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Introduction of Sensor Spectral Response Into
Image Fusion Methods. Application to

Wavelet-Based Methods
Xavier Otazu, María González-Audícana, Octavi Fors, and Jorge Núñez

Abstract—Usual image fusion methods inject features from
a high spatial resolution panchromatic sensor into every low
spatial resolution multispectral band trying to preserve spectral
signatures and improve spatial resolution to that of the panchro-
matic sensor. The objective is to obtain the image that would be
observed by a sensor with the same spectral response (i.e., spectral
sensitivity and quantum efficiency) as the multispectral sensors
and the spatial resolution of the panchromatic sensor. But in these
methods, features from electromagnetic spectrum regions not cov-
ered by multispectral sensors are injected into them, and physical
spectral responses of the sensors are not considered during this
process. This produces some undesirable effects, such as resolution
overinjection images and slightly modified spectral signatures
in some features. The authors present a technique which takes
into account the physical electromagnetic spectrum responses of
sensors during the fusion process, which produces images closer
to the image obtained by the ideal sensor than those obtained by
usual wavelet-based image fusion methods. This technique is used
to define a new wavelet-based image fusion method.

Index Terms—Data fusion, image sensors, multispectral image,
spectral response, wavelet transforms.

I. INTRODUCTION

THE existence of a tradeoff between spatial and spectral
resolution in remote sensing spaceborne imagery is well

known. That is due to a combination of a set of observational
constraints imposed by the acquisition system, detector specifi-
cations and satellite motion, among others. As a result, space-
borne imagery is usually offered to the community as two sep-
arate products: a high-resolution panchromatic (HRP) image
and a low-resolution multispectral (LRM) image. In addition,
an increasing number of applications, such as feature detection,
change monitoring and land cover classification, often demand
the highest spatial and spectral resolution for the best accom-
plishment of their objectives. In response to those needs, image
fusion has become a powerful solution providing a single image
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with simultaneously the multispectral content of the original
LRM image and an enhanced spatial resolution.

Literature shows a large collection of fusion methods de-
veloped over the last two decades. Initial efforts based on
component substitution (intensity–hue–saturation (IHS or
LHS) [1]–[3], principal component substitution (PCS) [4]–[6]),
or relative spectral contribution (intensity modulation (IM) [7],
PX+S on SPOT handbook [8], Brovey [9], [10]), are mainly
focused on enhancing spatial resolution for easing tasks of
human photointerpretation. However, it is not possible to un-
dertake quantitative analysis of fused images obtained by those
methods in a systematic way and with high degree of reliability,
since the original multispectral content of the LRM image is
greatly distorted.

Another family of methods is developed later trying to over-
come this limitation. These operate on the basis of the injec-
tion of high-frequency components from the HRP image into the
LRM image. This series is early initiated by the high-pass fil-
tering (HPF) method [4], which provides far less spectral distor-
tion with respect to its predecessors [11]. However, it is not until
a second more recent stage that, with the upcoming of methods
based on multiresolution analysis, fused products accomplish
state-of-the-art results which can be employed for quantitative
studies of their multispectral content (land-cover mapping [12]
and urban areas mapping [13]–[22]). In Section II, we outline
the different fusion methods whose decomposition algorithms
are inscribed inside this category, and briefly discuss their dis-
tinctive nature.

However, no explicit physical information of the detection
system has been taken into account in former fusion methods. In
Section III, we present a technique which does incorporate in-
formation from the spectral response of the sensor in each band
of the LRM image. This a priori knowledge is employed in the
transformation model which injects spatial detail into the LRM
image. This technique is used to define a new wavelet-based
image fusion method. The proposed method retains other ad-
vantages of its predecessors, as its applicability to an arbitrary
number of bands and its good behavior preserving spectral sig-
natures of the LRM image.

In Section IV, the new method is applied to merge a Quick-
Bird image of Sevilla, Spain. Its successful performance is
shown through extensive quantitative assessment and com-
plementary comparison with other methods. Conclusions are
drawn in Section V.
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II. MULTIRESOLUTION-BASED ALGORITHMS

The basic idea of all fusion methods based on wavelets is to ex-
tractthespatialdetail informationfromtheHRPimagenotpresent
in the LRM to inject it into the latter, usually using a multiresolu-
tion framework [23]–[25]. In the next subsection, we explain one
of these methods, the additive wavelet LHS (AWL) method.

Different multiscale wavelet-based image fusion methods can
be distinguished concerning the algorithm used to perform the
detail extraction of the HRP image: based on decimated wavelet
transform algorithms, used in [26]–[30] amongst others, and
based on undecimated or redundant wavelet transform algo-
rithms, used in [31]–[34].

The main difference between the decimated and undecimated
fusion algorithms is the presence or absence of subsampling
when the wavelet decomposition is performed. This subsam-
pling causes a loss of linear continuity in spatial features such
as edges, and the appearance of artifacts in those structures with
neither horizontal nor vertical directions [33].

As shown in previous works [31]–[33], the undecimated al-
gorithms are more appropriate for image fusion purposes than
the decimated ones.

Besides, different wavelet-based image fusion methods can
be distinguished, depending on the algorithm used to inject the
spatial detail of the HRP image into the LRM one, as follows:

—injection directly into each LRM band, [26]–[31];
—injection into each LRM band through an IHS transform,

[33]–[36];
—injection into each LRM band through a principal compo-

nent analysis [32], [33], [36].
When the first methods are applied, the spatial detail of the

HRP image is injected into each LRM band, so that the spatial
information introduced into the whole LRM image is times
that of the HRM image, being the number of spectral bands
of the LRM sensor. Consequently, redundant spatial detail in-
corporation may appear when using these methods [32].

When methods based on IHS and PCA are used, the quality
of the resulting merged images depends on the bandwidth of
the HRP sensor. The best performance for IHS-based methods
occurs when it covers the entire range of bandwidths of all the
LRM bands (i.e., Ikonos and QuickBird panchromatic sensor)
[33]. The use of a very narrow HRP band, as that of the SPOT
4 M mode, is more favorable to PCA than to IHS [32].

In order to preserve, as much as possible, the spectral informa-
tion of the multispectral image, different transformation models
could be applied to the spatial detail information extracted from
the HRP image before its injection into the LRM one. The sim-
plest one is the identity model proposed in [37]. Recently, more
complex models have been proposed in [31] and [38].

The combination of different wavelet decomposition algo-
rithms, different spatial detail transformation models and dif-
ferent spatial detail injection procedures results in many dif-
ferent image fusion methods.

In fact, what all these image fusion methods aim for is to
preserve as much as possible the spectral signature of objects,
but the sensor spectral response has never previously been taken
into account in this context. Here, we introduce a method which
does incorporate such information in the fusion process, as well

as the spectral signature of the physical observed object. We
enumerate its main characteristics as follows.

—The undecimated à trous multiresolution wavelet decom-
position algorithm [39] is used to decompose the HRP
image and extract the spatial detail.

—The detail injection model tries to preserve the original
LRM spectral signature in every pixel.

—Information from sensor spectral response is used in order
to preserve spectral signatures and to determine the amount
of spatial detail from the HRP image to inject into each
corresponding LRM band.

A. AWL Method

One of the existing multiresolution wavelet-based image fu-
sion methods is the AWL method [34]. It was originally defined
for a three-band red–green–blue (RGB) multispectral image. In
this method, the spectral signature is preserved since the HRP
detail is injected into the luminance L-band of the original LRM
image. This method can be summarized as follows.

1. Decompose original RGB image into the LHS color space, obtaining new

L-, H-, and S-bands.

2. Perform a histogram matching between the HRP band and the L-band,

modifying the former to obtain a new HRP band.

3. Decompose HRP into n wavelet planes, i.e., HRP = ! + c, c

being the residual plane.

4. Add HRP ! wavelet planes to the original L-band to obtain the merged L

band, i.e., L =L+ ! .

5. Obtain the final merged RGB image from the L HS bands.

It is equivalent to inject the HRP detail into every RGB LRM
band proportionally to their original values. It maintains the rel-
ative values between LRM bands, i.e., it tries to preserve spectral
signature. The number of wavelet planes depends on the ratio
between the spatial resolution of the original LRM and HRP
bands, i.e., , and being
the LRM and HRP spatial resolution, respectively.

The original AWL method is defined only for three band im-
ages, but it is easily extensible to bands in the following way:

(1)

where LRM is the original LRM band, is the th
wavelet plane of the HRP band, and is the detail to inject into
the LRM band. To simplify the notation, we use instead of

because the method is applied to every th wavelet plane. In
(1), the HRP detail injected into every LRM band is proportional
to the LRM band original radiance value, that is, it maintains
its spectral signature in the same way as AWL does with RGB
images. This generalized proportional method is called propor-
tional AWL (AWLP).

B. Spectral Response

It is important to include sensor spectral response information
in image fusion methods for the following reasons.

—In order to preserve physical meaning of merged spectral
bands, the sensor spectral response for each band has to
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be taken into account. It is not physically acceptable to in-
clude, for example, information from far, or even thermic,
infrared, or even from microwave or radio bands into vi-
sual bands if the spectral response functions of the corre-
sponding sensors do not overlap.

—Image fusion methods try to recover the image obtained by
an ideal virtual sensor with the same spectral sensitivity of
the LRM sensor and the same spatial resolution of the HRP
sensor. This implies that the LRM spectral response has to
be taken into account during the fusion process.

III. PROPOSED IMAGE-FUSION METHOD: WISPER METHOD

The probability a photon of a given frequency is detected by a
sensor system mainly depends on two factors: on the one hand,
thephysicalpropertiesof theobservedobject thatemitsor reflects
the electromagnetic radiation and, on the other hand, the spectral
response that characterizes the sensor system. This defines how
efficiently the radiation is recorded by the sensor as a function
of photon frequency , i.e., the photon wavelength ,
being the speed of light. Throughout the paper, we indistinctly
use the frequency and wavelength terms to refer to this concept.
Other factors, e.g., atmospheric dispersion, modify the above-
mentioned probability; however, for the sake of simplicity, these
will not be considered in the proposed fusion method.

In the next four subsections we formalize these two factors
and how they can be algorithmically introduced in the fusion
method we propose.

A. Sensor Spectral Response

The spectral response function (SRF) of a sensor defines the
probability a photon of a given frequency is detected by this
sensor. In our situation, two general SRFs exist: the SRF of the
HRP sensor, designed as ; and the SRF of the th band of the
LRM sensor (LRM ), designed as , being the number
of LRM bands, . For the sake of simplicity, we
hereafter refer as the SRF of the LRM sensor, and will
omit the term band.

Let the event be the detection of a photon by the LRM
sensor. The probability of the event is

(2)

Similarly, the probability a photon is detected by the HRP
sensor can be defined by the probability of the event

(3)

In geometrical terms, the probability of the events and
can be understood as the area below their corresponding SRFs.

Given the event , the probability of the event is

(4)

being

(5)

Fig. 1. SRFs of the QuickBird-2 multispectral (narrower functions) and
panchromatic (wider function) sensors.

That is, given a photon detected by the HRP sensor (event ),
the probability to be also detected by the LRM sensor (event

) is defined by the quotient between the intersection area of
and (see Fig. 1), and the area of the function.

Similarly, given a photon detected by the LRM sensor, the prob-
ability to be detected by the HRP sensor is

(6)

Note that (4) defines the fraction of HRP photons below the
LRM function. Similarly, (6) defines the fraction of LRM
photons below the HRP function.

Let be the number of photons detected by the LRM sensor.
Let be the number of photons simultaneously detected by
both the LRM sensor and the HRP sensor. The total number of
photons detected by the HRP sensor should be

(7)

with

(8)

being the number of photons simultaneously below the and
the functions. From Fig. 1, (7) could be understood as
being the sum of those photons simultaneously located below
both the and the functions, but this is not strictly
correct.

Equation (7) only holds when , i.e., when

all the area below the function is contained within the
functions. Speaking in terms of photons, this expression

is true when all the HRP-detected photons are going to be de-
tected by some of the LRM sensors. This is not the general case
because there are areas below the function which are not
below any of the functions.

If the number of HRP photons which are simultaneously
below the and functions is known, we can rewrite
(4) and (6) in terms of these common photons as

(9)

(10)
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respectively, being the event corresponding to an HRP
photon which is simultaneously below the and the
functions. In this case, since , we have

(11)

The probability of event is

(12)

Let us define

(13)

as the fraction of the HRP photons, i.e., the photons below the
function, which are also below any of the functions.

Given the number of HRP photons, the number of photons
simultaneously detected by both this HRP sensor and the LRM
sensor is

(14)

This number of photons was also obtained in (8), but in that
case the number of LRM photons were used. Rewriting (8)
in terms of the new as

(15)

and combining it with (14), we finally obtain

(16)

This equation means that given the number of photons de-
tected by the HRP sensor, we can predict the number of pho-
tons that the LRM sensor should detect. In terms of our image
merging problem, (16) supplies the number of HRP photons,
which contain the spatial detail, to be injected into the LRM
image.

In this subsection, only sensor spectral sensitivity has been
taken into account. In the following subsection, physical prop-
erties of the observed object are considered.

B. Physical Emission From Observed Object

Physical properties of the object define observed radiances
and spectral signatures. In the previous subsection, only sensor
SRFs were taken into account, which would lead to the wrong
conclusion that always the same fraction of HRP photons are
added to the LRM sensor, independent of the spectral signa-
ture of the observed object. For example, if the observed object
is a forest, we know that we are mainly recording green and
near-infrared (NIR) photons; hence, we have to add more HRP
photons to the green and NIR bands of the multispectral sensor
than to the other bands. In fact, this is what all image fusion
methods intend to accomplish: preserve the spectral signature
of the observed objects as much as possible. Since this is not
performed by (16), obtained when only considering the sensor
contribution, the information from the physical object has to be
introduced as well.

Since the contribution to the HRP sensor from every LRM
sensor is defined by (15), these values can be used to preserve
the spectral signature of the observed object when adding HRP

photons from the HRP band to every LRM band. Therefore, we
define

(17)

as the spectral signature factor of the LRM band. The term
is the number of photons per frequency unit, which resembles a
photon density. It is defined as

(18)

which is the number of photons below both the multispectral
and the panchromatic functions, divided by the

common area below these curves. The term is the mean
value for all LRM bands, i.e., , being
the number of LRM bands. Equation (17) is a way to measure
what LRM band contains more photons. It gives an idea about
the spectral distribution of photons coming from the physical
object observed, i.e., the spectral signature.

We can also calculate the factor from the data as

(19)

i.e., as the ratio beetwen the sum of the HRP photons coming
from LRM bands and the number of observed photons
on the residual plane of the wavelet decomposition of the HRP
band. In the former comparison, we use the residual wavelet
plane instead of the HRP image itself, because the energy of

is assumed to be equivalent to the sum of the LRM bands,
i.e., . This hypothesis is common to most wavelet-
based image fusion methods. This estimation of factor is
better than that in (13), because here we obtain its value from
real data instead of from a statistical estimator. Using such in-
formation from real data we directly compensate for photons
coming from frequency ranges of the HRP SRF that are not cov-
ered by any LRM SRF.

C. WiSpeR Algorithm

Knowing contributions from both the sensor spectral re-
sponse and physical properties of the object, we combine these
effects to obtain a final expression for the merged image. The
simplified final expression to the contribution from the HRP
band to each of the LRM bands is

(20)

noting that in the number, the HRP photons are substituted
by the wavelet coefficient obtained from the HRP band.

Using (16) to include the sensor SRF, and (17) to preserve the
spectral signature, we obtain

(21)

However, (19) and, by extension, (21) are accurate only when
all the LRM SRFs do not overlap. In practical situations, this
is almost never the case. Hence, some corrections need to be
introduced. This effect has to be taken into account both at the
time of comparing the number of LRM and HRP photons, and
when adding the HRP detail photons to the LRM bands.
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For example, take the overlap between the LRM and LRM
SRFs, as seen in Fig. 2. In this situation, (19) does not hold, since

LRM photons from the intersection area would be counted
twice when trying to compare to the corresponding HRP
photons. In order to compensate for this effect, photons from the
intersection area are multiplied by a 0.5 factor. We can calculate
the overlapping areas between LRM SRFs and introduce these
equipartition corrections into (15) and in the number of HRP
photons coming from the th wavelet plane of the HRP band to
be added to the LRM band, as

(22)

finally obtaining

(23)

being the fraction of the area of the LRM SRF shared with
its adjacent LRM SRF, and the detail from the
wavelet plane of the HRP band to be injected into the LRM
band.

The final complete expression for the merged LRM band is

LRM LRM

LRM

(24)

being the number of wavelet planes into which the HRP
band is decomposed. To ease the practical implementation of
this expression, we want to stress that term is computed
using (18), term using (19), and terms and

using (9)–(12) and (2).
Equation (24) preserves the spectral signature on the first

term, and takes into account the sensor spectral sensitivity on the
second and third probabilistic terms. The spectral signature is
obtained from the observed LRM and HRP data, and the sensor
contribution is obtained by integration of the experimental SRFs
supplied by the satellite manufacturers. The proposed algorithm
is named WiSpeR by the authors, as it stands for window spec-
tral response.

The WiSpeR method described in (24) can be understood as a
generalization of different wavelet-based image fusion methods.
In particular, we demonstrate in the Appendix that the WiSpeR
method generalizes the AWLP method explained above and pre-
viously introduced by some of the authors as shown in [34].

IV. EXAMPLES AND ASSESSMENT

A couple of QuickBird-2 multispectral and panchromatic im-
ages, taken in October 2002 and covering both agricultural and
urban areas of Sevilla, Spain (Fig. 2) were used as LRM and
HRP test images to evaluate the performance of the WiSpeR fu-
sion method. SRFs of Quickbird-2 are shown in Fig. 1.

The quality of the resulting WiSpeR merged image (HRM)
was compared with that corresponding to the HRM images ob-
tained applying the following standard wavelet-based methods:

Fig. 2. QuickBird-2 HRP image, at a resolution of 0.7 m, 4096 columns by
2048 rows.

—additive wavelet-based method (AW), similar to that used
in [26]–[30] amongst others, injecting the spatial detail of
the HRP image into each band of the LRM, using the un-
decimated à trous algorithm to perform the spatial detail
extraction of the HRP image and a histogram matching
transformation model to preserve the spectral information
of the multispectral original image;

—proportional additive wavelet intensity method (AWLP),
based on the AWL method proposed in [34], and previ-
ously described in (1).

The spatial resolution of the QuickBird-2 HRP and LRM im-
ages are 0.7 and 2.8 m, respectively. The HRM images obtained
after the fusion would show a spatial resolution similar to that of
the HRP image, in this case 0.7 m. In order to assess the quality
of the merged images, they should be compared with the image
that the QuickBird-2 sensor would theoretically collect in mul-
tispectral mode if it had a spatial resolution of 0.7 m. Since these
images do not exist, we worked with spatially degraded images.
Thus, before the fusion process, the QuickBird-2 HRP and LRM
images were degraded to 2.8 and 11.2 m. The goodness of each
image-fusion method is evaluated by comparing the resulting
merged images with the QuickBird-2 LRM original image.

This comparison is based both on spectral and spatial
characteristics.

A. Spectral Quality Assessment

A good fusion method has to guarantee the preservation of the
spectral information of the multispectral image when increasing
its spatial information. To measure the spectral distortion due
to the fusion process, each merged image is compared to the
original QuickBird-2 multispectral image, using the following
quantitative indicators [11].

—Correlation coefficient (CC) between each band of the
original and the merged image. It should be as close to 1
as possible.

—Root mean square error (RMSE) between each band of
the original and the merged image, in radiance, computed
using the following expression:

RMSE bias SDD (25)

where the bias is the difference between the mean value of
the original and merged bands and SDD the standard de-
viation of the difference image between each original and
merged bands. RMSE should be as close to 0 as possible.
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These parameters only allow evaluating the difference in
spectral information between corresponding bands of the
merged image and the original image. In order to estimate the
global spectral quality of the merged images, we have used the
following parameters.

The erreur relative globale adimensionnelle de synthèse
index (ERGAS), whose english translation is relative dimen-
sionless global error in fusion [40], given by

ERGAS
RMSE

(26)

where is the resolution of the HRP image, the resolution of
the LRM image, the number of spectral bands ( ) involved
in the fusion, and the mean radiance of each spectral band.
The lower the ERGAS value, the higher the spectral quality of
the merged images.

—The average quality index ( ) based on the universal
quality index ( ) proposed by [41] and given by

(27)

where and are the mean of each original ( ) and fused
( ) images; and are the variances of and ; and

is the covariance between and .
This index models the difference between two images as

a combination of three different factors: loss of correlation, lu-
minance distortion and contrast distortion. As image quality is
often space dependent [41], the index has been calculated
using a sliding window approach. In this work, sliding windows
with a size of 8 8, 16 16, 32 32, 64 64, and 128 128
pixels are used.

Considering that the index can only be applied to
monochromatic images, the average value ( ) is used as
a global spectral quality index for multispectral images. The
higher the value the higher the spectral and radiometric
quality of the merged images.

The values of these parameters resulting from the comparison
of the merged images and the original QuickBird-2 multispec-
tral image are reported in Table I.

In order to quantify the effect of the fusion process on the
initial multispectral image (11.2 m per pixel, spatially degraded
image), we show in the first column the values of the quantitative
indicators obtained when this degraded image was compared
with the original multispectral image (2.8 m per pixel). This
first column reflects the situation before the fusion, while the
last column reflects the situation that ideally should be reached
after the fusion process.

To ease the comparison of the different fusion methods ac-
cording to the parameter, we have displayed the
values for different sliding size windows in Fig. 3.

Lower CC and or higher RMSE and ERGAS values
than those showed in the first column indicate that the analyzed
image-fusion algorithm tends to distort the spectral information
of the initial multispectral image. It can be observed that all fu-
sion methods based on wavelets allow a high-quality transfor-
mation of the multispectral information when increasing its spa-
tial resolution (Fig. 4).

TABLE I
VALUE OF THE DIFFERENT PARAMETERS ANALYZED TO EVALUATE

THE SPECTRAL QUALITY OF THE MERGED IMAGES

Fig. 3. Graphical representation of theQ values of the QuickBird-2 merged
images for different sliding size windows.

The WiSpeR method provides an HRM image of higher spec-
tral quality than the AW and AWLP methods, because the trans-
formation model is not based on global image information, as is
the case of the histogram matching process, but based on pixel
information. Taking into account both pixel spectral signature
and the SRFs of QuickBird-2 sensors, a selective incorporation
of spatial detail of the HRP image into each band of the LRM
image is performed. This procedure allows obtaining an HRM
image closer to the image that the multispectral sensor would
capture if it worked at a spatial resolution equal to that of the
panchromatic one.

It is important to point out that the wavelet coefficients
injected into each LRM band, when the WiSpeR method is
used, have been extracted from the original HRP-radiance
image. However, when the AW and AWLP methods are used,
the wavelet coefficients have been extracted from a modified
HRP-radiance image (i.e., after a histogram matching process.)
If these wavelet coefficients were extracted from the original
HRP-radiance image, the quality of the resulting merged im-
ages would decrease significantly.

For illustrativepurposes,weshowadetailofanotherQuickbird
image in Fig. 5. Image fusion methods, even wavelet-based ones
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Fig. 4. Color composition (160 rows � 160 columns) corresponding to (a) multispectral initial, spatially degraded, image, (b) X1 multispectral original image,
(c) multispectral AW merged image, (d) multispectral AWLP merged image, and (e) multispectral WiSpeR image.

(a) (b) (c)

Fig. 5. Color composition (400 rows� 400 columns) corresponding to (a) multispectral initial, spatially degraded, image, (b) multispectral AWLP merged image,
and (c) multispectral WiSpeR merged image. Images courtesy of Eurimage.

like the AWLP method, show some problems when the radiance
values of the observed LRM bands are very different and some
LRM SRFs overlap.This problemcanbe observed in forest areas,
where the visual bands show low radiance values, but the NIR
band show high radiance values. The AWLP method produces
bluish pixels on some forest pixels because the spectral response
of the sensor is not taken into account by this kind of image fu-
sion methods. Blue and green LRM SRFs overlap. Hence, when
injecting HRP details into these bands using the AWLP method,
some photons are injected twice into these two bands, creating a
green and, overall, blue photon surplus into these bands, i.e., the

bluishpixels inthefinalmergedimageinFig.5(b).Whentheover-
lapping of LRM SRFs is taken into account, the correct number
of photons is introduced into every LRM band, avoiding the ex-
cess of blue and green photons and producing better results. This
problem is solved by the WiSpeR method, which correctly dis-
tributes HRP photons between the LRM bands producing green,
instead of bluish, pixels in forest areas.

B. Spatial Quality Assessment

A good fusion method must allow the injection, into each
band of the multispectral image, of that spatial detail the multi-
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TABLE II
SCC VALUES RESULTING FROM THE COMPARISON BETWEEN THE SPATIAL

DETAIL OF THE ORIGINAL QUICKBIRD-2 MULTISPECTRAL IMAGE AND THE

SPATIAL DETAIL OF THE DIFFERENT MERGED IMAGES

spectral sensor would observe if it worked at a spatial resolution
similar to that of the panchromatic sensor.

As previously mentioned, the fusion methods proposed and
analyzed in this work have been carried out on spatially de-
graded QuickBird-2 images. This way, the original QuickBird-2
multispectral image is available to evaluate the amount of spatial
detail of the panchromatic image that ideally should be injected,
during the fusion process, into each band of the multispectral
image.

In order to estimate the spatial quality of the merged images,
the spatial information present in each band of these images will
be compared with the spatial information present in each band
of the original QuickBird-2 multispectral image. To do this, we
follow the procedure proposed by Zhou [29]. First, the spatial
detail information present in the two images to be compared is
extracted using a Laplacian filter. Second, the correlation be-
tween these two filtered images is calculated. A high spatial cor-
relation coefficient (SCC) indicates that many of the spatial de-
tail information of one of the images is present in the other one.

In this work, the Laplacian filter used to extract the spatial
detail of the different images is

(28)

In Table II, we show the SCC values obtained when the orig-
inal QuickBird-2 multispectral image is compared with the re-
sulting merged images. The first column shows the spatial cor-
relation between the original multispectral image and the initial
image (degraded image). This column reflects the situation be-
fore the fusion, while the last one reflects what would be the
ideal ending situation after the fusion process.

Generally speaking, in all the images captured by a remote
sensing sensor it is possible to find physical features that are no-
ticeable or separable from other features at a specific range of
wavelengths but not at others, independent of the spatial resolu-
tion of the sensor that observes these features. This fact should
be taken into account when images captured by different sen-
sors, with different detection systems, have to be fused. The
WiSpeR method proposed in this work takes into account not
only each pixel signature in the multispectral image to be fused,
but also the SRFs of both multispectral and panchromatic sen-
sors, to determine in each band, the amount of spatial detail of
the panchromatic image to be injected.

The SCC value of each band of the merged image obtained
applying the WiSpeR method is closer to the “ideal” situation

than those corresponding to the AW and AWLP merged im-
ages when its spatial detail is compared with that of the original
QuickBird-2 multispectral one.

V. CONCLUSION

Image fusion methods try to obtain the image a sensor would
obtain if it had the same spectral response of the original LRM
bands but the spatial resolution of the HRP sensor. Since the
latter sensor has different spectral information than the LRM
sensor, their relative spectral responses have to be taken into ac-
count to avoid merging information from unconnected physical
electromagnetic spectrum regions.

In previous image fusion methods, physical spectral re-
sponses of sensors have not been taken into account. The
WiSpeR method developed here incorporates this information
into the image fusion process, to determine the amount of spatial
detail of the HRP image that has to be injected into each LRM
band. Although the detail traction process is applied directly to
the original HRP-radiance images, the resulting merged images
present better quality than those obtained applying standard
wavelet-based methods, because in the latter the HRP-radiance
image is transformed, usually through a histogram matching,
before the detail extraction process, whereas the WiSpeR
method works with the original raw radiance information.

The proposed WiSpeR method is a generalization of other
wavelet-based image fusion methods, being equivalent in some
particular situations.

As shown in Tables I and II, the WiSpeR method performs
better than other wavelet-based fusion methods, both regarding
spectral and spatial quality.

APPENDIX

Let all LRM SRF functions be independent and their union
equivalent to the HRP SRF, i.e.,

(A1)

(A2)

(A3)

This implies that from (5), we obtain
. We make the assump-

tion that all the LRM SRFs have equal probability and that
. This implies ,

being the number of LRM bands.
From (6) we obtain , and from (4) we obtain

. This means that from (15)
we obtain ; hence from (18) we
obtain

(A4)

(A5)

(A6)
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Developing (23)

(A7)

we finally obtain

(A8)

which is the same expression as (1).
That proves that the AWLP method is a particular case of the

WiSpeR method, and they are equivalent when the LRM SRF
functions satisfy the following conditions.

—There is no overlap between them.
—Are equally probable.
—Their union is equivalent to the HRP SRF.
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