detected after 50 cycles at n = 0.9921, and the cooling
down step size was set at 0.0686. The final value of @) after 200 cycles was
0.00116492. After 1000 cycles @ had further decreased to 0.00008613.

In this cooling down phase another attractive property of the lower re-
flecting barrier was demonstrated. One of the patterns seems to slow down
convergence. This was counteracted by the constant perturbation introduced
by the reflecting lower barrier. GDP gave a final @ of 0.0886442 after 200
cycles and of 0.0003913 after 1000 cycles. GDP had terminated the slow
convergence phase after 450 cycles.

In the simulations, differences in cooling down schedules could result in
considerable differences in learning performance. Some decreasing/increasing
sequences of 7 gave rise to quicker convergence than others. The exact re-
lation between performance and the cooling down schedule still has to be
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Figure 4: CBL performing the parity problem in a 10-3-1 network.
n and An were initialized at 0.1 and 0.01. respectively. Chaos was
detected at n = 0.9921. The step size and the lower bound in the
cooling down phase were set at 0.0686. Final @ = 0.00116492. After
1000 cycles @ had decreased to 0.00008613.

assessed. These results. however. suggest that a more deterministic method
than the Metropolis algorithm could prove useful in speeding up convergence
in annealing-like methods.

CBL, GDP acceleration techniques, and simulated annealing

Routines that adaptively vary n in order to speed up convergence mostly
avoid instability (limit cvcles or chaos) by increasing 7 in a linear way while
" decrements are exponential [2]. Another solution is to lock the system into
stable behavior by rejecting the weights. which are related to instability [16].
CBL. however. indicates that the chaotic properties of networks can be used
to speed up convergence.

Although standard GDP acceleration techniques. which adaptively vary
the step sizes. provide faster convergence than standard GDP. they also imply
extra computational overhead since they rely on an individual learning rate
parameter for everv weight in the svstem. CBL. however. suggests that
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convergence can also be accelerated by varying only one global learning-rate
parameter.

Like the simulated annealing method [4], implemented in the Boltzmann
machine [1], CBL prescribes that the system cools down from an unstable
state to a stable state. In CBL, n has a function similar to the computa-
tional temperature T used in the Boltzmann machine. In simulated annealing
methods, T' determines the amount of random state changes in the dynamics.
This property can lift the dynamics out of local minima and enables the sys-
tem to jump over energy barriers. A system is set off at a high temperature,
which leads to a coarse or semi-global search for energy minima. Lowering
the temperature makes the system respond to smaller energy differences and
introduces local-search.

In the Boltzmann machine, 7" works on the level of the activity updating
process and indirectly influences the weight changing process, which is opti-
mized. Furthermore, T' introduces random behavior into the network, which
is completely independent of the initial conditions and the task the model
has to perform.

7, as used in CBL, gives rise to chaotic behavior, which is completely
dependent on the task at hand and the initial conditions, and works di-
rectly on the level at which optimization takes place. 7 allows the system
to cross energy barriers by means of chaotically overshooting minima in the
error surface. Varying n will not, like computational temperature, intro-
duce dynamics-independent random search, but dynamics-dependent search
founded in chaos.

Conclusion

CBL is based on a collective chaotic property of neural networks that is
driven by an increased interaction between the computational elements. The
function of this chaotic movement is to allow the system to perform coarse
search in weight space and to provide a criterium in estimating optimal step
sizes as a solution to the speed-stability trade-off.

How the properties of CBL bear upon our understanding of chaos ob-
served in biological processes remains to be seen. CBL, however, provides an
additional suggestion about the relation between chaos and computation in
dynamical systems, which is an alternative to the hypothesis put forward by
Langton [7]. Langton assumes that the fundamental conditions necessary for
computation in complex systems have to be found at the edge of chaos, in
the vicinity of a phase transition. CBL suggests that the optimal condition
for some computational processes might be found by entering the chaotic
domain and returning to a stable position.

CBL confirms the suggestion of Mantica and Sloan [10] that chaotic opti-
mization could prove superior to other optimization schemes, and is a demon-
stration that chaos is not only an interesting property of dynamical systems,
but can also be a useful one.
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