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Abstract. It is demonstr ated th at the chaotic properties of neu­
ral networks (in this case networks defined by the generalized delta
procedur e) can be used to improve th eir learning performance. By
adapt ively varying the learning-rate parameter an annealing mecha­
nism can be introduced that is founded in chaos. T he prop osed mecha­
nism, chaos-based learning, provides faster convergence than standard
back-propagation and also seems to provide a computationally less in­
tensive alternative to other back-propagation accelera ting techniques
by using adaptive step-size control.

Introduction

In t he st udy of neural networks most at te nt ion is directed to t heir perfor­
mance given stable beh avior. The chaot ic properties of neur al networks,
however , have become well established [5, 6, 13, 14, 17]. In our own work
we have concentrate d on t he chaot ic behavior of standard neural networks
[19, 20J. We have shown that for t hese network ty pes the learni ng parameter
TJ could be used to introduce chaotic behavior independent of network size.

From an enginee ring poin t of view chaos in neur al networks seems ineffi­
cient . This impli es that it should be suppresse d. I would like to illustrat e,
however , that chaos can provide dyn amical systems like neural networks with
an inherent fast-search mechanism . As an example the chaot ic proper ti es of
err or back-propagation networks will be used to improve t heir performance.
The generalized delta proced ur e (GDP ) will be ex te nded wit h an annealing­
like mechanism that is cont rolled by t he learning-r a te paramet er TJ . In t his
learning scheme, chaos-based learning (C BL) , an nealing will take place from
a chaot ic phase to a stable phase.

Before elaborating on CBL, the chaotic prop erties of GDP will be de­
scribed briefly.
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The generalized delta procedure

GDP [8, 12, 15, 21] describes the int eraction of mul tilayered neural networks
and is a connec t ionist imp lementation of the classical opt imization method
of gradient descent. GDP networks can be trained to learn to associate a set
of input patterns ~I'- (/-i = 1, ... , P) with a set of output patterns that are
a tr an sform of these input patterns f(~I'-) . This map ping is established by
minimizing the average d erro r QI'-(w) between the expected output , f(~I'-) ,

and the output calculate d by the network, g(~I'- , w) , which is a funct ion of
the input pattern pr esented , ~I'- , and the weight s and biases in the syste m,
w . The error functi on Q(w ) can be expresse d as :

1 '" 2Q(w) = P c: [f ( ~I'- ) - g(~I'- , w) ]
I'-

To imp lement gradient descent the weights are updat ed according to

8QI'­
6w = -TJ- ­

8w

(1)

(2)

in which TJ det ermines the learn ing rate.
The err or surface on which gradient descent t akes place is defined by (1)

and has as many dimension s as there are weights and biases in the system.
The system is suppose d to make steps along the error surface until Q is min­
imal and a representation of the input-output mapping has been found. The
tr aj ectory mad e is det ermined by the mapping to be learned , the pr esenta­
tion st rategy, and th e st ep sizes. These step sizes are determined by Q, w ,
and the learning rate parameter TJ (equation (2)) .

T he error sur face defined above has three general pro perties. First , it
can have very lit t le slope, which implies that Q will only decrease afte r a
considera ble number of ste ps . Second, the error sur face of GDP contains
local minima that can tr ap the system in a non-optimal solution. Third , the
erro r surface contains many global minima.

In every simulation experiment , however , one cannot perform strict gra­
dient descent , which would require infinitesim ally small step sizes. For every
finite step size the dynamics in weight space can at the most be an approx­
imat ion of gra dient descent ; the accuracy of this depend s crit ically on the
curvature of the erro r sur face . Therefore , for finit e step sizes , local minima
in which the system will not be trapp ed can be postulat ed.

Chaos

In Verschure et al. [20] the chaot ic properties of GDP are demonstrated by
mean s of bifurcation diagram s, pseudo-phase plots, Lyapunov exponents, and
power spec t ra. Here, as an illust ration of these chaot ic properties, a small
network consist ing of 2 input units, 3 hidden units, and 1 output unit will
be submitted to the classical exclusive-or task for increasing values of TJ . As
a measure of the behavior of the syst em the err or funct ion - Q is used .



Chaos-based Learning 361

0.0

-Q~

· 1.0
1.0 4.0

Figure 1: Bifurcation diagram of GDP performing the exclusive-or.
T) = 1.0 to 4.0.

In figure 1 the development of - Q over the ran ge "I = 1.0 to 4.0 is
shown . For every value of "I, 3000 learning cycles were perform ed in which the
four pat tern s const it ut ing the exclusive-or were pr esented . Before a learni ng
sequence commenced , the weights and biases were ini ti alized at the same
values, which were chosen random ly. The values of -Q are only depicted
from cycle 1000 to 3000 to assure that only stationary behavior is shown. In
this simulation the pat terns are presented periodically and the weights are
updated afte r every pat tern pr esentati on .

For "I in the ran ge 1.0 to 1.25, t he development of - Q is stable; the system
has converged to a stable solut ion. Aft er "I = 1.25 the system ends up in a
chaot ic regime. Between "I = 1.6 and "I = 2.3 some bifurcati ons are clearly
visible.

The control parameter "I

The speed of convergence of GDP is strongly dep endent on the properties of
the err or sur face along which gradient descent takes place. W hen the error
sur face is practically flat or the direct ion of the negati ve grad ient vect or-

. which directs the update of the parameters-does not point toward the global
minimum of the sur face , t he rate of converge nce will be slow. On t he ot her
han d , when the error surface is st rongly curved the step size can become too
large, which can lead to an overshoot. To find an optimal adjustment of the
ste p size, adaptive tuning of the learn ing rate par am eter "I dependent on the
propert ies of the err or sur face seems appropriate [3, 18].
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A number of heurist ics for adapting TJ have already been proposed (see
[2] for an over-view) . In defining these heurist ics, one is confronted with a
dilemma. High values of TJ lead to a quick approximation of convergence and
seem appropriate when the error surface is relati vely fiat. Unfort unately,
high values of TJ also imply that the system will probably not settle into the
det ect ed minimum, but will overshoot . Low values of TJ imply that the system
could take a very long t ime to reach a minimum. Also, in this case there is
no guar antee the system will remain at this solut ion . In choosing an optimal
ste p size, we seem to be confronted with a speed-stability tr ade-off.

In dealing with the spee d-stability trade-off two strategies seem appro­
pr iat e. The first t ries to spec ify t he relation between the properties of the
task dom ain and optimal init ial condit ions . A second approach would rely
on equipping the system with intern al mechan isms that would allow it to
adapt to task demands. The pr esent proposal is an example of the second
strat egy.

Chaos-based lear n ing

In eBL learn ing takes place in three ph ases. In the first or stabilizing ph ase
a semi-st ab le state is established using a pr edet erm ined value of TJ. In the
second or chaos det ect ing ph ase the system searches for the chaotic domain of
the system by ad aptively increasing TJ. When the error fun ction becomes very
vari ab le chaos is inferr ed , and the third or cooling down ph ase is ini ti ated.
In this last phase, the system cools down from a chaotic domain to a stable
dom ain wit h TJ as the control param et er . In all ph ases learni ng takes place
according to GDP after every pattern pr esentat ion .

Phase 1: Stabilizing

During a number of learn ing cycles, the pattern mapping is learn ed wit h
a pr edetermined value of TJ unt il th e error function becom es stable. In the
first few tr aining cycles the error function can go through rapid changes.
Aft er these rap id changes the dynam ics mostly settle into a relat ively stable
state, which is related to a low slope area of the error function mentioned
ear lier. Since chaos is expressed in strongly vary ing values of the error func­
t ion Q, the system could err oneously classify th ese early changes as chaotic
behavior. Therefore, after every pr esent at ion cycle c (in which all P pattern
combinations are presented) the ratio of the error function at c and c - 1
is det ermined. If this ratio do es not sign ificant ly differ from 1, stability is
reached and the next phase is ente red .

Phase 2: C haos detectio n

Learning pro ceeds by adding a pr edetermined ste p size c::'TJ (c::' TJ < TJ) to the
initial value of TJ. For a pr edetermined number R of pr esentation cycles, the
learn ing t ask is performed wit h this new value of TJ. The subsequent series
of R pre sentation cycles wit h increasing values of TJ ar e called search cycles.
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Within every search cycle, 1] is held constant . Between subsequent search
cycles, 1] increases.

Within every search cycle the average of the error function Q is deter­
mined afte r every completed present ation cycle c. After the last present ation
cycle of a search cycle (c = R) the ratios between the last value of Q and all
earlier values of Q within the search cycle are determined . If all the ratios
significantly differ from 1.0, and Q is not steadily decreasing , chaos is inferred
and cooling down can begin . If one or more of these ratios, however , does
not differ significantly from 1.0, 1] is increased and the next search cycle is
initiated.

The increments of 1] in this chaos detection phase are depend ent on the
variability of Q in t he sear ch cycle. After one search cycle is t erminat ed
the standard deviat ion I7Q of Q over the prev ious R presentat ion cycles is
det ermined:

(3)

The new value of the step size 1:::.1] is determined by the product of the
ratio of the value of the st andard deviation of Q for the previous search cycle,
the present search cycle, and the difference between the associated values of
1]. When we index the search cycles with s , this product can be expressed as

(4)

This definit ion of 1:::.1] assures that, when the variance of Q is low, which
probably indicates a flat erro r surface, the step sizes will increase markedly.
In case variance is high , the step sizes are decreased to allow a fine-tuned
chaos detection.

P hase 3: C ooling down

The previous chaos det ection phase increases 1] unti l chao t ic behavior is in­
ferred. This last value of 1] const itutes the upper limit of the cont rol pa­
rameter 1] in the cooling down phase. The step size 1:::.1] in this phase is the
average value of all earlier step sizes. This average step size also defines t he
lower bound of 1] in cooling down .

Changes in 1] are determined using a Metropolis-type algorithm [11]. The
probabi lity Pc of accept ing a given value of 1] aft er pres ent ation cycle c given
the performance ofthe system, expressed in Qc, is determined by P; = l -Qc.
If P; exceeds a randomly chosen criterion that is between 0 and 1, 1] is
decreased by Pc1:::.1]. Otherwise, 1] increases by (1 - Pc )1:::.1].

The upper and lower bounds of 1] function as reflect ing barriers. If the
upper bound is reached , 1] is set at 0.75(1] - 1:::.1]). If the lower bound is
reached , 1] is set at 0.5(1] - 1:::.1]). The constants 0.75 and 0.5 are determined
on the basis of simulat ion studies. The lower reflecting bound counteracts
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Figure 2: (u) CBL performing the exclusive-or : the first 200 cycles.
The upp er panel displays the development of Q. Th e lower panel
represents the development of TJ . The vert ical lines between the two
panels represent th e annealing schedule. TJ and D..TJ were initialized at
0.1 and 0.001. respectively. Chaos was detected at TJ = 1.7749. Th e
step size and t he lower bound in th e cooling down phase were set at
0.0508. Final Q = 0.00409566. After 1000 cycles Q had decreased to
0.00048217.

stages of slow converge nce . If only T/ decreases t hen t here is a lar ge proba­
bili ty that T/ will take on a minim al value qu ickly. while conve rgence is not
reached or approached . In t his sit uat ion larger va lues of T/ would be more
appropriate . The upper reflecting barri er forestalls that T/ exceeds t he chaot ic
domain found earlier. wh ich would make t he syste m jump ou t of the basin
of attraction of t he minimum it is approaching.

Simulation resu lts

As an illustration of the prop er t ies of CBL. a 2-3-1 networ k was submitted
to the classical exclus ive-o r t ask wit h t he sa me ini ti al values used to obtain
figure 1. In these simulations t he pat tern s are again pr esented periodicall y.

In figures 2(a) and 2(b) the results of t he expe rime nt are shown for CBL
and GDP. resp ectively. The upper panel of figure 2(a) disp lays t he develop-
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F igure 2: (b) GD P lear ning the exclusive-or: t he first 1000 cycles .
"I = 0.1. Final Q after 1000 cycles is 0.0057 026.

ment of _QIJ- during 200 presentat ion cycles. The lower panel of the figur e
represents the development of 'fl. The vert ical lines between the two pan­
els represent the cooling down schedu le. When the line points upward, P;
exceeded the randomly chosen criterion and 'fl was lowered. When the line
point s downward, 'fl was increased. The point along the axis representing the
cycles where the annealing sequence commences indicates the start of the
cooling down phase.

In this expe riment , 'fl was initi alized at 0.1 with a first step size of 0.001.
Chaos was detected after 112 cycles at 'fl = 1.7749. The cooling down step
size and lower boun d was set at 0.0508. The final value of Q (averaged over
the four pat terns) after 200 cycles was 0.00409566. After 1000 cycles Q had
further decreased to 0.00048217.

The relation between the cost function Q and 'fl in determining the step
sizes (equation (4)) in the chaos detection phase is clearly demons trated . If
Q stabilizes, t:.'fl rapidly increases in search of chaos; otherwise t:.'fl decreases
in ord er to be able to come to a precise determination of the chaot ic level.

Figur e 2(b) , which is constructed in t he same way as the upper panel of
figure 2(a), displays the behavior of GDP given ident ical initi al cond itions
and network architecture. GDP gave a final Q of 0.0057026 after 1000 cycles
for 'fl = 0.1. When comparing figures 2(a) and 2(b) it is evident that CBL
adjusts 'fl very rapidly in such a way as to counte ract the slow convergence
phase that is expressed in the behavior of GDP.

To demonstrate that CBL has properly det ected the chaotic domain of
the dynamics, the pseudo-phase plot relat ed to th e time series generated with
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Figure 3: Pseudo-phase plot of the time series generated with the
chaotic level of'TJ detected by CBL. 'TJ = 1.7749. The Lyapunov expo­
nent of th is time series was 0.30587, indicating chaos.

'17 = 1.7749-the chaotic level of '17 in the previous expe riment- is depicted in
figure 3. The Lyapunov exponent [9, 22] related to this time series has the
value 0.30587 , clearly indicating chaos.

As an illustration of the independ ence of the performance of CBL on
network size, the parity problem in a 10-3-1 network was also test ed . The
results are shown in figure 4. '17 and Ll'17 are initialized at 0.1 and 0.01,
resp ectively. Chaos is det ect ed aft er 50 cycles at '17 = 0.9921, and the cooling
down st ep size was set at 0.0686. The final value of Q after 200 cycles was
0.00116492 . Aft er 1000 cycles Q had further decreased to 0.00008613.

In t his cooling down phase another attract ive property of the lower re­
flecting barrier was demonstrated . One of the patterns seems to slow down
convergence. This was counte rac ted by the const ant perturbation introduced
by the reflect ing lower barrier. GDP gave a final Q of 0.0886442 afte r 200
cycles and of 0.0003913 aft er 1000 cycles. GDP had terminated the slow
convergence phase afte r 450 cycles.

In the simulations , differences in cooling down schedules could result in
considerable differences in learning performance. Some decreasing /increasing
sequences of '17 gave rise to quicker convergence than others . The exact re­
lat ion between performance and the cooling down schedule still has to be



Chaos-bas ed Learnin g 367

0.0

-Q"

-1.0

2.0

11

r:liIIIlI ·II I IIIII ;IIII~IIII~IIIII/III~~L1I1I1I/I:IIIIHI" ,illllnl:IIII1 I1UUIII1I111I1Ull lil IIIUI :IIIUHIIUIIIIIIII/1I1 111

0.0

o 200
Cycles

Fi gure 4: CB L performing t he parity problem in a 10-3-1 net work.
tt and t:.T) were initialized at 0.1 and 0.01 . respecti vely. Chaos was
detected a t T) = 0.9921. T he step size an d t he lower bou nd in the
cooling down phase were set at 0.0686. F inal Q = 0.0011 6492. After
1000 cycles Q had decreased to 0.00008613.

assessed . These resul ts. however. sugges t that a more deterministic method
th an t he Xlet ropolis algorit hm could prove useful in spee ding up convergence
in annealing-like met hods .

CBL, GDP acceleration techniques , and simulated annealing

Routines that adapt ively vary 1] in orde r to spee d up convergence mos t ly
avoid inst ability (limit cycles or chaos) by increasing '1] in a linear way while
decrement s are exponent ial [2]. Another solut ion is to lock t he system int o
sta ble behavior by rejecting the weights . which are relat ed to inst abili ty [16].
CEL. however. indicat es t hat t he chaot ic properties of networks can be used
to speed up convergence .

Although standard GDP acce lera t ion techniques. wh ich ada pt ively vary
the step sizes. provide faste r conve rgence than standa rd GDP. they also imply
ext ra computat iona l overhead since they rely on an indi vidual learning rat e
par am eter for every weight in the syste m. CE L. however. sugges ts that
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convergence can also be accelerated by varying only one global learning-rate
para met er.

Like the simulated annealing method [4], implemented in the Boltzmann
machine [1], CBL prescribes that the system cools down from an unstable
state to a st able stat e. In CBL, TJ has a function similar to the computa­
t ional temp erature T used in the Boltzmann machine. In simulated annealing
methods, T det ermines the amount of random state changes in the dynamics.
This property can lift the dynamics out of local mini ma and enables the sys­
tem to ju mp over energy barr iers. A system is set off at a high temperature,
which leads to a coarse or semi-global search for energy minima. Lowering
the temp erature makes the system respond to smaller energy differences and
intro duces local-sear ch.

In the Bolt zmann machine, T works on the level of the act ivity up dat ing
process and indirectly influences t he weight changing process, which is opt i­
mized. Fur th ermore, T introduces random behav ior into the network , which
is complet ely independ ent of the initi al condit ions and the task the model
has to perform .

TJ , as used in CBL , gives rise to chaot ic behavior , which is completely
depend ent on t he task at hand and t he initial conditions, and works di­
rect ly on t he level at which optimization takes place. TJ allows the system
to cross energy barr iers by means of chao t ically overshooting minima in the
err or sur face. Varying TJ will not , like comput at ional temperature, int ro­
du ce dynamics-ind ependent random search, but dynamics-dependent search
founded in chaos .

Conclusion

CBL is based on a collect ive chao t ic prop erty of neur al networks that is
driven by an increased interaction between the comput at ional elements. The
function of this chaotic movement is to allow the system to perform coarse
search in weight space and to provide a criterium in est imat ing optimal step
sizes as a solut ion to the speed-st ability t rade-off.

How the properties of CBL bear upon our understanding of chaos ob­
served in biological pro cesses remains t o be seen. CBL, however , provides an
addit ional suggestion about t he relation between chaos and computat ion in
dynamical systems, which is an alte rnative to t he hypothesis pu t forward by
Langton [7] . Langton assumes that the fund ament al condit ions necessary for
computation in complex systems have to be found at the edge of chaos, in
the vicinity of a phase t ransit ion. CBL suggests that the opt imal condit ion
for some computat ional processes might be found by entering the chaot ic
domain and returning to a stable position.

CBL confirms the suggestion of Mant ica and Sloan [10] that chaotic opt i­
mizat ion could prove superior to other opt imization schemes, and is a demon­
stration t ha t chaos is not only an interesting prop erty of dynamical systems,
bu t can also be a useful one.
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