
Dissertation

Separation Algorithms for Cutting Planes

Based on Mixed Integer Row Relaxations

Implementation and Evaluation in the Context of

Mixed Integer Programming Solver Software

von
Dipl.-Wirt.-Inf. Philipp M. Christophel

Schriftliche Arbeit zur Erlangung des akademischen Grades
doctor rerum politicarum (dr. rer. pol.)

im Fach Wirtschaftsinformatik

eingereicht an der
Fakultät für Wirtschaftswissenschaften der

Universität Paderborn

Promotionskommission:
Prof. Dr. Leena Suhl (1. Gutachter)

Prof. Dr. Laurence A. Wolsey (2. Gutachter)
Prof. Dr.-Ing. habil. Wilhelm Dangelmaier (3. Gutachter)

Prof. Dr. Uwe H. Suhl
Prof. Dr. Joachim Fischer

Paderborn, Juli 2009

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universität Paderborn - Digitale Sammlungen

https://core.ac.uk/display/50516805?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Für Julia Bibiana

Danksagung

An dieser Stelle würde ich gerne die Gelegenheit nutzen, mich bei den vielen Menschen,
die mich auf dem Weg zu dieser Dissertation begleitet und unterstützt haben, zu be-
danken. Als erstes wäre da meine Betreuerin, Prof. Leena Suhl, die mir diesen Weg durch
Verständnis, Vertrauen und Flexibilität enorm erleichtert hat. Prof. Uwe Suhl möchte
ich dafür danken, dass er mich mit seiner Begeisterung für MIP Solver zu meinem Thema
inspiriert und meine Arbeit in vielerlei Hinsicht unterstützt hat. Prof. Laurence Wolsey
gilt mein Dank für einen sehr wertvollen Forschungsaufenthalt in Belgien und zahllose
Anregungen, die meine Arbeit sehr bereichert haben.

Außerdem auf meinem Weg begleitet haben mich viele hilfsbereite Kollegen, sowohl am
DS&OR Lab, als auch am CORE in Belgien. Ihnen danke ich vor allem für interessante
Gespräche und aufmunternde Mittagspausen. Franz Wesselmann und allen an MOPS
Beteiligten gilt mein Dank für ihre freundschaftliche und fachliche Unterstützung.

Bereits vor diesem nun abgeschlossenen Projekt haben meine Familie und besonders meine
Eltern mich auf allen meinen Wegen begleitet. Auch dieses Mal waren sie an meiner Seite
und haben mir mit Regenschirm und guten Ratschlägen beigestanden. Dafür danke ich
ihnen aus der Tiefe meines Herzens.

Diese Arbeit widme ich meiner Verlobten Julia. Sie hat alle Höhen und Tiefen dieses Pro-
jekts mit mir durchlebt. Ohne ihre Aufmunterungen und ihre ausdauernde Unterstützung
hätte ich diese Arbeit nicht zu Ende bringen können. Danke!

i

ii

Contents

1. Introduction 1

2. MIP Theory 5

2.1. Mixed Integer Programming Problems . 5
2.2. Formulations . 8
2.3. Relaxations and Bounds . 10
2.4. Valid Inequalities and Separation . 11
2.5. Mixed Integer Rounding Inequalities . 13
2.6. Mixing Inequalities . 15
2.7. Lifting Valid Inequalities . 16
2.8. The Branch-and-cut Algorithm . 17

3. MIP Solver Software 23

3.1. The Use of MIP Solvers . 23
3.2. MIP Solver Components . 27
3.3. The MOPS MIP Solver . 30

4. Separation Algorithms 35

4.1. The Flow Cover Cut Separation Algorithm 35
4.1.1. Flow Cover Inequalities . 35
4.1.2. The Separation Algorithm . 39

4.2. The Aggregated cMIR Cut Separation Algorithm 42
4.2.1. Mixed Integer Rounding Inequalities 42
4.2.2. The Separation Algorithm . 47

4.3. The Flow Path Cut Separation Algorithm 52
4.3.1. Flow Path Inequalities . 52
4.3.2. The Separation Algorithm . 54

5. Implementations, Algorithmic Improvements, and New Algorithms 57

5.1. Objectives . 57
5.1.1. Objectives of the Implementation 57
5.1.2. Characteristics of Good Cut Generators 58

5.2. Framework . 61
5.2.1. Overview . 61
5.2.2. Data Structures . 63
5.2.3. Accuracy . 65
5.2.4. Variable Bounds and Row Types 66
5.2.5. Aggregation and Path-finding . 67

iii

Contents

5.2.6. Bound Substitution . 71
5.3. The Flow Cover Cut Generator . 75
5.4. The cMIR Cut Generator . 80
5.5. The Flow Path Cut Generator . 84
5.6. The Path Mixing Cut Generators . 86

5.6.1. Path Mixing Inequalities . 86
5.6.2. Two Separation Algorithms . 92
5.6.3. Implementation of the Path Mixing Cut Generators 95

6. Evaluation 99

6.1. Evaluation Methods . 99
6.1.1. Empirical Analysis of Algorithms 99
6.1.2. Problem Instances . 100
6.1.3. Computational Experiments and Performance Measures 104
6.1.4. Presentation . 109
6.1.5. The Test Environment . 113

6.2. Accuracy Evaluation . 113
6.3. Evaluation of the Flow Cover Cut Generator 115

6.3.1. Implementation Details . 115
6.3.2. Comparison to the Previous Flow Cover Cut Generator 122
6.3.3. Comparison to Published Results 123

6.4. Evaluation of the cMIR Cut Generator . 124
6.4.1. Implementation Details and Algorithmic Improvements 124
6.4.2. Comparison to the Previous cMIR Cut Generator 129
6.4.3. Comparison to Published Results 131
6.4.4. Comparison between the Flow Cover and the cMIR Cut Generator 131

6.5. Evaluation of the Path-based Cut Generators 135
6.5.1. Implementation Details of the Flow Path Cut Generator 135
6.5.2. Comparison of Path-based Cut Generators 137
6.5.3. Evaluation of the Need for a Path-based Cut Generator 142

6.6. Comparison of Cut Configurations . 143

7. Conclusions and Outlook 147

7.1. Conclusions . 147
7.2. Outlook . 149

A. Notation 153

B. Example Configuration Files 155

C. Test Sets 157

D. Test Results 163

iv

1. Introduction

Mixed integer programming (MIP) is a method for modeling and solving optimization

problems. These optimization problems can originate from many different fields as, for

example, from transportation or production planning. This is also pointed out by Bixby

and Rothberg in [25], “ . . . in the last few years MIP has become a vital capability

that powers a wide range of applications in a variety of application domains”. Similarly,

Ashford states in [10] that “MIP is now widespread in decision-oriented applications across

the whole industrial spectrum.” These statements reflect the current situation which is

that companies all over the world use modeling languages, like AMPL [7] and MPL [73],

to model decision and planning problems using MIP. These models then are solved using

MIP solver software packages to find (near) optimal solutions to their problems.

MIP solvers are developed and distributed by a number of companies of which the most

visible are ILOG, recently acquired by IBM, with its MIP solver CPLEX [54] and Dash

Optimization, part of Fair Isaac, with its MIP solver Xpress-MP [39]. Besides these two

well-known companies a number of other companies offer MIP solvers, among these the

MOPS GmbH & Co. KG with its MIP solver MOPS [76], that is described in section 3.3

of this thesis.

Besides these commercial MIP solvers a number of academic and open-source projects

exist. MINTO [3] is an academic MIP solver used in many scientific publications. SCIP [4]

is also an academic solver for MIP problems with the specific feature that it combines

techniques from MIP and constraint programming. The computational infrastructure for

operations research (COIN) project [1] hosts a number of open-source projects dealing

with MIP including the MIP solvers CBC and SYMPHONY. Another notable open-source

MIP solver is GLPK [2].

An important feature of modern MIP solvers are cutting planes (or cuts for short). MIP

solvers typically generate a number of different types of cuts. This thesis deals with a

group of cut generators used in all modern MIP solvers. This group of cut generators

is identified by the fact that they generate cuts from the mixed integer rows, i.e. the

constraint matrix, of the MIP problems. This is in contrast to those cut generators that

use the linear programming (LP) simplex tableau.

1

1. Introduction

The situation in the MIP literature is that many publications deal with theoretical results

about cuts instead of the implementation aspects of cut generators. A famous example

from the past are the Gomory mixed integer cuts that, although theoretically well known

since the 1960s, only in the 1990s were used in a way that they dramatically improved

the performance of MIP solvers (see [31]). Although the situation has changed a lot since

then, there are still not many publications about the implementation of cut generators.

One reason for this is that the drivers of MIP technology, the large MIP solver companies,

obviously do not have an interest in publishing details about their implementations. A

reason why researchers are not motivated to publish about implementation details might

be that implementation-based publications are probably not valued as much as theoretical

results. This might change in the future, as the Mathematical Programming Society

started the new journal Mathematical Programming Computations1.

One important goal of this thesis is to give a detailed description of the implementation

for three widely used cut generators, namely those for flow cover, flow path and comple-

mented mixed integer rounding (cMIR) cuts. A second, even more important goal, is to

drive the development of these cut generators to improve upon the methods described in

current publications. As we see in chapter 5, the flow path cut generator does not leave

much room for improvement. Therefore we also introduce two new cut generators that

can be seen as potential substitutes for the flow path cut generator. Finally, an important

goal of this thesis is to computationally evaluate the mentioned cut generators to allow

conclusions about which cut generators are really needed by an MIP solver. This includes

finding a default configuration of cut generators that leads to a good overall performance

of an MIP solver.

In this thesis we start by discussing the theory of MIP (chapter 2) and MIP solver

software (chapter 3). Then we give a review of the currently used mixed integer row

relaxation-based cut generators in chapter 4. These are the cut generators for flow cover,

flow path and cMIR cuts. Chapter 5 constitutes the main result of this thesis as it

describes implementations and algorithmic improvements for these three important parts

of modern MIP solvers. Additionally, two new cut generators for a new class of cuts,

the path mixing cuts, are introduced. The presentation of the implementations of all

cut generators is done in pseudo-code. The pseudo-code is meant to be detailed enough

to give insights into the program flow but simple enough to be easily understandable.

The presented cut generators then are computationally evaluated in chapter 6. These

results are a second important contribution of this thesis, as the results indicate which

implementation details and algorithmic improvements lead to a better performance of

1see http://www.isye.gatech.edu/~wcook/mpc/index.html

2

http://www.isye.gatech.edu/~wcook/mpc/index.html

the cut generators. They also show which configuration of the described cut generators

results in the best performance for an MIP solver. Finally, chapter 7 summarizes the

results of this thesis and gives an outlook on future research opportunities.

3

1. Introduction

4

2. MIP Theory

2.1. Mixed Integer Programming Problems

In this chapter we give an overview of theoretical mixed integer programming (MIP)

results relevant for this thesis. We try to keep things simple. For a more in-depth

treatment of the topics in this chapter we refer the reader to standard MIP textbooks

like [98], [80], and [85].

This thesis deals with MIP problems. MIP problems are optimization problems of the

form

max cx + hy (2.1)

Ax + Gy ≤ b (2.2)

l ≤x ≤ u, l′ ≤ y ≤ u′ (2.3)

x ∈R
n, y ∈ Z

p. (2.4)

where A and G are matrices of appropriate size with elements in R and c, h, b, l, l′, u and u′

are vectors with elements in R. These problems consist of a linear objective function (2.1),

linear constraints (2.2), lower and upper bounds (2.3), and integrality conditions (2.4).

Throughout this thesis we use x or s for continuous and y for integer variables. Sometimes

we specifically want to differentiate between general integer variables, i.e. variables with

arbitrary lower and upper bounds, and binary variables, i.e. integer variables with a lower

bound of 0 and an upper bound of 1. Then we use z for general integer variables and y

for binary variables. Note that an MIP problem can also have equality and/or greater

than or equal inequalities. These, as well as the bounds (2.3), can also be written in the

form of the constraints (2.2) if needed. Concerning lower and upper bounds, note that

these can also be infinite.

The matrices A and G together form the constraint matrix (A, G) of the problem. As

the columns of this matrix represent the variables of the problem we use columns as an

equivalent for variables. In the same way we use rows as an equivalent for constraints.

5

2. MIP Theory

The constraint matrix together with the integrality conditions describes a mixed integer

set or set of feasible solutions X:

X = {(x, y) : (x, y) ∈ R
n × Z

p, Ax + Gy ≤ b, l ≤ x ≤ u, l′ ≤ y ≤ u′}

If we replace the objective function by c(x, y) it is therefore possible to state an MIP

problem as

z = min{c(x, y) : (x, y) ∈ X ⊆ R
n × Z

p}

where here z is an optimal solution to the optimization problem.

We now give examples for two classes of MIP problems. The first example is the class

of lot-sizing problems. In example 2.1 we present the most simple lot-sizing problem: the

single-item, single-level, uncapacitated lot-sizing problem. For further reading on more

complex lot-sizing problems and their practical use we refer to [85]. Secondly, we give

an example of a problem instance from the class of fixed-charge network design problems

(see example 2.2).

Example 2.1. Assume we want to plan the amount of some good a factory produces

over a number of periods 1 . . . n. The production cost of one unit of the good is based on

some fixed cost hj for producing in a period and a variable cost cj for each unit produced.

Furthermore it is possible to store units to use them in a later period for storage costs pj.

Using the produced units and units from storage a certain demand dj has to be satisfied in

each period. In other words, the task at hand is to find the optimal size of the production

lots for the periods subject to fixed costs, per item costs and storage costs. This class

of problems is called the uncapacitated lot-sizing problem and can be modeled as an MIP

problem in the following way:

min
n∑

j=1

(cjxj + hjyj + pjsj)

sj−1 + xj − sj = dj for j = 1 . . . n

xj ≤Myj for j = 1 . . . n

s0 = sn = 0

x ∈ R
n
+, s ∈ R

n+1
+ , y ∈ {0, 1}n

where M is a large enough number. The xj variables specify the amount produced in

the production periods. The binary variables yj indicate whether in a certain period j

something is produced or not. The sj variables indicate the amount of units stored at the

end of each period j.

6

2.1. Mixed Integer Programming Problems

A

Q
C

B

Figure 2.1.: Network structure for example 2.2.

Example 2.2. Assume we want to plan the water supply of a housing estate. Figure 2.1
shows the pump station (node Q), three areas where houses need supply of water (nodes A,
B, and C) and possible water pipes we can build (directed edges in the graph). Building
a pipe allows us to send a certain maximal amount of water through the pipe in the
direction of the edge. Associated with building a pipe is some building cost. Finding the
cost optimal set of pipes to build such that all housing areas get enough water can be
modeled as a fixed-charge network design problem. An MIP problem instance with some
input parameters such as costs, demand, supply and limits on the throughput of the pipes
looks as follows:

min 10yQA+12yQB+12yAB+11yAC+ 9yBC+ 8yCB

−xQA−xQB =−100

xQA − xAB−xAC = 30

xQB+ xAB −xBC+xCB = 30

xAC+xBC−xCB = 40

xQA −50yQA ≤ 0

xQB −70yQB ≤ 0

xAB −70yAB ≤ 0

xAC −30yAC ≤ 0

xBC −60yBC ≤ 0

xCB −40yCB ≤ 0

x ∈ R
6
+ y ∈{0, 1}6

For each node we have a so called flow balance constraint (the first four equality con-

straints) that ensures that the demand is satisfied. For each edge we have a variable

upper bound constraint (the last six constraints) that ensures that if the flow on an edge

xj is larger than zero the corresponding binary set-up variables yj is one. These binary

variables then imply costs in the objective function.

7

2. MIP Theory

b b b

b b b

b b b

b

b

b

b b b b

bbbbb

b

b

b

b

b

b b

bb

b b b

b b b

b b b

b

b

b

b b b b

bbbbb

b

b

b

b

b

b b

bb

b b b

b b b

b b b

b

b

b

b b b b

bbbbb

b

b

b

b

b

b b

bb

(a) (b) (c)

Figure 2.2.: Graphical representation of different formulations for the same set of feasible
solutions (grey dots) of a MIP problem with two integer variables.

2.2. Formulations

Typically, an MIP problem can be modeled in more than one way. Each way to model a

certain MIP problem with the exact same set of feasible solutions is called a formulation.

To be more precise we use two definitions from [98].

Definition 2.1. A subset of R
n described by a finite set of linear constraints P = {x ∈

R
n : Ax ≤ b} is a polyhedron.

Definition 2.2. A polyhedron P ⊆ R
n+p is a formulation for a set X ⊆ R

n × Z
p if and

only if X = P ∩ (Rn × Z
p).

In figure 2.2a we give a visual representation of two different formulations for the same

MIP problem with two integer variables. Knowing that there are several formulations for

the same optimization problem it is natural to ask whether a formulation is better than

another one. The graphical way of answering this question is to say that a formulation P1

is better than another formulation P2 if P1 lies within P2 as shown in figure 2.2b. Note

that in 2.2a none of the two formulations is clearly better than the other one. This can

be stated more precisely by a definition from [98].

Definition 2.3. Given a set X ⊆ R
n, and two formulations P1 and P2 for X, P1 is a

better formulation than P2 if P1 ⊂ P2.

Following up on this the next natural question to ask is whether there exists a best

formulation. Again this question can be investigated graphically and it is obvious that

the smallest formulation possible is one where all vertices of the polyhedron are integer

8

2.2. Formulations

points from the set of feasible solutions. This formulation is called the convex hull of X,

denoted as conv(X), and it is shown in figure 2.2c. We also give the formal definition

from [98].

Definition 2.4. Given a set X ⊆ R
n, the convex hull of X, denoted by conv(X), is

defined as: conv(X) = {x : x =
∑t

i=1 λix
i,
∑t

i=1 λi = 1, λ ≥ 0 for i = 1, . . . , t over all

finite subsets {x1, . . . , xt} of X}.

In principle there are two ways to improve the formulation of an MIP problem. The

first is to use an extended formulation, we repeat the informal definition of an extended

formulation from [85].

Definition 2.5. An extended formulation for the set of feasible solutions of an MIP

problem is a formulation involving new (and usually more) variables.

In example 2.3 we show how such an extended formulation might look like. Much more

about extended formulations can be found in [85].

Example 2.3. In this example we want to show the well-known (see for example [98] and

[85]) extended formulation for the uncapacitated lot-sizing problem introduced in exam-

ple 2.1. As mentioned above, the idea of an extended formulation is to add new variables.

In the case of the uncapacitated lot-sizing problems these new variables wij represent how

many units of the product produced in period i are used to satisfy the demand in period

j. We use the same yj variables as before and can formulate the problem as follows:

min
n∑

j=1

j
∑

i=1

(ci +

j−1
∑

t=i

pt)wij +
n∑

j=1

hjyj

j
∑

i=1

wij = dj for j = 1 . . . n

wij ≤ djyi for j = 1 . . . n, i = 1 . . . j

xi =
n∑

j=i

wij for i = 1 . . . n

wij ∈ R+ for j = 1 . . . n, i = 1 . . . j

x ∈ R
n
+, y ∈ {0, 1}n.

Note that we do not need the storage variables sj anymore but that we have to include

their cost coefficients in the computation of the costs for the wij variables. We could

9

2. MIP Theory

also drop the variables xj, j = 1 . . . n, and compute the values for them after we solved

the problem. It can be shown that this formulation describes the convex hull of feasible

solutions for this problem and thus is the best possible formulation.

Typically finding extended formulations for an MIP problem is left to the modeler. The

advantage of the second approach to improve the formulation of an MIP problem is that

it can be done automatically. Instead of adding variables this approach adds constraints.

Example 2.4 illustrates it and section 2.4 goes into the details.

Example 2.4. We use the fixed-charge network design problem from example 2.2 and

improve its formulation by adding an additional constraint. From the network structure

in figure 2.1 we see that the demand of node A has to be satisfied by water running through

the edge Q–A because no other edge leads into node A and the flow of the water can not

be negative. i.e. xj ∈ R+. In other words, the pipe from Q to A has to be build and

thus yQA = 1 in all feasible solutions. So the improved formulation (P2), consisting of

the original rows of the formulation (P1) together with yQA ≥ 1, is another formulation

for the problem. It is an improved formulation because P2 ⊆ P1, as adding an additional

constraint can not make P2 larger, and P2 ⊂ P1 because for the point

(x∗, y∗) = (30, 70, 0, 0, 40, 0,
3

5
, 1, 0, 0,

2

3
, 0)

it holds that (x∗, y∗) ∈ P1 and (x∗, y∗) /∈ P2.

2.3. Relaxations and Bounds

For this thesis relaxations of MIP problems play a very important role. Informally it

can be said that an MIP problem is contained in its relaxation, i.e. the set of feasible

solutions of a relaxation is larger and the objective function value of the relaxation is

better or equal for all feasible solutions of the original problem. More precisely this can

be stated in the following definition (similar to [98]):

Definition 2.6. A problem (RP) zR = min{f(x) : x ∈ T ⊆ R
n} is a relaxation of (MIP)

z = min{c(x) : x ∈ X ⊆ R
n} if:

1. X ⊆ T , and

2. f(x) ≤ c(x) for all x ∈ X.

10

2.4. Valid Inequalities and Separation

We now mention two ways in which relaxations can be used in MIP. Firstly, valid in-

equalities for a relaxation are also valid inequalities for the original MIP problem. This

is elaborated in section 2.4. Secondly, the optimal solution of a relaxation forms a dual

bound z on the optimal solution of the original MIP problem. A dual bound tells us how

good, in terms of the objective funtion, an optimal solution can be at best. On the other

hand each feasible solution to the problem x̄ ∈ X gives us a primal bound, i.e. we know

that a solution at least as good as this primal bound exists. So relaxations together with

feasible solutions can help us to define in which interval of the objective function the op-

timal solutions to a problem lie. This is used in the branch-and-cut algorithm discussed

in section 2.8.

A very important relaxation used in MIP is the LP relaxation of an MIP problem. It

is obtained by dropping the integrality conditions on the integer variables. The result

is a linear programming (LP) problem that is normally much easier to solve. If the

optimal solution of an LP relaxation is an integer feasible solution (it is integer) then this

solution is an optimal solution to the MIP problem. Note that if the formulation of an

MIP problem describes the convex hull of the feasible solutions, solving the LP relaxation

always results in a feasible solution and thus an optimal one. For more information about

LP see for example the standard textbook [29].

Another way of relaxing an MIP problem is to drop constraints of the constraint matrix.

This also means that each row of the constraint matrix alone forms a relaxation of the

original problem. If we have such a single row relaxation of the problem we can also relax

it further by removing some of the variables in the constraint as long as the constraint gets

less tight. That means we can remove variables with positive coefficients in ≤-constraints

and variables with negative coefficients in ≥-constraint. Removing variables in an equality

constraint results in converting the constraint to an inequality constraint.

2.4. Valid Inequalities and Separation

As shown in example 2.4, formulations can be improved by adding certain constraints.

These constraints have to satisfy two conditions. After adding them, the new constraint

matrix still has to be a formulation for the problem. That means, the new constraint is

not allowed to exclude any feasible solution to the MIP problem. On the other hand, in

order to improve the formulation, it is necessary to exclude non-feasible solutions from

the formulation. Constraints that satisfy the first of these conditions are called valid

inequalities, we define them similar to [85].

11

2. MIP Theory

Definition 2.7. A valid inequality for a set of feasible solutions of an MIP problem X

is a constraint of the form αx + βy ≤ γ satisfied by all points in X; that is,

αx̄ + βȳ ≤ γ for all (x̄, ȳ) ∈ X.

Valid inequalities can be found by several different methods. A typical approach is to

inspect a simple MIP problem and derive a set of valid inequalities called a family of valid

inequalities. Note that any valid inequality for a relaxation of an MIP problem is also a

valid inequality for the MIP problem itself (see [85]).

To improve a formulation, valid inequalities have to exclude, or in other words cut off,

non-feasible solutions. To find these valid inequalities we define the separation problem

(similar to [85]).

Definition 2.8. Given a set of feasible solutions to an MIP problem X, a formulation

PX for X, and a family of valid inequalities F , the separation problem for a given point

(x∗, y∗) ∈ PX is to

1. either prove that there is no valid inequality in F that cuts off (x∗, y∗)

2. or to find a valid inequality αx + βy ≤ γ from F that cuts off (x∗, y∗), i.e. where

αx∗ + βy∗ > γ.

An algorithm that tries to solve a separation problem is called a separation algorithm.

Separation algorithms come in two flavors, exact and heuristic. An exact separation

algorithm guarantees to solve the separation problem, a heuristic does not.

If a separation algorithm is successful it returns a valid inequality that cuts off a certain

point of the formulation. We call such a valid inequality a cut, cutting plane or violated

valid inequality. The point to cut off in a separation problem is typically a solution

to the LP relaxation of the problem. By repeatedly solving the LP relaxation, adding

a cut, and resolving the LP relaxation with the improved formulation it is sometimes

possible to solve MIP problems, depending on the problem instance and the family of

valid inequalities used. Algorithms based on this idea are called cutting plane algorithms.

Cutting plane algorithms on their own are considered unusable for solving most real

world MIP problems, but in combination with branch-and-bound this approach is very

successful. We discuss the resulting branch-and-cut algorithm in section 2.8.

Typically, families of valid inequalities contain many valid inequalities and even many

cuts for the same point. It therefore is a natural question which of these cuts are the best.

12

2.5. Mixed Integer Rounding Inequalities

One answer to this question is that the valid inequalities that are necessary to define the

convex hull of X are not dominated by any other valid inequalities and hence are the

best we can get. These valid inequalities are called facet-defining, we define them as in

[85].

Definition 2.9. A facet-defining valid inequality for X is a valid inequality that is nec-

essary in a description of the polyhedron conv(X).

For further reading about valid inequalities we refer to the aforementioned textbooks and

to a recent tutorial on the theory of valid inequalities by Cornuéjols [32].

2.5. Mixed Integer Rounding Inequalities

In this section we describe mixed integer rounding (MIR), an approach for finding valid

inequalities for MIP problems. It originates in [79], but the presentation here is from [98].

The idea is to first look at the simple MIR set X≥.

Definition 2.10. The simple MIR set is defined as

X≥ = {(x, y) ∈ R
1
+ × Z

1 : x + y ≥ b}.

Note that in the definition of the simple MIR set we require x ≥ 0, but y is not restricted

in this way. For the simple MIR set the only non-trivial facet of the convex hull is

described by the simple MIR inequality (from [98]).

Proposition 2.1. The simple MIR inequality

x ≥ f(dbe − y),

where f = b− bbc, is valid for the simple MIR set X≥.

Proof. If y ≥ dbe, then x ≥ 0 ≥ f(dbe − y). If y < dbe, then

x ≥ b− y = f + (bbc − y)

≥ f + f(bbc − y), as bbc − y ≥ 0 and f < 1

= f(dbe − y)

13

2. MIP Theory

0 1 2 3 4
0

1

2

3

4

x

y

Figure 2.3.: Graphical representation of the simple MIR set and the simple MIR inequality
from example 2.5.

Example 2.5 illustrates the simple MIR set and the simple MIR inequality. In section 4.2

of this thesis we show how the simple MIR inequality can be used to obtain valid inequal-

ities for more complex sets.

Example 2.5. Assume the simple MIR set

x + y ≥ 2.2

that is also shown in figure 2.3. In this figure the thick black lines are the feasible solutions

of the MIP set, the thin black line is the constraint and the dashed line is the simple MIR

cut

x ≥ 0.2(3− y).

In some situations it is appropriate to start with a slightly different simple MIR set that

consists of a less than or equal inequality. For this set the corresponding simple MIR

inequality is given in proposition 2.2, that, as well as its proof, is also from [98].

Proposition 2.2. For the MIP set

X≤ = {(x, y) ∈ R
1
+ × Z

1 : y ≤ b + x}

the inequality

y ≤ bbc+
x

1− f
,

where f = b− bbc, is a valid inequality.

14

2.6. Mixing Inequalities

Proof. Rewrite y ≤ b + x as x − y ≥ −b by multiplying with −1. Now observe that

−b − b−bc = 1− f . Using the simple MIR inequality we get x ≥ (1 − f)(d−be + y). As

d−be = −bbc this results in the desired valid inequality.

2.6. Mixing Inequalities

Another simple MIP set that has been studied to obtain valid inequalities for MIP prob-

lems is the mixing set. Günlük and Pochet defined it in [52], the presentation here is

based on [85].

Definition 2.11. The mixing set is the MIP set

XMIX
K = {(x, y) ∈ R

1
+ × Z

K : x + yk ≥ bk for 1 ≤ k ≤ K}.

Note that the mixing set consists of K simple MIR sets with the same continuous variable

x. The only non-trivial valid inequalities needed to describe the convex hull of a mixing

set are the mixing inequalities (from [52]).

Proposition 2.3. Let T ⊆ {1, . . . , K} with |T | = t, fk = bk − bbkc, k = 1 . . . K, and

suppose that i1, . . . , it is an ordering of T such that 0 = fi0 ≤ fi1 ≤ · · · ≤ fit < 1. Then

the mixing inequalities

x ≥
t∑

τ=1

(fiτ − fiτ−1)(dbiτ e − yiτ) (2.5)

and

x ≥
t∑

τ=1

(fiτ − fiτ−1)(dbiτ e − yiτ) + (1− fit)(bbi1c − yi1) (2.6)

are valid for the mixing set XMIX
K .

The most violated cut based on the mixing inequalities (2.5) and (2.6) for the mixing set

XMIX
K can be found efficiently using the following exact separation algorithm described

in [85]. Reorder the rows k = 1, . . . , K such that f1 ≤ · · · ≤ fK . For each row define

βk = dbke − y∗k. Starting with the row which has the largest βi = β̄, iteratively add the

next row i in the ordering as long as βi > (β̄ − 1) and βi > 0. If β̄ > 1, use inequality

(2.6), else use inequality (2.5). In example 2.6 we demonstrate this algorithm and show

the resulting mixing inequality.

15

2. MIP Theory

Example 2.6. We assume the mixing set

x + y1 ≥ 2.3

x + y2 ≥ 1.7

x + y3 ≥ 4.1

and the point

(x∗, y∗) = (2.3, 0, 0, 1.8).

This results in β1 = 3, β2 = 2, and β3 = 3.2 = β̄. As β̄ > 1 we use inequality (2.6) and

start with the third row of the mixing set that results in

x ≥ 0.1(5− y3).

As β1 > β̄ − 1 we now add the first row of the mixing set and get

x ≥ 0.1(5− y3) + (0.3− 0.1)(3− y1).

We do not add the second row of the mixing set, because β2 ≤ β̄ − 1. But as we use the

second mixing inequality (2.6) we add one more term and get

x ≥ 0.1(5− y3) + (0.3− 0.1)(3− y1) + (1− 0.3)(4− y3)

or

x + 0.8y3 + 0.2y1 ≥ 3.9.

This mixing cut is violated by the point (x∗, y∗).

The mixing set and the mixing inequalities are important because they can be used

to derive valid inequalities for a number of MIP problem classes, foremost lot-sizing

problems. Besides the mixing set presented here several variants of it are mentioned in

[85], like the continuous mixing set (p. 249) and the divisible mixing set (p. 253). These

variants of the mixing set also lead to valid inequalities for several lot-sizing problem

variants.

2.7. Lifting Valid Inequalities

In this section we give a very short and simplified description of what is meant by lifting

valid inequalities. For the details we refer to [80] and [66]. The presentation here is based

on [66].

16

2.8. The Branch-and-cut Algorithm

We first define MIP sets Zk(b) with the following structure

k∑

t=1

Gtyt ≤ b + x

yt ∈ Xt for t = 1, . . . , k

x ∈ R
n
+

Lifting basically means making valid inequalities for a lower-dimensional subset, in this

case Z1(b), valid for higher-dimensional MIP sets, in this case Zk(b), k = 2, . . .K.

One way to do lifting is to follow the sequential lifting approach consisting of the following

steps:

1. Fix yt = 0 for all t = 2, . . . , K.

2. Find a tight valid inequality β1y1 ≤ γ1 + αx for Z1(b).

3. Iterations k = 2, . . . , K. Given a tight valid inequality
∑k−1

t=1 βtyt ≤ γ + αx for

Zk−1(b), lift the variables yk and derive coefficients βk such that

k−1∑

t=1

βtyt + βkyk ≤ γ + αx

is valid for Zk(b).

To determine the cut coefficients in step 3 typically an optimization problem has to be

solved. In the approach as outlined above, the cut coefficients are computed sequentially

and the actually computed coefficients depend on the ordering of this sequence. Fortu-

nately, it is also possible to lift variables sequence independent using so called superadditive

lifting functions. For this thesis it is sufficient to know that using a superadditive lifting

function it is possible to compute each cut coefficient by computing a function value.

This makes lifting computationally interesting.

2.8. The Branch-and-cut Algorithm

The branch-and-cut algorithm is a combination of the branch-and-bound algorithm and

the idea of cutting plane algorithms mentioned in section 2.4. It currently is the typically

used method for solving MIP problems to optimality.

17

2. MIP Theory

The idea of the LP relaxation-based branch-and-bound algorithm, as first described by

Land and Doig [61], is to do an implicit enumeration of the feasible solutions of the MIP

problem. It starts with the solution of the initial LP relaxation of the problem. This

problem is called the root node. If all integer variables take integer values in the solution

of the root node, the algorithm is done, because the solution is also an optimal solution to

the MIP problem. If not, it branches. Branching in this context means that it generates

two subproblems out of the previous problem and investigates what the best possible

solution to these subproblems is. These subproblems are called nodes and are added to

a list of nodes. The most simple type of branching is to introduce bounds on one of the

integer variables. More elaborate branching schemes involve using sets of variables, like

special ordered sets (SOS), or branching on constraints.

For each node it is checked whether it can be pruned. For a node that can be pruned,

no branching has to be done and thus it does not add new nodes to the list of nodes. A

node can be pruned for three reasons:

1. prune by optimality,

2. prune by infeasibility, and

3. prune by bound.

A node can be pruned by optimality if in the solution of the LP relaxation of the underly-

ing subproblem all integer variables take integer values. If this solution is the first integer

solution found or if it is better than the best integer solution found so far it is stored

and called the incumbent. Nodes with integer solutions can be pruned because from the

theory of relaxations we know that there is no better solution in any of the subproblems

of the node.

A node can be pruned by infeasibility if the LP relaxation of the underlying subproblem

is infeasible. The reason for this is that if a problem is infeasible, all of its subproblems

are infeasible too.

A node can be pruned by bound if the objective function value of the LP relaxation

is worse than the one of the incumbent. The reason for this is that we know that all

subproblems of such a problem will have a worse objective function value too, and thus,

that among these we can not find a better integer solution than the incumbent.

If a node can not be pruned we have to branch and add two new nodes to the list of

nodes. In the next iteration we have to choose a new node we want to investigate. This

node is removed from the node list. Then we solve its LP relaxation, decide whether we

18

2.8. The Branch-and-cut Algorithm

0 1 2 3 4 5
0

1

2

3

4

5

y1

y2

(a)

z1

0 1 2 3 4 5
0

1

2

3

4

5

y1

y2

(b)

z4

Figure 2.4.: The MIP problem from example 2.7. On the left side (a), z1 marks the
solution to the LP relaxation of the root node and on the right side (b), z4

marks the optimal MIP solution.

can prune it, and then eventually branch again. If the node list is empty, it is proven

that the current incumbent is an optimal solution to the MIP problem. An overview of

the algorithm is given in figure 2.5a and we further illustrate it using example 2.7.

Example 2.7. Assume the following MIP problem:

z = min 7y1 + 15y2

1
1

2
y1 + y2 ≥ 3

3y1 − y2 ≥ −2

−1
1

5
y1 + y2 ≥ −2

y ∈ Z
2
+.

To solve this problem we first solve the LP relaxation and get the solution y1 = (123
27 , 2

9)

with objective function value z1 = 16 8
27 . We then decide to branch using the variable y2.

The first subproblem we create gets the additional constraint y2 ≤ 0 and the second the

additional constraint y2 ≥ 1. This branching is shown in figure 2.4a. Then we choose

the first subproblem and solve its LP relaxation. As it is infeasible we can prune this

node by infeasibility. The second subproblem is the only one in the node list so we choose

to investigate it next. Solving the LP relaxation leads to the solution y3 = (11
3 , 1) with

z3 = 241
3 . As this node can not be pruned we branch again, this time using the variable

y1. This leads to the first subproblem where y1 ≥ 2 and the second where y1 ≤ 1. This

branching is shown in figure 2.4b. Solving the LP relaxation of the first subproblem leads

19

2. MIP Theory

List empty?

Add root to list

Choose and remove node

Solve LP relaxation

Prune?

Branch

Stop

yes

no

no

yes

List empty?

Add root to list

Choose and remove node

Solve LP relaxation

Prune?

Branch

Stop

Resolve LP relaxation

Generate cuts

no

yes

no

yes

(a) (b)

Figure 2.5.: Overview of the branch-and-bound (a) and the branch-and-cut (b) algo-
rithms.

to the solution y4 = (2, 1) with z4 = 29. As it has an integer solution we can prune

this node by optimality. Its solution becomes the incumbent, because it is the first integer

solution we got. Solving the LP relaxation of the second subproblem leads to the solution

y5 = (1, 11
2) with z5 = 291

2 . This node can be pruned by bound, because its objective

function value z5 is worse than the one of the incumbent. As now the node list is empty

the incumbent is an optimal solution to the MIP problem.

How successful a branch-and-bound algorithm is in finding an optimal solution to an MIP

problem heavily depends on the quality of the formulation of the problem. Thus it is a

natural idea to expand the algorithm by a component that first automatically improves

20

2.8. The Branch-and-cut Algorithm

the formulation and then uses the branch-and-bound mechanisms. This extension of the

branch-and-bound algorithm is called cut-and-branch, i.e. first cuts are generated using

one or more separation algorithms and then the branch-and-bound algorithms starts.

This can be extended to possibly generate cuts at all branch-and-bound nodes. This is

then called a branch-and-cut algorithm and its structure is shown in figure 2.5b.

21

2. MIP Theory

22

3. MIP Solver Software

3.1. The Use of MIP Solvers

In this section we outline a process model for the use of MIP solvers. Figure 3.1 shows

typical steps when using an MIP solver for solving a real world problem. We call this

approach the MIP problem solving approach and it is applicable to a wide range of decision

and planning problems.

Before the actual MIP problem instance can be generated, it is necessary to understand

the problem, write a model, and collect the input data. Understanding the problem

means that it has to be decided, what the actual question to be answered is. This

includes identifying factors that can be influenced and static parameters. It leads to the

data that needs to be collected and to the decision variables of the MIP model. The model

is typically first stated mathematically. In most cases it is helpful to identify the general

class of the problem, as in operations research literature a large number of publications

about models and solution approaches for certain problem classes exists.

Once the mathematical model is stated it is typically implemented in a modeling language.

Modeling languages are software products that are either sold directly with an MIP solver

or which allow to connect to a number of different MIP solvers. They enable a user to

write the mathematical model in a specialized language, connecting it to the input data,

and to generate the problem instances.

The input data typically origin in several data sources, such as databases or enterprise

resource planning (ERP) systems. In many cases it has to be checked and cleaned before

it can be used. It might also be necessary to generate the input data by methods like

forecasting, because the exact input data is not known. Collecting the data is a very

important step of the MIP problem solving approach because the final results heavily

depend on it.

The ideal situation is that the improvement steps of the MIP problem solving approach

are not needed. This is the case if the validation and evaluation of the first MIP solver

run results in an acceptable solution. Often this will not be the case because of several

23

3. MIP Solver Software

Identify and describe the problem

Collect data Design an initial MIP model

Generate MIP instance(s)

Try to solve instance(s) using an MIP solver

Validate and evaluate the results

Apply the solution to the problem

Improvement steps:

- Find a better primal bound

- Improve formulation

- Improve MIP solver configuration

Figure 3.1.: The MIP problem solving approach.

24

3.1. The Use of MIP Solvers

reasons. It might be that the given problem can not be modelled close enough as an MIP

problem. It might also be that the resulting model is much too large to be solved by an

MIP solver. In both cases the MIP problem solving approach at least gives some idea of

the structure and complexity of the problem and can direct future approaches.

Even if a model of acceptable size can be stated it might happen that the MIP solver does

not return a usable solution. One situation is that the validation step might result in the

observation that the model is not exact enough to give a solution to the real problem.

Then it is necessary to refine the model and check the input data.

Another situation that might come up is that the MIP solver does not find any feasible

solution. In this case it is advisable to implement a problem specific primal heuristic.

The result of this heuristic can then be passed on to the MIP solver to further improve it

or to show that it is an optimal solution. Even if the MIP solver finds feasible solutions,

using a problem specific primal heuristic might improve the solutions found by the MIP

solver very much. If the MIP problem is not solved to optimality within some time limit

it is still possible to use the best solution found. By looking at the global dual bound, i.e.

the best dual bound of all nodes in the node list of the branch-and-cut algorithm, it can

be said how much better any optimal solution to the problem can be at best. Depending

on the problem to solve, this might mean that the best solution found is good enough.

If the solution is not good enough, there are two more methods to improve it. One is

to improve the formulation of the problem. As stated in section 2.2, the formulation of

an MIP problem largely influences the performance of an MIP solver. Therefore adding

valid inequalities or using an extended formulation might result in an acceptable solution.

For certain problem types valid inequalities and extended formulations are described

in literature, for example for several classes of production planning problems in [85].

Adding all valid inequalities of a family or using an extended formulation might lead

to a much larger MIP model but also to extremely reduced time to solve the problem

instances. A second possibility is to change the configuration of the MIP solver. MIP

solvers typically have a large number of parameters that control its components. For

example, it is typically possible to change the node selection and branching strategies

used in the branch-and-bound part of the solver. For some solvers it is also possible to

give a weight for each variable, which influences whether it is preferred for branching or

not.

A major advantage of using the MIP problem solving approach is that instead of im-

plementing specialized algorithms, out-of-the-box software can be used to solve many

25

3. MIP Solver Software

decision or planning problems. Instead of coding and dealing with all sorts of imple-

mentation problems it is only necessary to write a model in a modeling language. This

also improves the maintenance of the project because if the initial problem changes, it

is typically easier to change the model than to change the implementation of a problem

specific algorithm.

To support the MIP problem solving approach MIP solvers aim for a number of qualities

and features. The most important quality factor of a solver in the context of the MIP

problem solving approach is whether it is able to solve a problem in a reasonable amount

of time or at least return an acceptable solution to the problem. Therefore MIP solvers

typically have very thoughtfully chosen default settings for their parameters or even adjust

them dynamically. For some MIP solvers it is even possible to automatically tune them

towards a set of test problem instances. It can also be seen as a quality indicator of an

MIP solver if it has a large number of well-documented parameters that a user can adjust

to the problems he wants to solve.

Features MIP solvers provide to further support the MIP problem solving approach typi-

cally are means to automatically improve the formulation and to find good primal bounds

automatically. Automatically improving the formulation is typically done by preprocess-

ing the problem and by generating cuts. How to generate cuts is the major topic of this

thesis. Primal bounds are found using general purpose primal heuristics. See section 3.2

for more information about generating cuts and about primal heuristics in MIP solvers.

In addition to these features it is sometimes possible to tell the solver about problem-

specific valid inequalities (often called user cuts) and primal bounds found outside the

solver, for example by user implemented algorithms. For more complex situations MIP

solvers are available as callable libraries to integrate them into decision support systems or

to implement LP/MIP based solution techniques like column generation (see for example

[98], chapter 11).

We now mention two examples of industry projects documented in literature that used

MIP solvers in a way similar to the MIP problem solving approach. In [22], Bertsimas et

al. discuss a project where they formulated an MIP problem for portfolio construction

in the financial industry. They mention improving the solution time of an MIP solver

by improving the parameter settings and the formulation. In the second example [44],

Fleischmann et al. formulated an MIP model for the strategic planning of the supply

chain of a large carmaker. They report solving all of their problem instances within 4

minutes because of the powerful preprocessing methods of modern MIP solvers.

26

3.2. MIP Solver Components

3.2. MIP Solver Components

In this section we briefly describe the components of an MIP solver. How these com-

ponents are used and how they interact with each other depends on the specific solver

and on its configuration. For further information we refer to [14], [56], and [24]. The

importance of the components of an MIP solver is evaluated in [25].

Input Methods

MIP solvers typically provide several ways of loading the problem instance into the solver.

One is to read in problem files, the standard format for this is called Mathematical

Programming System (MPS). Unfortunately many solver specific additions to the format

have lead to the situation that MPS files of different solvers sometimes are not compatible.

There are efforts for a new file format in the open-source project Optimization Services

(OS) hosted by the COIN [1] open source project. Another way to get problems into the

solver is using input functions of a callable library version of the solver. A callable library

provides access to a set of functions that typically allow to load or create problems, set

parameters, and to start the optimization process. Furthermore they enable users to

implement specialized algorithms that use LP/MIP solvers to solve subproblems. These

callable libraries are also frequently used to connect solvers to modeling languages that

make generating and loading problems much easier.

Preprocessing Techniques

Solvers use LP and MIP preprocessing techniques to reduce the size and to improve the

formulation of the problem. The size is reduced by removing redundant constraints and

by fixing variables that can take only one value in an optimal solution. IP preprocessing

techniques that aim at producing a tighter formulation are, for example, bound reduction,

coefficient reduction, reduced cost fixing and probing. These techniques are described

in [14]. Some preprocessing techniques can be used in all nodes of a branch-and-cut

algorithm, others are only performed before or after solving the root node.

LP solver

An MIP solver always needs a linear programming (LP) solver to solve problems without

integer variables and LP relaxations of MIP problems. LP, and implementing algorithms

27

3. MIP Solver Software

for LP, is a large research subject of its own. See [29] for a typical textbook about LP.

There are three widely used algorithms for solving LP problems: the primal simplex al-

gorithm, the dual simplex algorithm, and the interior point algorithm (also called barrier

algorithm). State of the art LP solvers typically have all three algorithms implemented

and the user can choose which one to use. In general the interior point algorithm solves

many instances fastest but there are instances were the primal or the dual simplex algo-

rithm is faster (compare [24]). A disadvantage of the interior point algorithm is that it

needs more memory than the dual simplex algorithm (see [59]). Another disadvantage

of the interior point algorithm is that it typically can not warm start, i.e. if two similar

problems are solved one after the other the interior point algorithm has to start from

scratch whereas the simplex-based algorithms can restart from the basis of a previous so-

lution. Warm start is important when using an LP solver in a branch-and-cut framework

where typically the dual simplex is used. Its advantage over the primal simplex algorithm

is that from one node to the next the basis theoretically stays dual feasible and thus a

step of the dual simplex algorithm called dual phase one is not needed (see [59]). Also

see [59] for implementation aspects of the dual simplex algorithm.

Primal heuristics

Two types of primal heuristics are typically used in an MIP solver: starting heuristics

and improvement heuristics. Starting heuristics try to find a feasible solution to the MIP

problem without knowledge of another feasible solution. Many of these heuristics start

with a solution to an LP relaxation and try to reach a feasible solution by rounding the

solution values of the integer variables. Improvement heuristics on the other hand try to

find better feasible solutions than the so far known. They typically do this by searching

a neighborhood of the best known solution. Many currently used primal heuristics are

described in [21].

Cut Generators

As MIP solvers use a branch-and-cut algorithm they need to implement separation algo-

rithms as described in section 2.4. These implementations of separation algorithms are

called cut generators. A cut generator gets a relaxation solution to cut off as an input

information and tries to return several valid inequalities that cut off this solution. MIP

solvers typically have a variety of different cut generators. Current MIP solvers typically

have cut generators for all of these cuts:

28

3.2. MIP Solver Components

• lifted cover cuts [50],

• lifted flow cover cuts [51],

• flow path cuts [93],

• clique cuts [86], [89],

• implication cuts [86], [89],

• Gomory mixed integer cuts [15],

• and complemented mixed integer rounding (cMIR) cuts [70].

Additionally, the MIP solver CPLEX [54] uses a cut generator for {0, 1
2}-cuts [26] and

the MIP solver Xpress-MP [39] additionally generates lift-and-project cuts [16].

Cut generators can be divided into general purpose and problem structure-based cut gen-

erators (see [14]). General purpose in this context means not depending on the existence

of a certain problem structure in the MIP problem. The difference between these two

approaches is not clear in all cases, for example, cMIR cuts are general purpose cuts

but they implicitly use problem structure (see section 4.2). Therefore we differentiate

in this thesis between cut generators using the LP tableau of the simplex algorithm, i.e.

generate a cut for each column of the constraint matrix with a fractional solution value,

and cut generators using relaxations of constraints (rows) as input. An example for a cut

generator based on the simplex tableau is the cut generator for Gomory mixed integer

cuts. Cut generators based on row relaxations are, for example, the flow cover, flow path,

and cMIR cut generators described in chapter 4.

How cut generators are used in an MIP solver is an important aspect as well. In principle,

adding more cuts leads to an improved formulation and thus helps to solve the problem.

On the other hand, by each cut added, the formulation gets larger and thus the LP

relaxation gets harder to solve. An MIP solver has to decide how many cuts it wants

to add and which ones. For this purpose many MIP solvers use routines to select cuts

generated instead of using all of them.

Branch-and-cut

The core of an MIP solver is its implementation of the branch-and-cut algorithm described

in section 2.8. In this implementation a number of design decisions have to be made.

Concerning cuts, one is in which nodes cuts should be generated. As generating cuts

might be time-consuming and adding them increases the time needed to solve the LP

29

3. MIP Solver Software

relaxations, doing it in all nodes can result in a bad overall performance of the solver.

Another design decision similar to this is, whether cuts are generated at nodes other than

the root node are local, i.e. only valid for this problem and its subproblems, or global, i.e.

valid for the original problem. In a subproblem of the branch-and-cut tree several bounds

of variables have been changed due to branching. Therefore a cut for this subproblem

is not necessarily a valid inequality for the original problem. If local cuts are generated,

it has to be made sure that they are removed from the formulation before a subproblem

where they are not valid is investigated. Removing cuts and storing which cuts belong

to which set of nodes can cause many problems as well as a significant slowdown of the

solver. Lifting (see section 2.7) can overcome this problem to a certain point, see [15].

An important implementation aspect of the branch-and-cut algorithm is the branching

strategy. The branching strategy defines how branching is done. A possible goal when

making this decision is to get two subproblems with large changes in the LP relaxations,

because this likely leads to cutting off one of these subproblems. A number of techniques

have been tried and implemented, see [5], [14], and [65] for an overview. A user of an

MIP solver can typically choose among several branching strategies.

Also an important implementation aspect is the node selection strategy. The node selec-

tion strategy defines which node is chosen to be investigated next. The trade off here

is between finding feasible solutions by investigating nodes with a bad dual bound, but

probably closer to an integer solution, and improving the global dual bound by inves-

tigating the node with the best dual bound. We refer to [14] and [65] for a discussion

of different methods. As with the branching strategy, a user can typically set the node

selection strategy with a parameter.

3.3. The MOPS MIP Solver

In this section we briefly describe the MOPS (Mathematical Optimization System) MIP

solver. The description here is based on the MOPS Whitepaper [77], the MOPS user

manual [78], as well as a number of other publications about parts of MOPS ([96], [94],

[45], [59], [88]).

The MOPS system started in 1987 as an LP solver and since 1994 also supports solving

MIP problems. It is a commercial product sold and maintained by the MOPS GmbH

& Co. KG situated in Paderborn, Germany. An overview of its components is given in

figure 3.2 (from [77]).

30

3.3. The MOPS MIP Solver

generate / load a model

MPL

MathProg

AMPL

mps file

Triplet File

LoadModel
LP Preprocessing

LP/IP Postsolve

Supernode Processing

IP Heuristic

B&C (Simplex) Supernode Processing

Simplex Primal or Dual Primal Dual Interior Point

Optimal Basis

Figure 3.2.: Overview of the optimization process with MOPS (from [77]).

31

3. MIP Solver Software

We now describe the part of MOPS that is most important in the context of this thesis

in more detail: the cut generation. Cut generation happens in MOPS in the supernode

processing. Supernode processing is another word for IP-preprocessing, i.e. a selection of

techniques to strengthen the LP relaxation of an MIP problem. Some of these techniques

are used in all nodes as part of the node presolve. These techniques aim at showing

that the LP relaxation of a node is integer infeasible before actually solving it. Other

techniques of the supernode processing, as the cut generation, are only used in supernodes.

The root node always is a supernode and currently it is the only one. Thus MOPS actually

uses a cut-and-branch algorithm.

After the LP relaxation has been solved, the main loop of the supernode processing

runs through the preprocessing techniques and then calls all cut generators. The cut

generators are called one after the other using the same LP relaxation solution to cut

off. Cuts found are normally not added to the constraint matrix directly. Instead they

are added to the cut pool. At the end of the supernode processing loop the cut selection

routines select the cuts to add from the cut pool. It is possible to deactivate the cut

pool with a parameter setting and directly add the cuts to the constraint matrix. This

is never done in the computational tests conducted for this thesis. After the cuts have

been added the LP relaxation of the improved formulation is solved.

By default, the main loop is repeated 10 times. Each iteration of the loop is called a

round of cut generation. Then the primal heuristics of MOPS are called. If the heuristics

find a feasible solution, MOPS does 10 more rounds of the supernode processing loop. In

its current version, MOPS has cut generators for all the typically used cuts mentioned in

section 3.2, except for flow path cuts.

We now briefly describe the cut pool and the cut selection techniques. The cut pool

stores the cuts generated by several cut generators for the same LP relaxation solution

and then uses sophisticated cut selection techniques. The cut selection techniques start

by finding dominated and redundant cuts. After that it estimates the quality of the cuts

and selects a set of cuts with high estimated quality. In this set it is tried to have cuts

that are different from each other. This results in a reduced number of cuts added while

the improvement in the dual bound is not much worse. For a more detailed description

and a computational evaluation of the MOPS cut pool see [96].

Another important aspect of the MOPS solver is its set of tolerance parameters. As

MIP solvers typically use floating point arithmetic they have to use very small numbers

when comparing two values. In the implementations described in this thesis we use the

following of MOPS tolerance parameters:

32

3.3. The MOPS MIP Solver

xdropm is the smallest number accepted in the constraint matrix. Its default value is 1 ×

10−7.

xtolin is the value used to check whether a variable is integer or not, i.e. a variable yj is

integer if y∗j − by
∗
j c ≤ xtolin. Its default value is 1× 10−5.

xtolzr is the zero tolerance. It is used whenever it has to be checked whether a value is

really zero, i.e. a value x∗
j is considered 0, if −xtolzr ≤ x∗

j ≤ xtolzr. The default

value for this tolerance parameter is 1× 10−12.

xtolx is the absolute primal relative feasibility tolerance (for the unscaled problem). It

is used together with xtolre, the relative primal feasibility tolerance to decide

whether a variable is within its bounds, i.e. a variable yj with lower bound lj and

upper bound uj is considered feasible if and only if

lj − xtolx− xtolre · |lj | ≤ x∗
j ≤ uj + xtolx + xtolre · |uj |

The default value for xtolx is 1× 10−4, for xtolre it is 1× 10−10.

There are numerous other tolerance parameters in the MOPS MIP solver. Some are

used only in the LP part of MOPS , such as tolerances for factorization and arithmetic

operations. Others are used in the branch-and-cut part and define, for example, when

the gap between dual and primal bound is small enough to consider a solution optimal.

For a detailed description of these parameters and their default settings we refer to the

MOPS Whitepaper [77] and the MOPS user manual [78].

33

3. MIP Solver Software

34

4. Separation Algorithms

4.1. The Flow Cover Cut Separation Algorithm

4.1.1. Flow Cover Inequalities

In this section we repeat results about flow cover inequalities and the flow cover cut

separation algorithm. Flow cover inequalities are valid inequalities for the binary single-

node flow set (this name for this set is from [85]) or sets similar to it.

Definition 4.1. Consider

XBSNF = {(x, y) ∈ R
n
+ × {0, 1}n :

∑

j∈N+

xj −
∑

j∈N−

xj ≤ b, (4.1)

xj ≤ ujyj for all j ∈ N (4.2)

where N = (N+, N−),n = |N |. We call XBSNF the binary single-node flow set.

We call rows of the form (4.1) flow balance rows and rows of the form (4.2) binary

variable upper bound rows. The binary single-node flow set is a natural part of many

mixed integer programming formulations. Its name is inspired by the fact that a binary

single-node flow set can be visualized as a node of a fixed charge network design problem

as shown in figure 4.1. Note that (N+, N−) is a partition of N as described in the

appendix (p. 153).

A set similar to the binary single-node flow set was first studied by Padberg, van Roy and

Wolsey in [82]. Van Roy and Wolsey then defined two families of valid inequalities for a

variant of the binary single-node flow set that includes variable lower bounds in [92]. The

flow cover cut separation algorithm and the first implementation of it are discussed in [93].

The families of flow cover inequalities used in this paper are called simple generalized flow

cover inequalities (SGFCIs) and extended generalized flow cover inequalities (EGFCIs).

All flow cover inequalities use the concept of generalized covers.

35

4. Separation Algorithms

b

N−N+
0 ≤ xj ≤ ujyj

0 ≤ xj ≤ ujyj

Figure 4.1.: A visual representation of the binary single-node flow set.

Definition 4.2. A set C = (C+, C−) with C+ ⊆ N+ and C− ⊆ N− is called a generalized

cover if
∑

j∈C+

uj −
∑

j∈C−

uj = b + λ

with λ > 0.

In proposition 4.1 we present the definition of the SGFCIs from [93] in the notation of

this thesis.

Proposition 4.1. If C = (C+, C−) is a generalized cover then

∑

j∈C+

xj +
∑

j∈C++

(uj − λ)(1− yj) ≤ b +
∑

j∈C−

uj +
∑

j∈L−

λyj +
∑

j∈L−−

xj (4.3)

where C++ = {j ∈ C+ : uj > λ} and N− \C− = (L−, L−−) is called a simple generalized

flow cover inequality (SGFCI) and is valid for XBSNF .

We now take a closer look at the SGFCIs and try to give an intuition why these inequalities

are valid for XBSNF . This explanation is based on the proof in [98], p. 152.

First realize that a generalized cover is a set of indices such that not all xj , j ∈ C+

can be at their upper bound at the same time, even if all j ∈ C− are at their upper

bound. Because if xj = uj for all j ∈ C the flow balance row would be violated by λ. To

show that the SGFCIs are valid for XBSNF we first look at the integer solutions (x̄, ȳ)

in XBSNF where all ȳj = 1 for j ∈ C++ and all ȳj = 0 for j ∈ L−. Then the SGFCIs

enforce that
∑

j∈C+ xj ≤ b +
∑

j∈C− uj +
∑

j∈L−− xj and this is valid. But if in an LP

relaxation solution for one of these variables k ∈ C++, 0 < y∗k < 1, then the SGFCIs

result in xk ≤ (uk − λ)yk +
∑

j∈L−− xj and can cut off this fractional solution.

36

4.1. The Flow Cover Cut Separation Algorithm

Now we look at the other integer solutions, namely those where at least one ȳj = 0 for

j ∈ C++ or at least one ȳj = 1 for j ∈ L−. If ȳj = 0 for j ∈ C++ this essentially

means that the right hand side is reduced by uj − λ. This is valid because uj − λ is the

maximal value an xj , j ∈ C++ can take if all other variables j ∈ C are at their upper

bound. In other words, for those j ∈ C++ where ȳj = 1 the statement that if all of these

variables are at their upper bound the flow balance row exceeds the right hand side (now

b− (uj − λ)) by λ stays true. Concerning the variables j ∈ N− \ C− we can place them

in L−− and add xj to the right hand side which clearly is feasible. Instead of xj we could

also use ujyj because this is larger than xj . But this can be strengthened to λyj because

we know that the variables j ∈ C can exceed b by at most λ. These explanations are just

hints to understand what is happening, for details see the formal proof in [98], p. 152. In

example 4.1 we give a numerical example of an SGFCI.

Example 4.1. Assume the single-node flow set

x1 + x2 + x3 − x4 − x5 ≤ 17

x1 ≤ 24y1

x2 ≤ 20y2

x3 ≤ 15y3

x4 ≤ 18y4

x5 ≤ 16y5.

We choose C = {1, 2, 5},λ = 11,L− = {4},L−− = ∅ and get the SGFCI

x1 + 13(1− y1) + x2 + 9(1− y2) ≤ 33 + 11y4

which is valid for this single-node flow set.

In [87] Staellert introduced what he called a complementary class of flow cover inequalities.

Atamtürk defined a special case of these in [11] and called them flow pack inequalities.

He also mentioned that these flow pack inequalities can be derived using flow cover

inequalities by generating them for the reversed flow balance row of a binary single-node

flow set. Reversed row means in this context that we add a slack variable and multiply

the row by −1. Example 4.2 illustrates this. Louveaux and Wolsey point out in [66] that

the implementation in [93] already used flow cover inequalities from reversed rows.

Example 4.2. Reversing the flow balance row from example 4.1 yields

−x1 − x2 − x3 + x4 + x5 − xs ≤ −17

37

4. Separation Algorithms

where xs = 17 − x1 − x2 − x3 + x4 + x5 is the slack variable for this row. We choose

C = {1, 5},λ = 9,L− = {3},L−− = {2, s} and get the SGFCI

x5 + 7(1− y5) ≤ −17 + 24 + x2 + 9y3 + xs

which after replacing xs results in

x1 + x3 − 9y3 − x4 + 7(1− y5) ≤ 24.

This is precisely the flow pack inequality using the corresponding sets (see [11]).

The flow cover inequalities nowadays used in MIP solvers were introduced by Gu, Nemhauser

and Savelsbergh in [51]. They proposed two families of valid inequalities using superad-

ditive lifting functions. In proposition 4.2 we show the family of lifted simple generalized

flow cover inequalities (LSGFCIs) defined by them.

Proposition 4.2. Let C = (C+, C−) be a generalized cover, C++ = {j ∈ C+ : uj > λ},

N− \ C− = (L−, L−−), r = |C++ ∪ L−|, C++ ∪ L− = {j1, j2, . . . jr} with uji
≥ uji+1

for i = 1, . . . r − 1,M0 = 0 and Mi =
∑i

k=1 ujk
for i = 1, . . . r. Furthermore, let m =

∑

j∈C+\C++ uj +
∑

j∈L−− uj, mp = minj∈C++ uj, ml = min{m, λ}, and t be the largest

index in C++ ∪ L− such that ujt = mp. Also let ρi = max{0, ui+1 − (mp− λ)−ml} for

i = t, . . . , r − 1. Then the lifted simple generalized flow cover inequality (LSGFCI)

∑

j∈C+

xj +
∑

j∈C++

(uj − λ)(1− yj) +
∑

j∈N+\C+

αjxj −
∑

j∈N+\C+

βjyj

≤ b +
∑

j∈C−

uj −
∑

j∈C−

g(uj)(1− yj) +
∑

j∈L−

λyj +
∑

j∈L−−

xj

(LSGFCI)

with (αj , βj) = (0, 0) if Mi ≤ uj ≤Mi+1−λ, (αj , βj) = (1, Mi− iλ) if Mi−λ < uj < Mi,

and the superadditive lifting function g,

g(z) =

iλ Mi ≤ z ≤Mi+1 − λ, i = 0, . . . , t− 1

z −Mi + iλ Mi − λ ≤ z ≤Mi, i = 1, . . . , t− 1

z −Mi + iλ Mi − λ ≤ z ≤Mi − λ + ml + ρi, i = t, . . . , r − 1

iλ Mi − λ + ml + ρi ≤ z ≤Mi+1 − λ, i = t, . . . , r − 1

z −Mr + rλ Mr − λ ≤ z ≤ b +
∑

j∈N− uj

is valid for XBSNF .

38

4.1. The Flow Cover Cut Separation Algorithm

Computational experiments in [51] showed that the separation algorithm based on LS-

GFCIs performed better than variants of it using other families or combinations of other

families. In example 4.3 we show a numerical example of the lifting used in LSGFCIs.

Example 4.3. We now try to lift the cut generated in example 4.1 to make it into

a LSGFCI. In this example C++ ∪ L− = {1, 2, 4}. Note that usually we need to sort

this set but in this example it is already sorted by decreasing uj. As a result of this we

get M = (0, 24, 44, 62), ml = 0 and t = 2. We also compute that ρ2 = 9. We start

by lifting (x3, y3). Note that because we use a superadditive lifting function the lifting

is sequence independent and it therefore does not matter which variable we start with.

For (x3, y3) we see that M1 − λ = 24 − 11 < 15 < 24 = M1. Therefore we can use

(α3, β3) = (1, 13) if this improves our cut. For lifting (x5, y5) we have to compute g(16).

As M1 − λ = 24− 11 ≤ 16 ≤ 24 = M1 for this variable the second case in the definition

of g is used. Hence g(16) = 16− 24 + 11 = 3. The resulting cut is

x1 + 13(1− y1) + x2 + 9(1− y2) + x3 − 13y3 ≤ 33− 3(1− y5) + 11y4.

Finally, we would like to mention a few families of flow cover inequalities that were defined

for variants of the binary single-node flow set. Wolsey defined in [97] a family of valid

inequalities for the single-node flow set with generalized upper bound (GUB) constraints.

A generalized upper bound constraint limits the binary variables in a set S ⊆ N in a way

that only one of them is allowed to be 1. In [13] the single-node flow set with additive

variable upper bounds is studied. Additive variable upper bounds extend variable upper

bounds by a constant factor on the right hand side and the possibility to have a sum

of variables form an upper bound on the continuous variables. The single-node flow set

with integer variable upper bounds was studied in [58].

4.1.2. The Separation Algorithm

The flow cover cut separation algorithm originates in [93] and is one of the first separation

algorithms for mixed integer programming problems that was used in a branch-and-cut

approach. Despite the fact that it is more than 20 years old it is still used in current MIP

solvers. The flow cover cut separation algorithm as described in [93] and reused in [51]

has three major steps:

39

4. Separation Algorithms

1. reformulation,

2. cover finding, and

3. cut generation.

In the following we discuss these three steps in detail.

The strength of the flow cover cut separation algorithm is that, although the flow cover

inequalities are defined for the binary single-node flow set, they can be used for all kinds

of mixed integer rows. This is due to the fact that all mixed 0-1 rows with bounded

variables can be reformulated as single-node flow sets. This was originally stated by van

Roy and Wolsey in [92] and can also be found in [80], p. 286. In this subsection we show

how this reformulation is used in flow cover cut separation algorithms using the notation

of this thesis. The input for a flow cover cut separation algorithm is a mixed 0-1 row of

the form
∑

j∈R

ajx
′
j +

∑

j∈B

gjy
′
j ≤ b x′ ∈ R

|R|
+ , y′ ∈ {0, 1}|B| (4.4)

and additional information about simple and binary variable upper bounds:

x′
j ≤ u′

jyvj
for all j ∈ R̄ ⊆ R

x′
j ≤ u′

j for all j ∈ R \ R̄.

Note that we assume here that all variables have lower bounds of greater than or equal

to zero and finite upper bounds. To reformulate the row we add new variables to get

∑

j∈R∪B

(ajx
′
j + gjy

′
j) ≤ b (4.5)

ajx
′
j + gjy

′
j ≤ (|aj |u

′
j + |gj |)yj for all j ∈ R ∪B

with

gj = 0 yj = y′vj
for all j ∈ R̄, vj 6∈ B

gj = 0 yj = 1 for all j ∈ R \ R̄

gj = gvj
yj = y′vj

for all j ∈ R̄, vj ∈ B

aj = 0 yj = y′j for all j ∈ B \
⋃

j∈R̄

vj

aj = 0 gj = 0 for all j ∈
⋃

j∈R̄

vj .

40

4.1. The Flow Cover Cut Separation Algorithm

We define N = R ∪B, xj = ajx
′
j + gjy

′
j , uj = |aj |u

′
j + |gj | and see that (4.5) is a binary

single-node flow set.

The problem of finding the most violated SGFCI for a given binary single-node flow set

becomes easy as soon as we decided on the generalized cover C = (C+, C−). To find C

the approach of the flow cover cut separation algorithm is to solve a flow cover finding

knapsack problem. This knapsack problem is

min
∑

j∈N+

(1− y∗j)kj −
∑

j∈N−

y∗j kj

∑

j∈N+

ujkj −
∑

j∈N−

ujkj > b (4.6)

k ∈ {0, 1}

where k is an incidence vector for C, i.e. if kj = 1 then j is in C and kj = 0 otherwise.

The knapsack constraint ensures that solutions are generalized covers. The objective

function can be seen as a simplification of the violation of an SGFCI. We repeat this

simplification that is shown in [98] and [93]. The first step is to assume that xj = ujyj

and uj ≥ λ for all j ∈ N . Note that from these two assumptions follows that we can

choose L− = N− \ C− and C++ = C+without decreasing the violation. Under these

assumptions the SGFCI gets

∑

j∈C+

ujyj +
∑

j∈C+

(uj − λ)(1− yj) ≤ b +
∑

j∈C−

uj + λ
∑

j∈N−\C−

yj .

This can be rewritten as

−λ
∑

j∈C+

(1− yj) ≤ λ + λ
∑

j∈N−\C−

yj

because λ = b +
∑

j∈C− uj −
∑

j∈C+ uj . After dividing by λ and subtracting
∑

j∈N− yj

from both sides of the inequality we get

∑

j∈C+

(1− yj)−
∑

j∈C−

yj ≥ 1−
∑

j∈N−

yj .

As the right hand side is independent from C we can use the left hand side as the objective

function for the flow cover finding knapsack problem. Note that the assumptions we made

do not hold in general and therefore solving the flow cover finding knapsack problem does

not automatically result in the set C that leads to the most violated flow cover cut. Hence

41

4. Separation Algorithms

this method is heuristic in contrast to the cover finding knapsack problem for cover cuts

(see for example [98]).

Once we decided on a cover the final step is the cut generation. Here one decision to

make is which variables to place in L−. The rule

L− = {j ∈ N− : λy∗j < x∗
j}

leads to the most violated cut. Furthermore the cut coefficients for the lifted variables

have to be computed. The final step is to rewrite the generated cut in the space of the

original variables.

4.2. The Aggregated cMIR Cut Separation Algorithm

4.2.1. Mixed Integer Rounding Inequalities

Mixed integer rounding inequalities are valid inequalities for the mixed integer knapsack

set. They go back to [79], but the presentation here is based on [98] and [70].

Definition 4.3. The mixed integer knapsack set is defined as

XMIK = {(y, s) ∈ Z
|I|
+ × R

1
+ :
∑

j∈I

gjyj ≤ b + s, yj ≤ uj for j ∈ I}. (4.7)

Note that, as in the case of the single node flow set in section 4.1, nearly all mixed integer

rows can be reformulated to a mixed integer knapsack set. In section 2.5 we show the

simple MIR inequality that is valid for the simple mixed integer set. The MIR inequality

is a straight forward application of the simple MIR inequality (from section 2.5) to the

mixed integer knapsack set XMIK .

Proposition 4.3. The mixed integer rounding (MIR) inequality

∑

j∈I

(

bgjc+
(fj − f)+

1− f

)

yj ≤ bbc+
s

1− f
(4.8)

where f = b− bbc and fj = gj − bgjc is valid for XMIK .

42

4.2. The Aggregated cMIR Cut Separation Algorithm

Proof. We split I into the disjunct sets I1 and I2 and relax the mixed integer knapsack

set to
∑

j∈I1

bgjcyj +
∑

j∈I2

(dgje − 1 + fj)yj ≤ b + s.

Then we rewrite it as a simple mixed integer set X≤ (see page 14)

∑

j∈I1

bgjcyj +
∑

j∈I2

dgjeyj

︸ ︷︷ ︸

y′∈Z

≤ b + s +
∑

j∈I2

(1− fj)yj

︸ ︷︷ ︸

s′∈R+

.

Note that for this step yj ≥ 0 for j ∈ I is a necessary condition. Applying the simple

MIR inequality yields

∑

j∈I1

bgjcyj +
∑

j∈I2

dgjeyj ≤ b +
s +

∑

j∈I2
(1− fj)yj

1− f

or rewritten
∑

j∈I1

bgjcyj +
∑

j∈I2

(bgjc+
1− f

1− f
−

1− fj

1− f
)yj ≤ b +

s

1− f
.

If we choose j ∈ I2 if f < fj this gives the MIR inequality.

There is a number of results about the relation between the MIR inequalities and other

families of valid inequalities. For these results we refer to [79], [68], [70], and [98].

Another family of valid inequalities for the mixed integer knapsack set can be defined

by complementing some of the integer variables of the mixed integer knapsack set before

applying the MIR inequality. Complementing means adding the upper bound of a variable

to both sides of the inequality and substituting uj − yj by a new variable ȳj . This can

be combined with rescaling the mixed integer knapsack using a value δ > 0 to obtain a

fractional right hand side that is needed for a meaningful MIR inequality. A result of

these two operations is the definition of the complemented mixed integer rounding (cMIR)

inequalities.

Proposition 4.4. Let I = (T, C) and δ ∈ R>0. The cMIR inequality associated to (T, C)

and δ,
∑

j∈T

Ffβ ,δ(gj)yj +
∑

j∈C

Ffβ ,δ(−gj)(uj − yj) ≤ δ(1− fβ)bβc+ s (4.9)

where

β =
b−

∑

j∈C gjuj

δ
,

43

4. Separation Algorithms

fβ = β − bβc, f g
δ

= g
δ
− bg

δ
c and

Fα,δ(g) = δ(1− α)

(
⌊g

δ

⌋

+
(f g

δ
− α)+

1− α

)

is valid for XMIK .

Proof. We complement the variables in C by subtracting their upper bounds from both

sides of the mixed knapsack inequality, divide the inequality by δ and get

∑

j∈T

gj

δ
yj +

∑

j∈C

−gj

δ
(uj − yj) ≤

b

δ
−
∑

j∈C

gj

δ
uj +

s

δ
.

Applying the mixed integer rounding inequality from section 2.5 and multiplying by

δ(1− fβ) yields the cMIR inequality.

The cMIR inequality was introduced in [68] and [70]. Its inherent strength is that,

depending on a careful construction of the mixed knapsack set, many families of valid

inequalities can be generated using cMIR inequalities. These are, for example, residual

capacity inequalities [67] and mixed cover inequalities [69]. The construction of the mixed

knapsack set together with the generation of cMIR cuts is called the cMIR approach and

is discussed in the next section. There we also show that some flow cover inequalities can

also be derived using the cMIR approach.

Instead of defining the MIR inequalities for the traditional mixed integer knapsack set it

is also possible to define them for what we call the reversed mixed integer knapsack set.

Definition 4.4. The reversed mixed integer knapsack set is defined as

XRMIK = {(y, s) ∈ Z
|I|
+ × R

1
+ :
∑

j∈I

gjyj + s ≥ b, yj ≤ uj for j ∈ I}. (4.10)

The reversed mixed integer knapsack set is basically a mixed integer knapsack set with

a greater than or equal sign and a positive coefficient for the continuous variable. The

reversed MIR inequality is mentioned in several publications as a by-product (for example

in [12]).

44

4.2. The Aggregated cMIR Cut Separation Algorithm

Proposition 4.5. The reversed mixed integer rounding (MIR) inequality

∑

j∈I

(fbgjc+ min{fj , f})yj + x ≥ fdbe

where f = b− bbc,fj = gj − bgjc is valid for XRMIK .

Proof. We partition I into two sets I1 and I2 and relax XRMIK to get a simple MIR set

X≥:
∑

j∈I1

dgjeyj +
∑

j∈I2

bgjcyj

︸ ︷︷ ︸

y′∈Z

+
∑

j∈I2

fjyj + s

︸ ︷︷ ︸

s′∈R+

≥ b.

Now we generate a simple MIR inequality (see section 2.5) for the simple MIR set with

the variables (y′, s′). Note that again yj ≥ 0 for j ∈ I is necessary for this step. The

result is
∑

j∈I2

fjyj + x ≥ f

dbe −
∑

j∈I1

dgjeyj −
∑

j∈I2

bgjcyj

which can be rewritten (assuming without loss of generality that fj > 0 for j ∈ I1) as

∑

j∈I2

(fbgjc+ fj)yj +
∑

j∈I1

f(bgjc+ 1)yj + x ≥ fdbe

or
∑

j∈I2

(fbgjc+ fj)yj +
∑

j∈I1

(fbgjc+ f)yj + x ≥ fdbe.

After recombining I1 and I2 this becomes

∑

j∈I

(fbgjc+ min{fj , f})yj + x ≥ fdbe

which is the desired inequality.

In the same way cMIR inequalities are defined for mixed integer knapsack sets, reversed

cMIR inequalities can be defined for reversed mixed integer knapsack sets. By adding a

slack variable it is possible to generate the cMIR cuts using reversed cMIR cuts and the

other way around.

45

4. Separation Algorithms

Proposition 4.6. Let (T, C) be a partition of I and δ ∈ R>0. The reversed cMIR

inequality associated to (T, C) and δ,

∑

j∈T

Gf,δ(gj)yj +
∑

j∈C

Gf,δ(−gj)(uj − yj) + x ≥ f

⌈
β

δ

⌉

(4.11)

where

β = b−
∑

j∈C

gjuj ,

f = β − δ
⌊

β
δ

⌋

, fg = g − δ
⌊

g
δ

⌋
and

Gα,δ(g) = α
⌊g

δ

⌋

+ min{fg, α}

is valid for XRMIK .

Proof. Complement the variables in C and divide by δ > 0 to get the greater than or

equal mixed integer knapsack

∑

j∈T

gj

δ
yj +

∑

j∈C

−gj

δ
(1− yj) + s ≥

b

δ
−
∑

j∈C

gj

δ
uj

and apply the reversed c-MIR inequality. Multiplying the result by δ yields the desired

inequality.

We now briefly discuss the concept of cMIR rank. The rank of a cMIR inequality is

defined in [69], p. 34. For the context of this thesis it is sufficient to know that a cMIR

inequality has a rank of one if the smallest set needed to generate it contains only original

constraints of a problem, possibly reversed as described above. A cut has rank 2 if the

smallest set needed to generate it contains original constraints and additionally at least

one rank one cMIR inequality. This continues in the same way recursively for higher

ranks. Note that for mixed 0-1 problems the cMIR rank is well defined in the sense that

each valid inequality for a mixed 0-1 problem has a finite cMIR rank. This is not the

case for general mixed integer problems. As demonstrated by Dash and Günlük in [37],

rank one cMIR inequalities can improve the formulation of many problem instances very

much. For other problem instances higher-rank cMIR inequalities are very important,

these are for example lot-sizing instances. See section 5.6 for details.

Finally, we would like to mention two families of valid inequalities with a strong connection

to the MIR inequalities. The first is the family of two-step MIR inequalities introduced

46

4.2. The Aggregated cMIR Cut Separation Algorithm

in [36] by Dash and Günlük. They can be obtained by applying the simple mixed integer

rounding inequality twice. This principle was extended to n-step MIR inequalities by

Kianfar and Fathi in [57]. The separation and the computational effectiveness of two-

step MIR inequalities was investigated in [35]. The result of their paper is that two-

step MIR inequalities are among the more important cuts that are not MIR cuts but

their importance for practically solving mixed integer programming problems is still not

clear. A second family of valid inequalities related to the MIR inequalities is the family

of mingling inequalities introduced by Atamtürk and Günlük in [12]. Their mingling

procedure uses upper bounds of variables to get strong valid inequalities that previously

only could be generated using lifting techniques. They show that the mingling inequalities

dominate cMIR inequalities under certain conditions. A separation algorithm is not

described in their paper and the computational effectiveness remains to be tested.

4.2.2. The Separation Algorithm

The aggregated cMIR cut separation algorithm was introduced in [68] and [70]. It is build

upon the cMIR approach (or cMIR separation routine) that consists of three steps:

1. aggregation,

2. bound substitution, and

3. cut generation.

The cMIR approach has the nice property that it can be used to derive several families of

valid inequalities for different problem classes. For the purpose of this thesis it is especially

interesting to know that, as Marchand showed in [68], the SGFCIs from section 4.1 can

also be derived using the cMIR approach.

To show this we start with a single node flow set (see page 35) and relax it by replacing

some xj , j ∈ (C+, C− ∪ L−) ⊆ (N+, N−) by their variable upper bound constraints

xj = ujyj − tj where the variables tj are slack variables. After relaxing the resulting

inequality by dropping xj for j ∈ N+ \C+ and tj for j ∈ C−∪L− the result is the mixed

integer knapsack set
∑

j∈C+

ujyj −
∑

j∈C−∪L−

ujyj ≤ b + s

where s =
∑

j∈C+ tj +
∑

j∈N−\(C−∪L−) xj . The next step is to complement some variables

j ∈ (C+, C−) = C, where C is a generalized flow cover (see definition 4.2) and to divide

47

4. Separation Algorithms

the row by δ = maxj∈C+∪L− uj . The result is the mixed integer knapsack set

∑

j∈C+

−uj

δ
(1− yj) +

∑

j∈C−

uj

δ
(1− yj) +

∑

j∈L−

−uj

δ
yj ≤

−λ

δ
+

s

δ

because b−
∑

j∈C+ uj +
∑

j∈C− uj = −λ. We can relax this to

∑

j∈C+

−uj

δ
(1− yj)−

∑

j∈L−

yj ≤
−λ

δ
+

s

δ

because −1 ≤
−uj

δ
for j ∈ L− and

uj

δ
(1− yj) ≥ 0 for j ∈ C−.

Using the MIR inequality we get

∑

j∈C+

(⌊
−uj

δ

⌋

+
(fj − f)+

1− f

)

(1− yj)−
∑

j∈L−

yj ≤ −1 +
s

λ

where f = −λ
δ

+ 1 and fj =
−uj

δ
+ 1. Now observe that (

−uj

δ
+ λ

δ
)+ =

(−uj+λ)+

δ
. After

rewriting we get

∑

j∈C+

(

−1 +
(−uj + λ)+

λ

)

(1− yj)−
∑

j∈L−

yj ≤ −1 +
s

λ
.

We multiply by λ and substitute for s.

∑

j∈C+

(
−λ + (−uj + λ)+

)
(1− yj)−

∑

j∈L−

λyj ≤ −λ +
∑

j∈C+

tj +
∑

j∈N−\(C−∪L−)

xj

Substituting tj and λ yields

∑

j∈C+

xj +
∑

j∈C+

(
uj − λ + (−uj + λ)+

)
(1− yj)−

∑

j∈L−

λyj ≤ b
∑

j∈C−

uj +
∑

j∈N−\(C−∪L−)

xj

and realizing that uj−λ+(−uj+λ)+ = (uj−λ)+ results in the definition of the SGFCIs.

In [66] Louveaux and Wolsey state that LSGFCIs (see section 4.1) in general can not

be generated using cMIR inequalities. Nevertheless there are cases where applying the

cMIR inequalities yields the same results as applying the LSGFCIs. We show this in

example 4.4. The results of a computational comparison of flow cover and cMIR cut

separation algorithms are discussed in section 6.4.4.

48

4.2. The Aggregated cMIR Cut Separation Algorithm

Example 4.4. We reuse the single node flow set from example 4.1 and generate a cMIR

cut for it. The first step is to substitute ujyj − tj for xj where tj is the slack variable

for the variable upper bound constraint of j. We drop those slack variables that have a

positive coefficient. The result is the following mixed integer knapsack set

24y1 + 20y2 + 15y3 − 18y4 − 16y5 ≤ 17 + t1 + t2 + t3
︸ ︷︷ ︸

s

.

Now we choose C = {1, 2, 5} (as in example 4.1) and δ = maxj∈C+∪L− uj = 24 and

generate the cMIR cut

−11(1− y1)− 11(1− y2) + 2y3 − 11y4 + 3(1− y5) ≤ −11 + s.

After substituting s and tj = uj − xj we get the cut

x1 − 13y1 + x2 − 9y2 + x3 − 13y3 − 11y4 − 3y5 ≤ 8.

By not substituting the variable bound of x3 and relaxing 3(1− y5) we can get the SGFCI

from example 4.1. In this special case the cMIR inequality is the same as the LSGFCI

from example 4.3.

The cMIR separation algorithm follows the steps of the cMIR approach and tries to

solve the underlying separation problem using appropriate heuristics. The first step, the

aggregation heuristic, constructs a base row for the following steps out of input rows of

the constraint matrix. First a single row of the constraint matrix is used as a base row.

If no violated valid inequality for this row is found the aggregation heuristic searches for

a row to add to the current base row to get an aggregated row that is used as the new

base row. This is repeated a given number of times. The actual task of the separation

heuristic is to find a new row to add to the current base row. This is done in two steps,

the identification of a continuous variable to eliminate and the selection of a row that can

be used to eliminate the identified variable.

For a base row p that is the aggregation of a set P ⊆ M , where M is the set of all rows

of the constraint matrix, p is in the form

∑

j∈Np

apjxj +
∑

j∈Ip

gpjyj = bp x ∈ R
|Np|, y ∈ Z

|Ip|.

49

4. Separation Algorithms

The set of possible variables to choose from for elimination is given by Marchand and

Wolsey in [70] as

N∗
p = {j ∈ Np : apj 6= 0, ljyj < x∗

j < ujyj and ∃q ∈M \ P with aqj 6= 0}

Their aggregation heuristic suggests to choose the variable k ∈ N∗
p with the largest

distance to its bounds ∆k, that means this index k is defined as

k = arg max
j∈N∗

p

{∆j} ∆j = min{x∗
j − ljy

∗
j , ujy

∗
j − x∗

j}.

Note that here and in the following we assume that for all variables j ∈ N a variable

lower and upper bound exists, that means ljyj ≤ xj ≤ ujyj . If this is not the case we

assume that the binary variable for the variable lower or upper bound is fixed to one. If

a variable is not bounded uj or lj is assumed to be a very large but finite number.

Once the variable for elimination is selected we need to choose a row q ∈ M \ P to add

to the current base row. Marchand and Wolsey do not specify what rule to use for this

decision. After that the new row q is rescaled to eliminate k and added to the base

row. Note that Marchand and Wolsey suggest to limit the total number of rows that are

aggregated to 6.

Within the aggregation heuristic, for each base row the bound substitution heuristic is

called to transform it into a mixed integer knapsack. The bound substitution heuristic has

to decide for each variable j ∈ N whether to replace it with its lower bound, xj = ljyj +tj ,

or its upper bound xj = ujyj − tj where the non-negative variables tj are slack variables

of the bound constraints. The result is a row of the form

∑

j∈I

g′jyj +
∑

j∈N

a′jtj = b′

that after relaxing the variables j ∈ N where a′j > 0 becomes the mixed integer knap-

sack
∑

j∈I

g′jyj − s ≤ b′

with

s =
∑

j∈N :a′

j<0

a′jtj .

Note that because all variables j ∈ N are replaced by non-negative slack variables it is

not necessary to assume that the continuous variables in the base row have a lower bound

50

4.2. The Aggregated cMIR Cut Separation Algorithm

of greater than or equal to zero. But the bound substitution fails for variables that are

unbounded to both sides, that means if lj = −∞ and uj = ∞. These variables are also

called free variables. The decision that has to be made for the bound substitution is

whether to replace the lower or the upper variable bound. Marchand and Wolsey suggest

three criteria:

1. choose the bound that is closer, i.e., use xj = ljyj + tj only if x∗
j − ljy

∗
j ≤ ujy

∗
j −xj ,

else use xj = ujyj − tj

2. Minimize the value of s∗ =
∑

j∈P :a′

j<0 a′jt
∗
j

3. Maximize the value of s∗ =
∑

j∈P :a′

j<0 a′jt
∗
j

The cut generation heuristic (or separation heuristic) finally has to decide on the set C

of variables to complement and the rescaling factor δ > 0. The algorithm by Marchand

and Wolsey initially sets C = {j ∈ N : y∗j ≥
uj

2 } and generates cuts for several values

of δ = {aj : j ∈ N and 0 < y∗j < uj}. It chooses the δ that leads to the most violated

cut and then tries to improve this cut by generating cuts with δ
2 , δ

4 , and δ
8 . For the

then most violated cut the set C is iteratively increased by variables not yet in C and it

is checked whether the resulting cut is more violated. The variables are added to C in

non-decreasing order of |y∗j −
uj

2 |, if the resulting cut is more violated than the best one

so far, it stays in C, if not, it is removed and the next variable is tried.

Unfortunately, the description of the separation algorithm by Marchand and Wolsey

leaves some open questions. The most important is that in the aggregation heuristic it

is not mentioned which row is selected to add to the current base row. In a publication

by Gonçalves and Ladanyi [48] this question is investigated. Their paper is about one of

the implementations of the cMIR cut separation algorithm used by the COIN CBC open

source MIP solver [1]. They compare whether using the first or a random row in the

aggregation heuristic makes a difference. Their result is that it does not. That indicates

that taking the first row is as good as taking a random one. Another important aspect

they point out is that for a good performance of the separation algorithm it is important

to also use the reversed rows as input for the algorithm. The reversed rows are computed

from the input rows by adding slack variables and then multiplying them by −1.

Another description of an implementation of the cMIR separation algorithm is given by

Wolter in [99]. This publication also discusses the selection of the row to aggregate and

suggests two new rules based on density and the value of dual variables. It also investigates

small changes to bound substitution and cut generation. Additionally accuracy safeguards

similar to those mentioned in section 5.2 are described. Louveaux and Wolsey show in

51

4. Separation Algorithms

[66] that by using their MIR approach, which is a variant of the cMIR approach that also

uses sequence independent lifting, it is possible to generate a family of valid inequalities

that dominates the LSGFCIs. An implementation of this approach without lifting can

also be found in [99].

A different approach for separating MIR inequalities is to optimize over the MIR closure.

The MIR closure can be described as the best possible formulation that can be obtained by

adding rank one MIR inequalities. This approach for separating MIR inequalities involves

finding a linear combination of all rows of the constraint matrix instead of working with

a small set of rows, as the algorithm described above do. This linear combination is

found by linearizing a non-linear optimization problem with integer variables and solving

it with an MIP solver. This approach is described in [37]. There are also approaches

to optimize over the split closure [27], [18] that is known to be equivalent to the MIR

closure. All of these approaches are currently too time-consuming to be used in MIP

solvers. Nevertheless, for some very hard instances, they can be used to find cuts that

lead to solving instances that otherwise are not solvable (see [18]).

4.3. The Flow Path Cut Separation Algorithm

4.3.1. Flow Path Inequalities

The flow path inequalities are based on an idea from the paper [91] by van Roy and

Wolsey which is about valid inequalities for uncapacitated fixed charge networks. They

were first explicitly defined in [93]. Although nearly all MIP solvers have an implemen-

tation of the separation algorithm for flow path cuts, very little is published about them

besides these two initial publications. One, for example, is [30] where a flow path cut

generator is mentioned among other cut generators of a cutting plane framework. Flow

path inequalities are valid inequalities for fixed charge paths.

52

4.3. The Flow Path Cut Separation Algorithm

Definition 4.5. A fixed charge path is described by the constraints

−x1 +
∑

j∈N+
1

xj −
∑

j∈N−

1

xj ≤ b1

+xk−1 − xk +
∑

j∈N+
k

xj −
∑

j∈N−

k

xj ≤ bk for k = 2, . . . , K − 1

+xK−1 +
∑

j∈N+
K

xj −
∑

j∈N−

K

xj ≤ bK

xk ≥ 0 for k = 1, . . . , K − 1

ljyj ≤ xj ≤ ujyj

yj ∈ {0, 1} j ∈
K⋃

k=1

(N+
k ∪N−

k).

There are two families of flow path inequalities described in [93], simple and extended

network inequalities. Note that in compliance with [91] we changed bt to b+
t where

b+
t = max{0, bt}.

Proposition 4.7. The simple network inequality

K∑

k=1

∑

j∈C+
k

xj ≤
K∑

k=1

∑

j∈C+
k

(
K∑

t=k

b+
t

)

yj +
K∑

k=1

∑

j∈N−

k

xj (4.12)

where C+
k ⊆ N+

k for k = 1 . . .K is valid for fixed charge paths as defined in definition 4.5.

Proposition 4.8. The extended network inequality

K∑

k=1

∑

j∈C+
k

xj ≤
K∑

k=1

∑

j∈C+
k

K∑

t=k

b+
t +

∑

i∈Q−

t

ut

 yj +
K∑

k=1

∑

j∈N−

k
\Q−

k

xj (4.13)

where C+
k ⊆ N+

k and Q−
k ⊆ N−

k for k = 1 . . .K is valid for fixed charge paths as defined

in definition 4.5.

Typically, violated flow path inequalities are only found for certain problem classes. These

problem classes are foremost fixed charge network design and lot-sizing problems. For lot-

sizing problems this can be explained by the fact that the well-known (l, S) inequalities

described in [19], which are known to be facet defining for the uncapacitated lot-sizing

problem, can be generated using flow path inequalities.

53

4. Separation Algorithms

b2

2

N−2

N+
2

b3

3

N−3

N+
3

b1

1

N−1

N+
1

bK

K

N−K

N+
K

x1 x2 xK−1

R−
1

R+
2 R+

3

R−
2

R−
3 R+

K

Figure 4.2.: A (generalized) fixed charge path (from [93]).

4.3.2. The Separation Algorithm

The separation algorithm for flow path cuts from [93] uses the fact that the flow path

inequalities are also valid for a slightly more general structure than the fixed charge path

shown in the previous section. It is called the generalized fixed charge path, figure 4.2

visualizes it. Note that a generalized fixed charge path can be seen as a collection of

binary single node flow sets.

Definition 4.6. A generalized fixed charge path is described by the constraints

∑

j∈R+
k

akjxj −
∑

j∈R−

k

akjxj +
∑

j∈N+
k

akjxj −
∑

j∈N−

k

akjxj ≤ bk k = 1 . . .K

ljyj ≤ xj ≤ ujyj

yj ∈ {0, 1} j ∈
K⋃

k=1

(R+
k ∪R−

k ∪N+
k ∪N−

k).

where for any k the sets R+
k , R−

k , N+
k , and N−

k are disjunct, akj > 0 for all j ∈ R+
k ∪

R−
k ∪N+

k ∪N−
k . Furthermore j ∈ R+

k implies j ∈ R−
i for some i < k and j /∈ R+

i for all

i > k as well as j ∈ R−
k implies j ∈ R+

i for some i > k and j /∈ R− for all i < k.

54

4.3. The Flow Path Cut Separation Algorithm

The flow path cut separation algorithm has two phases:

1. identify a generalized fixed charge path and

2. find the most violated flow path inequality.

The path is identified using a path-augmenting greedy heuristic. It is called with each

mixed 0–1 row of the constraint matrix as an input row. It starts by choosing this input

row as the first row of the path and then adds more rows to it, until a cut is found or a

certain maximal path length is reached. When choosing which row to add, the procedure

is similar to the aggregation heuristic of the cMIR cut separation algorithm. First, it

identifies an outgoing arc, i.e. a variable j where akj < 0, with largest outflow x∗
j in the

current LP solution. Second, it identifies a new row k + 1 to add to the path where j is

an inflow arc, i.e. ak+1j > 0. After finding a rescaling factor γ such that akj +γak+1j = 0

it adds the rescaled row to the path.

Once a new row is added the algorithm checks whether a simple network inequality with

C+
k = {j ∈ N+

k : x∗
j > (

∑K
i=k b+

i)y∗j } is violated. Note that to do so the rows of the path

might have to be reformulated into single node flow sets as shown in the previous section.

If the simple network inequality is violated, it is tried to generate an extended network

inequality by adding variables j ∈ N−
k to Q−

k if they increase the violation. For a variable

j ∈ N−
k this is the case it x∗

j > (
∑k

s=1

∑

i∈C+
s

y∗j)uj . If the simple network inequality

from the current path is not violated, the algorithm continues by searching for the next

row to add to the path.

Unfortunately, very little is published about the implementation of flow path cut gen-

erators. The reason for this might be that the impact of a flow path cut generator is

in general very low. Flow path cuts are only found for a fraction of the mixed integer

programming problems in the typical test sets (see the results in section 6.5). Neverthe-

less flow path cuts are very important to solve certain problem classes. A reason for this

situation is that the structure utilized by the flow path cuts is very specific. On the con-

trary the effort needed to implement flow path cut generators is fairly high. We address

these problems in section 5.6 by proposing a new family of valid inequalities that includes

the flow path inequalities and by describing an easily implementable cut generator for

them.

55

4. Separation Algorithms

56

5. Implementations, Algorithmic Improvements, and

New Algorithms

5.1. Objectives

5.1.1. Objectives of the Implementation

This section describes the implementation of the three aforementioned separation algo-

rithms and two new ones. The priority objective of this implementation is to get good

cut generators that have a strong positive impact on an MIP solvers performance. Char-

acteristics of good cut generators are discussed in the next section.

Another objective of this implementation is to implement the cut generators in a way that

supports a fair comparison between them. Therefore all cut generators are implemented

in a framework that supports this objective in two ways. The first is that it provides all

cut generator with the same input rows. The second is that it allows the cut generators

to share procedures needed in more than one cut generator. A further advantage of this

framework is that from a software design point of view it simplifies adding new cut gener-

ators and the maintenance of the existing ones. In some aspects our framework is similar

to the one described in [30]. Its implementation aspects are discussed in section 5.2.

The implementation described here is done for the MOPS MIP solver and thus is specific

to its computational environment. For example, we do not focus very much on limiting

the number of violated cuts generated by our cut generators because the MOPS MIP

solver in its current version uses a cut pool to select the presumably best cuts generated

by several cut generators.

The MOPS MIP solver is a commercial product and hence has to guarantee a certain level

of accuracy. On the other hand, practical problem instances contain many input values

that are not exact but depend on forecasting or estimation. Thus concerning accuracy,

the implementation described here is meant to be as accurate as the other parts of the

MOPS MIP solver but in most situations does not make sacrifices for accuracy.

57

5. Implementations, Algorithmic Improvements, and New Algorithms

5.1.2. Characteristics of Good Cut Generators

As pointed out in section 2.4, the separation problem is to find a cutting plane in a

family of valid inequalities F that cuts off a non-integral solution (x∗, y∗) or to proof that

none exists. The objective of a theoretical separation algorithm is to solve the separation

problem exactly or heuristically using as few operations as possible.

For implementations of separation algorithms, i.e. cut generators, used in an MIP solver,

the objective is to support the MIP problem solving approach (see section 3.1) as much

as possible. We summarize the qualities that lead to this in four key characteristics for

good cut generators:

• quality,

• diversity,

• efficiency, and

• accuracy.

We now explain what we mean by these four words, argue why they represent key char-

acteristics of good cut generators, and discuss how they can be evaluated.

By saying that a cut generator should be of high quality we mean that it generates cuts

of high quality. We speak of high quality cuts if adding these cuts improves the formu-

lation of a mixed integer programming problem significantly. A result of a significantly

improved formulation can be that a branch-and-bound algorithm can solve the problem

to optimality in less time. Another result might be that feasible solutions to the problem

are found faster or that better feasible solutions are found. Measuring the quality of cuts

constitutes a big problem. Therefore indirect measures have to be used. One possibility

is to judge the quality of a cut generator, and thus also the quality of the cuts it gener-

ates, is to look at theoretical properties of the family F that the underlying separation

algorithm searches. For some families it is known that they contain inequalities that are

facet-defining for the convex hull of certain mixed integer sets. Generating facets of the

convex hull of a problem or a structure within a problem should in general improve the

formulation and lead to a speed up of the solution time. The problem with this approach

is that theoretical properties of a family of valid inequalities might be misleading because,

although certain valid inequalities might be facet-defining, they might not be necessary

to solve practical problems.

Another aspect of the quality of the cuts generated by a cut generator is the extent to

which the underlying separation algorithm searches the family of valid inequalities F .

58

5.1. Objectives

There are separation algorithms that are exact, this means they solve the separation

problem to optimality. In other words, if there is a cut in family F that cuts off (x∗, y∗)

the algorithm guarantees to find it. Most separation algorithms however are heuristic.

They only search a part of the inequalities in a family and hence can not guarantee to

find a cut if one exists. How large this part is, or in other words how extensive the search

is, can have a major influence on the quality of a cut generator. Other methods for

evaluating the quality of cut generators are to compare dual bounds after adding several

rounds of cuts or to measure solution time for a set of test problem instances. These

methods are discussed in depth in section 6.1.

One aspect of diversity is the ability of a cut generator to find cuts that are different

from those cuts other cut generators find. Diversity is a goal that is important if several

cut generators in an MIP solver are able to generate the same cuts. This can happen

either if two cut generators search the same family of valid inequalities F or if the family

used by one cut generator is a subset of the family used by another cut generator. It

is clearly an advantage to have cut generators in an MIP solver that search different

families of valid inequalities for cuts. Sometimes it might be a good solution to have

one cut generator that searches a family of valid inequalities very broadly and one cut

generator that searches a small part of this family very thoroughly.

Another aspect of diversity is that a good separation algorithm should find many cuts

cutting off (x∗, y∗) instead of just a single one. The reason for this is that the chance to

cut off an LP solution that otherwise would come up in the next round rises and hence

less rounds might be needed to get to the same result. As resolving the LP relaxation

sometimes is time-consuming, needing less rounds is advantageous from an efficiency

point of view (see below). Then again an implementation should not generate too many

cuts that are very similar so that the size of the model does not explode without a

large improvement of the formulation. Cut selection and management as described in

section 3.3 and in [96] can compensate for this. Ceria mentions in [28] that adding

several cuts each round was one of the reasons behind the computational success of

Gomory mixed integer and lift-and-project cuts.

A third aspect of diversity is that a cut generator should find cuts for many different

problem classes. Typically MIP solvers are designed to be tools for MIP problems in

general. Therefore it is not advisable to implement separation algorithms that generate

cuts just for a very specific problem class. Whether or not an implementation of a

separation algorithm finds cuts for many different problem classes can depend on the

family F , the way the family is searched and even on implementation details.

59

5. Implementations, Algorithmic Improvements, and New Algorithms

As the time spent in cut generators contributes directly to the total runtime of the MIP

solver, they obviously should not run for a very long time. On the other hand, spending

some time to find a cut that speeds up the solution process afterwards is worthwhile.

So by efficiency it is meant that time is only spent if it pays off. For many problem

instances separation algorithms based on mixed integer row relaxations run very fast

because they usually only work with the sparsely filled rows of the constraint matrix. By

controlling the rows of the matrix used, the runtime spent can typically be controlled very

good. As the problems MIP solvers have to solve get larger and larger, efficiency gets

a more important aspect. Note that there is also the aspect of memory efficiency; but

with the increasing availability of 64-bit machines this gets less important. Measuring

the efficiency is typically best done by comparing the overall runtime of the MIP solver

or the runtime of certain parts of the solver. Whenever these times are compared the

trade-off between efficiency and quality has to be considered.

The accuracy of cut generators is closely connected to the accuracy of MIP solvers.

Surprisingly few publication deal with either of these topics (see [71], [9] and [81]). A cut

generator that is not accurate enough might generate a cut that cuts off a feasible solution

of the MIP problem. Reasons for this are bugs in the implementation or the use of floating

point arithmetic. Bugs can typically be fixed as soon as they are encountered but floating

point arithmetic stands in the way of totally accurate cut generators. Modern MIP solvers

use floating point arithmetic because it is much faster than using exact arithmetic. This is

for example confirmed by Applegate et al. in [9], and Fukasawa and Goycoolea state in [46]

that they observed exact arithmetic to be 100 times slower than floating point arithmetic.

As pointed out in computer science literature (for example in [47]), implementing a robust

algorithm using floating arithmetic holds some challenges. One way of dealing with the

problems floating point arithmetic produces is to use tolerances. MIP solvers typically

have a large number of tolerances for all aspects of their computations. These tolerances

are set to certain default values. These default values typically work well unless one

tries to solve numerically difficult problem instances. Usually the user can change the

tolerances to improve the overall accuracy of the solver. Normally it is not necessary

to have totally accurate cut generators, they just need to be accurate enough to not

jeopardize the overall accuracy of the solver and their accuracy should be adjustable by

the user. In Section 5.2 we show techniques to improve the accuracy of cut generators

and in section 6.1 we propose a simple method for testing whether cut generators are

good enough.

Obviously there is a trade-off between the several characteristics of cut generators. It is

important to understand that a good cut generator does not solely depend on the under-

60

5.2. Framework

lying separation algorithm or the family of valid inequalities searched by the separation

algorithm. Different implementations of the same algorithm can produce very different

results depending on implementation details such as the exact way heuristic decisions are

made or the data structures used.

5.2. Framework

5.2.1. Overview

In this section we describe the framework build around the cut generators implemented

for this thesis. Algorithm 1 shows the main procedure of the framework. This procedure

is intended to be called by an MIP solver in each round of the cut generation. In the

main loop (lines 3 – 27) it runs through a set of usable rows that has been identified in

line 2. The procedure in line 2 also identifies variable bounds and other row types. See

subsection 5.2.4 for details. In the aggregation loop (lines 6 – 26) the framework stores

the rows of a path in the set path and the sum over the rows in the aggregated row

aggRow. The parameter xmxagg limits the maximal length of paths considered and is

set to 6 by default. More about aggregation and paths can be found in section 5.2.5. In

lines 4 and 21 a slack variable is added to the current base row so that in the reversing

loop (lines 7 – 18) first the original and then the reversed row can be passed on to the

separation algorithms. It is a design principle of our implementation that for each original

input row (each row in the set of usable rows) at most two cuts are generated by each

cut generator, one from the original and one from the reversed row. The reason for this

is that we want to avoid cluttering up the cut pool with too many similar cuts.

The separation algorithms implemented in this framework can choose to use the set of

rows path or the aggregated row aggRow as an input. Note that in this framework

each algorithm can have preconditions under which it is called. The sections about the

individual separation algorithms discuss appropriate preconditions. Also note that if a

separation algorithm reports that it has found a cut for the current starting row it is not

called again in later iterations of the aggregation loop. If all active separation algorithms

have found a cut the framework moves on to the reversed row or to the next row in the

set of usable rows.

61

5. Implementations, Algorithmic Improvements, and New Algorithms

Algorithm 1 A framework for the separation algorithms

1: procedure Mixed Integer Row Cuts
2: Find VBs and Row Types(vub, vlb, usableRows) . See section 5.2.4
3: for row ∈ usableRows do

4: aggRow ← row + slack
5: path← path ∪ row
6: for k = 1 . . . xmxagg do

7: for s ∈ {1,−1} do

8: aggRow ← aggRow · s
9: if conditionForAlgorithm1 = TRUE then

10: Separation Algorithm 1(aggRow|path, . . .)
11: end if

12: if conditionForAlgorithm2 = TRUE then

13: Separation Algorithm 2(aggRow|path, . . .)
14: end if

...
15: if conditionForAlgorithmt = TRUE then

16: Separation Algorithm t(aggRow|path, . . .)
17: end if

18: end for

19: nextRow ←Find Next Row(aggRow) . See section 5.2.5
20: if nextRow 6= ∅ then

21: aggRow ← aggRow + nextRow + slack
22: path← path ∪ nextRow
23: else

24: exit loop
25: end if

26: end for

27: end for

28: end procedure

62

5.2. Framework

5.2.2. Data Structures

In this subsection we briefly discuss the data structures used in the implementation of

the framework and the separation algorithms. First we look at the input data structure

of our framework, the constraint matrix. It is important to mention that the MOPS MIP

solver provides two representations of the matrix, an indexed row-wise representation and

an indexed column-wise representation. Indexed means that only non-zero elements are

stored. This enables us to run over the elements of a row or a column in nz steps, where

nz is the number of non-zero elements in a row or column instead of needing n or m steps,

which is the size of the full matrix. Before the start of each round of the cut generation

MOPS updates the two representations automatically. Some operations in the framework

and the cut generators can be sped up by using the appropriate representation.

The data structures used in the cut generators mainly store vectors that represent rows

or cuts. For an input constraint matrix A with n columns and m rows these vectors are

typically of size n+m. The first n elements represent the structural variables of the MIP

problem and the last m can hold information about slack variables.

We take a look at three ways of storing these vectors:

1. dense,

2. packed,

3. and indexed.

Dense means that we use a single array of size n + m in which we store all elements

directly. This is simple and only needs one array of size n + m but working with the

elements of the vector requires to run through all n + m elements. If only a few of the

elements are non-zero, as it is usually the case in the rows and columns of mixed integer

programming problems, it is more efficient to only store the non-zero elements.

One way to do this is in a packed data structure. In a packed data structure we use one

array of size n + m as a stack to store the indices of the non-zero elements. In a second

array of size n + m we then store the corresponding value of the element in the same

position as in the first array. This has the advantage that we can read and write the

array with a loop that runs from 1 to nz, the number of non-zero elements, instead of

1 to n + m. A disadvantage of this data structure is that we need two arrays and that

operations like adding two vectors together are complicated to perform.

The third option to store a vector is to store it indexed. This data structure needs three

arrays of size n + m. The first is used as a stack to store the indices of the non-zero

63

5. Implementations, Algorithmic Improvements, and New Algorithms

j

j

Figure 5.1.: Data structures to store vectors.

elements of the vector. The second array marks at the index position of an element

whether it is non-zero or not. The third array finally stores the value of the element

also at the position of its index. The indexed data structure combines advantages of the

dense and the packed data structure at the cost of needing an additional array. Figure 5.1

illustrates the three different data structures.

In our implementations we use packed data structures for storing vectors such as generated

cuts or reformulated rows. We use indexed data structures as intermediate data structures

because some operations can be done significantly faster with them. This includes for

example adding elements to a vector from a non-sorted input or adding two vectors

together. In these operations the situation can occur that we want to add two non-

zero elements together. In a packed data structure we would need to run through the

stack to find the corresponding coefficients. In an indexed data structure we can use the

indicator array to check whether an element is non-zero and then add the two values of

the elements together. Using the indicator array instead of directly accessing the array

with the value of the element avoids numerical problems and prevents situations where

an element appears twice in the stack array.

Besides the need for an additional array, there is another important drawback of indexed

data structures. In order to have them work correctly the indicator arrays have to be

zeroed out in their full length, in our case n + m, after each use. For large problem

instances this zeroing out might take a significant amount of time, especially if performed

very often. Therefore we only zero them out in the full length at the beginning of the

main procedure of the framework and afterwards use the stack to set the changed values

back to zero after use.

64

5.2. Framework

5.2.3. Accuracy

As pointed out in section 5.1, accuracy is one of the key characteristics of a good cut

generator. As the overall accuracy of the solver depends on the accuracy of its components

it has to be made sure that the cut generators are at least as accurate as the other

components of the solver. Our cut generators are not totally accurate because they use

floating point arithmetic.

In cut generators several aspects of floating point arithmetic can interfere with the accu-

racy. One is that testing two floating point numbers for equality has to be done using a

tolerance. This also includes the problem of checking whether a number is integer or not.

Another problem is that subtracting two numbers of the same value can yield a result

that is not exactly zero. Finally rounding or cut-off errors can occur if dealing with very

small and very large numbers in the same operation.

In our implementation two measures are taken to improve the accuracy of the cut gener-

ators. The first measure is that all cut generators are implemented in a way that the cuts

generated stay in the scale of the input row. This results in cuts where those coefficients

that are not modified by the cut generation stay the same. Example 5.1 illustrates this

using the simple MIR inequality introduced in section 2.5.

Example 5.1. Assume we want to generate a valid inequality for the row

x + 10y ≥ 5 (5.1)

using the simple MIR inequality (see section 2.5). As the right hand side is not fractional

we divide the row by 10. The result is the row 0.1x + y ≥ 0.5 with the simple MIR cut

0.1x + 0.5y ≥ 0.5. (5.2)

This cut is not in the scale of the input row, because the coefficient of x has changed

although it is not part of the actual cut generation. If we multiply the resulting cut by 10

we get

x + 5y ≥ 5 (5.3)

which is a much nicer and potentially more accurate cut than (5.2). In the definition of

the cMIR inequalities in section 4.2 we already included this rescaling.

The second measure to improve the accuracy is that all cuts generated by all separation

algorithms are cleaned using the same methods. The first of these methods is to remove

65

5. Implementations, Algorithmic Improvements, and New Algorithms

quasi-zero coefficients in the cuts. A coefficient is quasi-zero if it is smaller than the

MOPS tolerance for elements in the matrix xdropm which by default is 1 × 10−6. If a

quasi-zero coefficient is detected, the cleaning method tries to eliminate it by substituting

its lower or upper bound, i.e., relaxing the cut. If this is not possible, the cut is rejected

and not added to the cut pool. Besides this, the cut cleaning also removes cuts which

contain coefficients larger than 1
xtolin

. These two methods together can be seen as an

approach to control the dynamism (as defined in [71]) of the resulting cuts. Dynamism

is defined as the ratio between the smallest and the largest coefficient in a row.

5.2.4. Variable Bounds and Row Types

In our implementation the framework identifies variable bounds and decides on a set of

usable input rows to be used by the cut generators. Variable bounds are mixed integer

constraints of the form

xj ≤ ujyj ,

which we call a variable upper bound, or

xj ≥ ljyj ,

which we call a variable lower bound. In both cases we assume that x ∈ R and y ∈ Z. If

y ∈ {0, 1} in a variable lower or upper bound constraint we call it a binary variable lower

(or upper) bound. Variable bounds are stored in a special data structure and derived

directly from rows of the constraint matrix that fit their definition. Additionally, variable

upper bounds are derived from rows of the form

∑

j∈N

xj ≤ uy.

Furthermore, the framework also identifies binary variable bounds on general integer

variables like

zj ≤ ujyj

where z ∈ Z and y ∈ {0, 1}. It only does so if zj does not appear in a variable bound

on any other variable. The detection of variable bounds is also used to strengthen the

bounds of continuous or general integer variables. If several variable upper (or lower)

bounds are identified the framework stores the one that is tightest in the current LP

solution.

66

5.2. Framework

Rows of the constraint matrix that are variable bounds are excluded from the set of usable

rows. Other reasons to exclude rows from the set of usable rows are:

1. rows that were deactivated in LP preprocessing,

2. ranged rows,

3. and rows with more than xmxmic variables.

By setting an upper bound on the number of variables in a row we avoid an increased

runtime of the cut generators for instances with very long rows. The default value for

xmicuc is 500, and for many instances no rows are excluded with this value. For some

other instances dropping long rows is crucial for fast cut generation. The reason for this

is that for the cut generators described in this thesis, the runtime directly correlates with

the number of variables in the input rows. As cuts with many elements are typically not

wanted, skipping these rows most of the time does not influence the performance of the

solver.

5.2.5. Aggregation and Path-finding

It is easy to see that the aggregation used in the cMIR cut separation algorithm and the

path-finding used in the flow path cut separation algorithm are very similar. In fact in

[70] it is stated that the aggregation heuristic is essentially the same as the path-finding

procedure of the flow path cut separation algorithm. Both procedures select one row after

the other by first identifying a variable for elimination and then finding a row which can

be used to eliminate the selected variable. The difference between the two procedures

lies in the way the variable for elimination is selected. The path-finding procedure selects

the variable with the largest outflow, i.e. j ∈ N such that aj < 0 and x∗
j is maximal.

The aggregation heuristic chooses the variable with the largest distance to its bounds. In

many cases these two methods result in the same variable to be chosen, but this is not

always the case.

In our implementation we want to use one aggregation/path-finding method for all algo-

rithms. Note that aggregated rows could also be used as an input for a flow cover cut

generator but that we do not do so in the default version of our flow cover cut generator.

One problem with the design decision to use the same method for cMIR and flow path

cuts is that we loose some diversity. Obviously, if two different methods are used, two

different paths are investigated leading to more diverse cuts. Another problem is that,

although the methods are very similar, they pursue slightly different goals. The path-

finding procedure’s only goal is to identify fixed charge paths in the constraint matrix.

67

5. Implementations, Algorithmic Improvements, and New Algorithms

The cMIR aggregation actually pursues two goals. The first is also to identify paths, this

is for example helpful for lot-sizing instances. We show this in example 5.2. The second

goal of the aggregation heuristic is to make use of more complex bound structures in the

generation of the mixed integer knapsacks. We illustrate this in example 5.3.

Example 5.2. Assume the following constant capacity lot-sizing problem

s1 + x1 − s2 = 2

s2 + x2 − s3 = 4

s3 + x3 − s4 = 5

xj ≤ 10yj for j = 1 . . . 3

x ∈ R
3
+

s ∈ R
4
+

y ∈ {0, 1}3.

For cutting off the fractional point (x, s, y) = (10, 1, 0, 0, 8, 5, 0, 1, 0.1, 0) we can first re-

place all variable bounds and then try the MIR inequality for each row alone using δ = 10.

These inequalities are

s1 + 2y1 ≥ 2 s2 + 4y2 ≥ 4 s3 + 5y2 ≥ 5.

None of these valid inequalities cuts off the point. If we aggregate the first two rows and

again use δ = 10 we get the valid inequality

s1 + 6y1 + 6y2 ≥ 6

which also is not violated. After substituting all variable bounds and aggregating all three

rows we get the base row

s1 + 10y1 + 10y2 + 10y3 ≥ 11

with the MIR inequality (using δ = 10)

s1 + y1 + y2 + y3 ≥ 2

which cuts off the fractional point. Note that in this case the variables selected for elim-

ination s2 and s3 are both the largest outflow variables and the variables furthest from

their bounds.

68

5.2. Framework

Example 5.3. Assume we have the following structure that is part of a bigger production

planning problem

x1 + x2 + x3 ≥ 14

x2 ≤ 3 + 8y1 + 10y2 + x4

x ∈ R
4
+

y ∈ {0, 1}2.

The first constraint of this structure means that the sum of the production of three pro-

duction lanes x1, x2, and x3 has to exceed a demand of 14. The second constraint is a

more complex version of a variable upper bound constraint. Two measures denoted by y1

and y2 can be used to increase the initial capacity of the machine, that is 3, by exactly 8

and/or 10 production units. It is also possible to increase the maximal production of the

machine by a customary amount which is represented by the variable x4. In a practical

model y1 and y2 might stand for machines used in the production lane and x4 might de-

note additional workers assigned to a lane. Note that there are different ways of modeling

this situation but we assume that a user has chosen this one.

If we now want to cut off the fractional point (x, y) = (0, 14, 0, 0, 1, 0.3) we see that from

the first row alone no useful MIR inequality can be generated. By aggregating the two

rows using x2 as the variable to eliminate and the scaling factor −1 we can generate the

reversed mixed integer knapsack

8y1 + 10y2 + x1 + x3 + x4 ≥ 11

for which the MIR inequality with δ = 10 is

x1 + x3 + x4 + y1 + y2 ≥ 2

which cuts off the fractional point.

Despite the different goals of the methods, we want to use the same aggregation/path-

finding method for all cut generators because of two reasons. The first is to support

the fair comparison between the cut generators. The second is that the efficiency of our

implementation can be increased by only generating the path once instead of separately

for each cut generator.

Putting more complex bounds into a path to be used by a flow path cut separation

algorithm will likely not result in the generation of good cuts. But as the cMIR cut

69

5. Implementations, Algorithmic Improvements, and New Algorithms

generator in general is considered the more important cut generator one suggestion is to

use its method for the aggregation/path-finding in the framework. Algorithm 2 shows

how the crucial method to find the next row in the aggregation is implemented in the

framework.

Algorithm 2 The Traditional Aggregation Strategy

1: procedure Find Next Row(aggRow)
2: Sort Variables By Distance(aggRow)
3: for j ∈ N do

4: for row ∈ usableRows do

5: r ←
−ajr

ajt

6: if Row Selectable(row,r) then

7: return row · r
8: end if

9: end for

10: end for

11: return ∅
12: end procedure

Note that, instead of just using the variable with the largest bound and then searching for

a row with this variable, we sort the variables and then try to find a row for aggregation in

the order of decreasing distance. Therefore we can find a row even if there is no selectable

row for the variable with the largest distance.

To decide whether a row is selectable the following conditions are checked. First we do

not want to have the same row twice in the path, this is checked by marking rows that

already are in the path. Because we replace them in the bound substitution we do not

want to aggregate variable bound rows, the same holds for extended bound rows defined

in the next section. Furthermore we want to limit the length of the rows we work with,

as it is already done when deciding on the usable rows. Therefore it is checked whether

the new row added to the existing row has more variables than the parameter xmxmic,

which by default is 500. If this is the case the row is not considered selectable. Finally

we want to make sure that due to the rescaling of the cut we do not end with a row

that contains bad coefficients, so we limit the rescaling factor s to be between xdropm

and 1
xdropm

, where xdropm is the MOPS parameter that specifies the smallest value a

coefficient of the constraint matrix is allowed to have (by default 1× 10−7).

The decision which of the rows to add, if there are several, is done as suggested by [48];

the first one that is selectable is used. The possible rows are identifyed efficiently using

the column-wise representation of the constraint matrix. This method works quite well

70

5.2. Framework

in identifying paths in lot-sizing instances because typically there is only one row in the

original constraint matrix that contains a stock variable (see example 5.2). It is also

very fast. In more complex situations, where cuts have been added and are considered as

rows in the path, it might, depending on the ordering of the rows, happen that a row is

selected that does not belong to the path the algorithm should find.

To overcome the drawback that the cMIR aggregation is not only tailored towards finding

paths, we suggest a new method that together with the extended bound substitution

described in the next section solves this problem to a certain point. We call it the path-

based tightest row aggregation and it is shown in algorithm 3.

Note that this method tries to select a variable with a negative coefficient and without

variable bounds. Thus its priority lies in finding fixed charge paths. If no path structure

is identified it still might aggregate other rows. Because this aggregation is not as good

in finding more complex bound structures using it without the extended bound substi-

tution (described in the next section) is likely to result in a worse performance for some

instances.

Another improvement of the path-based tightest row aggregation is that we do not choose

the first row but the tightest, i.e. the row where, concerning the current LP relaxation

solution, the difference between the left hand side and the right hand is minimal. The

tightness of a row is represented by the slack. The slack is the value of a slack variable

that is added to a row to make it an equality row. Note that it is very likely that we find

a row with a slack of zero and therefore the procedure is speed-up very much by stopping

if one of these is encountered. Also note that again the column-wise representation of the

constraint matrix is used to identify candidate rows quickly. Selecting the tightest row

also helps to find the paths in a lot-sizing problem because we want to select equality

rows. The slacks of the rows for the current LP relaxation solution are stored in MOPS

and hence do not have to be computed. In section 6.5 we perform several computational

experiments to investigate the different aggregation/path-finding methods.

5.2.6. Bound Substitution

Although bound substitution is only used in one of the separation algorithms described

in chapter 4 we discuss it as part of the framework because it is also used in the new

mixing-based cut generators presented in section 5.6. The task of the bound substitution

71

5. Implementations, Algorithmic Improvements, and New Algorithms

Algorithm 3 The Path-based Tightest Row Aggregation Strategy

1: procedure Find Next Row(aggRow)
2: call Sort Variables By Distance(aggRow)
3: minSlack ←∞
4: nextRow ← ∅
5: for j ∈ N and aj < 0 and j has no variable bounds do

6: minDual←∞
7: for row ∈ usableRows do

8: r ←
−ajr

ajaggRow

9: if t∗row < minSlack and Row Selectable(row,r) then

10: nextRow ← row · r
11: minSlack ← t∗row

12: if minSlack = 0 then return nextRow
13: end if

14: end for

15: end for

16: for j ∈ N and aj < 0 do

17: for row ∈ usableRows do

18: r ←
−ajr

ajaggRow

19: if t∗row < minSlack and Row Selectable(row,r) then

20: nextRow ← row · r
21: minSlack ← t∗row

22: if minSlack = 0 then return nextRow
23: end if

24: end for

25: end for

26: for j ∈ N do

27: for row ∈ usableRows do

28: r ←
−ajr

ajaggRow

29: if t∗row < minSlack and Row Selectable(row,r) then

30: nextRow ← row · r
31: minSlack ← t∗row

32: if minSlack = 0 then return nextRow
33: end if

34: end for

35: end for

36: return nextRow
37: end procedure

72

5.2. Framework

heuristic in this implementation is to transfer a general mixed integer row of the form

∑

j∈N

ajxj +
∑

j∈P

gjyj = b x ∈ R
|N |, y ∈ Z

|P |
+

into a reversed mixed integer knapsack of the form

∑

j∈I

ujyj + s ≥ b y ∈ Z
|I|
+ s ∈ R+.

Note that here, in contrast to other publications about the cMIR cut separation algorithm,

we generate reversed mixed integer knapsack sets. The reason for this is that the cMIR

cut separation algorithm in this implementation generates reversed cMIR cuts and the

new mixing-based cut generators also use reversed mixed integer knapsack sets.

The simple bound substitution implemented in this framework uses variable lower (xj ≥

ljyj) and upper (xj ≤ ujyj) bounds. Based on the first rule by Marchand and Wolsey

[70] it decides for each continuous variables whether it should be replaced by its lower

or upper bound. The rule states that a variable is replaced by its closest bound, i.e., it

uses the lower bound only if x∗
j − ljy

∗
j ≤ ujy

∗
j − xj . In our implementation we changed it

slightly to use the lower bound only if x∗
j − ljy

∗
j < ujy

∗
j −xj . The only difference is that if

the distance to the lower and the upper bound is the same we use the upper bound. Note

that in the case of a static bound y∗j = 1 and that in the very common situation that

lj = 0 replacing a variable by its lower bound just means not replacing it at all. If the

bound selected is in fact a variable bound, it substitutes the variable bound constraint

and adds a slack variable. If the bound is a static bound, it also adds a slack variable and

then modifies the right hand side. After this process all continuous variables have been

replaced by slack variables and hence have a lower bound of 0. Thus, even if a continuous

variable has a lower bound of less than 0, in contrast to the flow cover cut generator the

row can still be used to generate a cut.

Besides this simple bound substitution we suggest an algorithmic improvement to this

part of the cMIR cut separation algorithm. This improvement is connected to an obser-

vation in the previous section. There we pointed out in example 5.3 that the aggregation

besides trying to find paths also is used to incorporate information about more complex

bounds than the typically used variable bound constraints. Here we now define a class

of constraints frequently found in practical mixed integer programming models and call

this class extended bound constraints.

73

5. Implementations, Algorithmic Improvements, and New Algorithms

Definition 5.1. Extended bound constraints are of the form

x

≤

=

≥

b +
∑

j∈I

ujyj + ks x, s ∈ R+, y ∈ Z
|I|
+ .

We call an extended bound constraint

• static if b > 0, |I| = 0, and k = 0,

• variable if |I| = 1 and k = 0,

• soft if k > 0,

• raised if b > 0,

• additive if |I| > 1,

• binary if yj ∈ {0, 1} for all j ∈ I.

Extended bound constraints appear in some mixed integer programming problem in-

stances because they can be used to model certain real world situations. An additive

extended bounds can be used, for example, to model upper bounds of production vari-

ables that depend on a set of machines to be chosen. Additive extended bounds were

already studied by Atamtürk et al. in [13]. Soft extended bounds are typically used to

model real world situation were it is possible to exceed a certain bound for some addi-

tional cost. Soft bounds are for example used in a practical MIP model for optimizing a

semiconductor supply chain in [40].

The idea of the extended bound substitution heuristic we suggest is to still use variable

bound constraints but in addition to this, store information about extended bound rows

in the matrix in connection to the continuous variables xj . This makes it possible to

check after the normal bound substitution decision is made whether an extended bound

constraint exists that is tighter than the variable or static bound selected. By doing this

we can overcome the drawback of the path-based tightest row aggregation described in

the last section and have successfully separated the two tasks of the aggregation into two

steps by moving the usage of more complex bound structures into the bound substitution

step. Note that a cMIR cut generator that does not use extended bound constraints still

might generate cuts based on them implicitly. The method suggested here simply tries

to make this process explicit and less depending on hidden decisions.

74

5.3. The Flow Cover Cut Generator

Another algorithmic improvement of the extended bound substitution is that general

integer variables are also considered to be substituted. If a binary variable bound for a

general integer variable exists, we treat it like a continuous variable. Thus it is possible to

generate cuts for problem instances where we have a typical mixed integer programming

model with integer instead of continuous variables.

Besides these large differences there is an implementation detail that we improved in

the extended bound substitution. It concerns the bound substitution decision whether

to replace the lower or upper bound. The rule described above makes some sense in

many cases but is not very helpful in the very common situation that x∗
j = y∗j = 0. We

therefore extended the rule to cover this special situation separately. The rule we suggest

is based on the coefficient in the objective function for the involved variables because

these values give an impression of the importance of the variable in future rounds of the

cut generation. The extension of the rule says that if x∗
j = y∗j = 0, we replace the lower

bound if −ajcvlb < ajcvub. Note that the cvlb = 0 and cvub = 0 if there is no variable

bound. In section 6.4 we evaluate implementation details of the bound substitution step

and compare the simple and the extended bound substitution.

5.3. The Flow Cover Cut Generator

In this section we describe our implementation of the flow cover cut separation algorithm

which we presented in section 4.1. Algorithm 4 gives an overview of the program flow of

the cut generator. In the following we discuss these steps in detail.

Algorithm 4 The Flow Cover Cut Generator

1: procedure Flow Cover Cut Generator(row)
2: if Contains Vars Less Than Zero(row) then return ∅
3: if No Fractional Binary(row) then return ∅
4: Set Reformulation Status(row,refSta)
5: C ← Find Cover(row,refSta)
6: cut← Generate Cut(row,refSta,C)
7: finalCut← Clean Cut(cut)
8: return finalCut
9: end procedure

Note that this cut generator is called within the framework described in section 5.2 and

therefore it is called for each usable row and the corresponding reversed row. Thus it

implicitly also generates flow pack cuts. Depending on a parameter it is possible to call

it for all aggregated rows or just the first row of a path. It is also possible to decide

75

5. Implementations, Algorithmic Improvements, and New Algorithms

whether to call it for original rows only or for all rows including cuts generated in earlier

rounds.

The first step of the cut generator is to check whether the current input row has variables

with a lower bound of less than zero. If this is the case the cut generator exits. Although

it would be possible to replace the variable by two new variables with a lower bound

of 0 because of restrictions in our data structures we do not do so. Another aspect

that is checked is whether the row contains a fractional binary variable or if one of the

variable upper bound binary variables connected to the row is fractional in the current

LP solution. If this is not the case it is unlikely that a violated cut can be found and the

cut generator therefore does not try to. This results in an improvement of the efficiency

of the cut generator and although this theoretically might lead to a worse quality of the

cuts, computational experiments revealed that it typically does not.

The second step is to decide on how each variable is treated in the reformulation of the

input row. Instead of performing the reformulation and storing the result in a sepa-

rate data structure, in our implementation we only identify the type of reformulation to

perform for a each variable and with which other variable it forms a pair. Using this

information stored in the reformulation status (refSta) we compute necessary values

when needed. Although the flow cover cut separation algorithm requires mixed 0-1 rows

as input, we also use rows with general integer variables. These rows are relaxed by

treating general integer variables as continuous variables. As pointed out in section 5.2

we also identify variable bounds for general integer variables and these are also used in

the reformulation.

Besides the fact that general integer variables are treated as continuous variables the

reformulation for each variable is done as described in the section 4.1. The case where

either the continuous or the binary variable of a variable upper bound pair appears is

straight forward. The situation where both variables of a pair appear in the same row

requires some considerations. The first thing is that we only group the variables together

if their coefficients have the same sign. This simplifies the decision whether a pair belongs

to N+ or N−. The next consideration is that, if several variables share the same variable

bound, because of our data structures, we can only use it in a pair with one of them. We

choose the first continuous variable we find as partner for the binary variable and handle

all remaining variables as if they were alone. In the section 4.1 we show how rows with

bounded variables can be reformulated as single node flow sets. Although the precondition

that the variables are bounded is necessary for this reformulation we can generate flow

cover cuts from rows with unbounded variables. In the SGFCIs and LSGFCIs the upper

bounds on the variables are not needed as long as they are not in the generalized cover

76

5.3. The Flow Cover Cut Generator

C or in the set L−. Therefore, if we choose unbounded variables not to be in the cover C

and not in L−, we can use rows with unbounded variables by assuming they have a very

large upper bound M . For slack variables we do the same in the sense that we simply

avoid to use them in the cover or in L− and hence relax them if they have a positive

coefficient and use them in L−− if not. Example 5.4 shows how a non-trivial row can be

reformulated.

Example 5.4. Assume the mixed-integer row

2x′
1−x′

2+x′
3+x′

4−y2+4y5 ≤ 9

x′
1 ≤5y1

x′
2 ≤4y2

x′
3 ≤ 10

x′ ∈R
4
+

y ∈B
3.

If we reformulate this row into a single node flow set we get

x1−x2+x3+x4+x5 ≤ 9

x1 ≤10y1 x1=2x′
1

x2 ≤ 5y2 x2=x′
2 + y2

x3 ≤10y3 y3=1

x4 ≤My4 x4 6∈C+, y4 = 1

x5 ≤ 4y5 x5=4y5

x ∈ R
5
+

y ∈ B
5.

The next step is to find the generalized cover C. This is the most important step of the

flow cover cut generator because the quality and the speed of the cut generator greatly

depend on it. As mentioned in section 4.1, the cover is found by solving the cover finding

knapsack problem (see page 41). To do so we first have to transform it into the standard

form for binary knapsack problems as described in [72]. This is done by reversing the

constraint, reversing the objective function, and complementing variables with negative

knapsack coefficients. Furthermore we also use a small number ε to get a less than instead

of a less than or equal constraint. By ε we can control the smallest value we allow for

λ. We use the tolerance parameter xtolin of MOPS for this purpose that by default is

77

5. Implementations, Algorithmic Improvements, and New Algorithms

1× 10−5. The result is the transformed flow cover finding knapsack problem:

max
∑

j∈N+

(1− y∗j)k̄j +
∑

j∈N−

y∗j kj

∑

j∈N+

uj k̄j +
∑

j∈N−

ujkj ≤ b− ε +
∑

j∈N+

uj

k̄j = 1− kj

k ∈ {0, 1}|N |.

Before using an algorithm on this problem, we can preprocess it by setting kj = 0 or

k̄j = 0 if uj > b − ε. As mentioned before we deal with unbounded and slack variables

by setting kj = 0.

The papers about the flow cover cut generators ([93] and [51]) report that a heuristic was

used to solve the cover finding knapsack problem. A simple greedy heuristic based on

sorting and adding variables one by one is the typical approach for this. A description of

such a primal heuristic for the 0-1 knapsack problem can be found in [80], p. 452. A differ-

ent approach is to use a specialized branch-and-bound method as for example described

by Martello and Toth in [72]. We use such an algorithm that is already implemented in

the MOPS MIP solver and also used for the cover cut generator.

Another implementation detail connected with the cover finding is how to deal with

the variables that do not have a binary variable upper bound in the flow cover finding

knapsack problem. Note that in the reformulation we assume that y∗j = 1 for these

variables. This is not a good choice when deciding on the generalized cover because the

deduction of the flow cover finding knapsack problem is based on the assumption that

xj = ujyj . Therefore using y∗j =
x∗

j

uj
should work much better. This is confirmed in the

computational results shown in section 6.3.

In the cut generation step for each variable the corresponding coefficient in the cut and,

where necessary, the coefficient of the variable’s upper bound variable are computed and

added to an indexed data structure. This allows a fast cut generation even if several

variables have the same variable upper bound. For the sets C+ and C++, computing the

coefficients is straight forward. For the partition of N− into L− and L−− the rule that

leads to the most violated cut is already mentioned in section 4.1. The rule is actually not

clear for the very frequently happening case that x∗
j = y∗j = 0. In this case it makes no

difference concerning the violation of the cut whether the rule L− = {j ∈ N− : λy∗j < x∗
j}

or L− = {j ∈ N− : λy∗j ≤ x∗
j} is used. But it makes a difference for the strength of

78

5.3. The Flow Cover Cut Generator

the cut in later rounds of the cut generation. Note that here we use y∗j = 1 for variables

without a variable upper bound. In section 6.3 we computationally compare these two

versions of the rule and the result is that we use the first rule. This means that we only

use the binary variable upper bound if it really results in a more violated cut.

For the set N+\C+ the LSGFCIs suggest that we have to lift all variables in this set. But

actually we can decide to relax these variables before generating the cut, that means we

only lift those variables j ∈ N+ \C+ with coefficients (αj , βj) that improve the violation

of the cut, i.e. if

αjx
∗
j − βj(1− y∗j) > 0.

For the set C− the lifting function g has to be computed in a way that it results in the

best possible cut coefficient, i.e., that g is maximal.

Accuracy is typically not a big problem for flow cover cuts. One situation where inac-

curacies may occur is when λ is a very small number. This can be avoided by setting

the ε in the reformulated flow cover finding knapsack problem to a value larger than the

smallest value allowed as cut coefficient. This is done in our implementation where the

smallest number allowed in the cut is the MOPS parameter xdropm (by default 1× 10−7)

and ε is xtolin (by default 1× 10−5). Nevertheless the accuracy safeguards as described

in section 5.2 are applied to the generated cut before adding it to the cut pool.

Finally, we would like to point out an observation that might help to understand why

flow cover cut separation algorithms are so successful in MIP solvers. It is possible to

derive the valid inequality for the simple MIR set (see section 2.5) where y is binary using

the flow cover inequality. To do so we reformulate this simple MIR set

y − x ≤ b, 0 < b < 1, x ∈ R, y ∈ {0, 1}

by assuming a very large bound M on x and introducing a variable y′ = 1 to get

y − x ≤ b, x ≤My′ y ≤ 1y

which is a binary single node flow set. Using y as generalized flow cover resulting in

λ = 1− b we get the SGFCI

y + b(1− y) ≤ b + x.

After rewriting, this results in the simple MIR inequality y ≤ x
1−b

. This means that a

cutting plane procedure based on reformulation and flow cover cuts can generate some

problem specific cuts for mixed 0-1 problems in the same way the cMIR procedure can for

79

5. Implementations, Algorithmic Improvements, and New Algorithms

general mixed integer problems. As most practical mixed integer programming problems

actually are mixed 0-1 problems, this can be seen as an explanation for their success.

5.4. The cMIR Cut Generator

In this section we describe the cut generation step of the cMIR cut generator implemented

for this thesis. The aggregation and bound substitution steps are described in section 5.2

because they are also used for other cut generators. In algorithm 5 we show the program

flow of our cMIR cut generator.

The cMIR cut generation procedure is called within the framework for each reversed

mixed integer knapsack set generated from the usable rows, the aggregated rows, and

the reverse of these rows. At the beginning it checks whether the reversed mixed integer

knapsack set contains integer variables which are fractional in the current LP solution. If

this is not the case, it does not try to generate a cut. This speeds up the cut generation

and does not influence the quality of the generated cuts too much.

Note that the reversed mixed integer knapsack sets passed on to this separation routine

might have a continuous variable s that is actually equivalent to a single slack variable

for the original input row or even equal to 0. Hence the cut generator might generate

pure integer cuts that are actually strengthened Chvátal-Gomory inequalities (see [62]).

One result of doing this is that the cMIR cut generator now can compute cuts for the

lot-sizing problem with stock upper bounds as shown in example 5.5. Note that it is also

possible to pass these knapsack constraints on to a cover cut generator if all variables are

binary. We do not further investigate this as it goes beyond the scope of this thesis.

Example 5.5. Assume an instance of the constant-capacity lot-sizing problem with stock

upper bounds (see [85]). In this instance we find the structure

s1 + x1 − s2 = 2

s2 + x2 − s3 = 4

s3 + x3 − s4 = 5

xj ≤ 10yj for j = 1, 2, 3

s1 ≤ 5

s ∈ R
4
+ x ∈ R

3
+ y ∈ {0, 1}3

80

5.4. The cMIR Cut Generator

Algorithm 5 The cMIR Cut Generator

1: procedure cMIR Cut Generator(mik)
2: if Contains Integer Vars Less Than Zero(mik) then return ∅
3: if No Fractional Integer(mik) then return ∅
4: bestCut← ∅
5: C ← {j ∈ I : y∗j ≥

uj

2 }
6: for j ∈ I do

7: δ ← |gj |
8: cut← Compute cMIR Cut(mik,C,δ)
9: if cut better than bestCut then

10: bestCut← cut
11: δ̄ ← δ
12: end if

13: end for

14: if bestCut = ∅ then return

15: δ∗ ← δ̄
16: for k = 1, 2, 3 do

17: δ ← δ∗

2k

18: cut← Compute cMIR Cut(mik,C,δ)
19: if cut better than bestCut then

20: bestCut← cut
21: δ̄ ← δ
22: end if

23: end for

24: T ← {j ∈ I, 0 < y∗j <
uj

2 }
25: sort t ∈ T by |y∗t −

ut

2 |
26: for t ∈ T do

27: C ← C ∪ t
28: cut← Compute cMIR Cut(mik,C,δ̄)
29: if cut better than bestCut then

30: bestCut← cut
31: else

32: C ← C \ t
33: end if

34: end for

35: finalCut← Clean Cut(bestCut)
36: return finalCut
37: end procedure

81

5. Implementations, Algorithmic Improvements, and New Algorithms

From this structure we can compute the valid inequality

y1 + y2 + y3 ≥ 1

which is an important facet of the convex hull (see [84] and [85], p. 353). We can generate

this valid inequality using an MIR inequality by first aggregating the three rows of the path

and substituting the variable upper bounds for x1, x2, and x3. The aggregated row then

looks like this:

s1 + 10y1 + 10y2 + 10y3 ≥ 11.

Now we can also substitute the simple bound of s1. The result is the reversed mixed integer

knapsack

10y1 + 10y2 + 10y3 + s ≥ 6

where we assume that s = 0. The MIR inequality with δ = 10 is the cut we are looking

for.

The basic idea of the cMIR cut generation is to do a search of the family of reversed cMIR

inequalities. A reversed cMIR inequality is defined by a partition of I = (T, C) and a

value δ ∈ R>0. Note that we use reversed cMIR inequalities instead of the normal cMIR

inequalities because our bound substitution generates reversed mixed integer knapsack

sets. Example 5.6 shows that by generating cuts from reversed rows we end up with

exactly the same cuts as with normal cMIR inequalities. Also note that, in contrast to

other implementations, our definition of the reversed cMIR inequalities includes rescaling

the cut to improve its accuracy.

Example 5.6. In this example we show how the cMIR cut from example 4.4 can be

generated using the reversed cMIR inequality. The first step is to relax the single node

flow set to a reversed mixed integer knapsack. To do this we first introduce a slack variable

tr = 17−x1−x2−x3 +x4 +x5 and substitute all variable bounds. Now the slack variables

with negative coefficients are relaxed and the result is the reverse mixed integer knapsack

set

24y1 + 20y2 + 15y3 − 18y4 − 16y5 + t4 + t5 + tr
︸ ︷︷ ︸

s

≥ 17.

Applying the reversed cMIR inequality with C = {1, 2, 5} and δ = 24 yields the cut

−13(1− y1)− 9(1− y2) + 13y3 − 7y4 + 13(1− y5) + t4 + t5 + tr ≥ 0

which after substituting t4, t5 and tr results in the same cut as in example 4.4.

82

5.4. The cMIR Cut Generator

The first step of the algorithm is to decide on an initial set for C, i.e. the set of comple-

mented variables. Our cut generator follows the rule of Marchand and Wolsey [70], i.e.

for the reversed mixed integer knapsack

∑

j∈I

gjyj + s ≥ b

it uses the initial set

C = {j ∈ I : y∗j ≥
uj

2
}.

Also as described by Marchand and Wolsey it stores a set of candidates for complementing,

the set U , where

U = {j ∈ N : 0 < y∗j <
uj

2
}.

Then the algorithm tries certain values for δ. Marchand and Wolsey suggest to use the

coefficients of the fractional integer variables in the mixed knapsack as candidates. In

our implementation we use the absolute values of all coefficients of the integer variables,

i.e. |gj | for all j ∈ N . To speed this up we check whether the new δ to try is the

same as the last δ tried. This is especially efficient if all coefficients are the same which

can be observed frequently in practical problem instances. It gets more efficient if the

variables j ∈ N are sorted but this is not in general the case in our cut generator. When

trying a certain value for δ we check whether δ and the divided right hand side b
δ

are

larger than the tolerance parameter xtolin (by default 1× 10−5). This avoids numerical

problems and thus improves the accuracy of the generated cuts. The computing of the

cut coefficients is implemented in a very efficient way because it might be called many

times in each round of the cut generation. Two indexed data structures are used to store

the cut that is currently generated and the best cut generated so far. If the current cut

is better than the best, instead of copying the cut, the pointers to the data structure

are switched. Especially in the case that many better cuts are found this improves the

efficiency of the cut generator very much. Furthermore, when a cut is generated only

the coefficients of the integer variables are computed and the violation is computed using

s∗, which is the sum of the LP solutions of the variables in s. Only for the final cut the

coefficients for the variables in s are explicitly computed.

An important step in the cMIR cut generation is to decide whether a cut is better than

a previously generated one. Comparing the violation of two cuts does not necessarily

lead to the best cut. Hence we compare the cuts using their normalized violation (or

83

5. Implementations, Algorithmic Improvements, and New Algorithms

Euclidean distance) which in our case for a cut βy + s ≥ γ is defined as

vn =
s∗ + βy∗j − γ

||β||
.

Note that the coefficients of the continuous variables in s are not considered when nor-

malizing the violation as they are the same for all cuts compared. This quality measure

is for example also used in [8]. Further information about comparing the quality of cuts

and more references can be found in [96].

To avoid spending too much time on a row were it is not likely that a violated cut is

found the cut generator does not proceed to look for a cut if in this first loop no violated

cut was found. If a violated cut is found, it tries to strengthen this cut as suggested by

Marchand and Wolsey by dividing δ by 2, 4, and 8. Finally, it tries to strengthen the cut

by complementing the variables in U one by one. This methods keeps a variable in U

complemented if this results in a better cut. The best cut finally is cleaned as described

in section 5.2 and added to the cut pool.

5.5. The Flow Path Cut Generator

The flow path cut generator implemented for this thesis follows the description of the

initial implementation by van Roy and Wolsey in [93]. The major difference is the path-

finding method described in section 5.2. Algorithm 6 shows the program flow. Note that

we call the flow path cut generation procedure only for paths with a length of at least 2

because the cMIR and the flow cover cuts typically dominate the flow path cuts for single

rows. The cMIR and flow cover cut generators are called for rows and reversed rows.

The flow path cut generator is called for each path and thus it is called only once for

every two times the other two cut generators are called. In other words, it is not called

for reversed rows or reversed paths.

The first loop runs backwards through the rows of the path. First it checks for each row

that it can be reformulated. Then it removes the sets of variables that connect parts of

the path, i.e. the sets R+
k and R−

k as defined in section 4.3, and reformulates the row.

Identifying the set R+
k and R−

k constitutes a difficult task because it is necessary to check

that the coefficients of the rows really negate each other. Hence accuracy safeguards

similar to those used in the aggregation heuristic are needed. To search for variables

in the path we again use the column-wise representation of the constraint matrix which

speeds up this process very much. The sets R+
k and R−

k are stored to be used again in

84

5.5. The Flow Path Cut Generator

Algorithm 6 The Flow Path Cut Generator

1: procedure Flow Path Cut Generator(path)
2: vio← 0
3: for k = |path| . . . 1 do

4: if Contains Vars Less Than Zero(pathk) then return ∅
5: Identify R Sets(pathk,R

+
k ,R−

k)
6: row ←call Remove R Sets And Add Slack(pathk, R+

k ,R−
k)

7: Set Reformulation Status(row,refSta)
8: C+

k ← {j ∈ N+
k : x∗

j − (
∑K

i=k b+)y∗j > 0}

9: Q−
k ← ∅

10: ȳk ←
∑

j∈C+
k

y∗j
11: vio← Update Violation(vio,row,refSta,cut,C+,Q−)
12: end for

13: if vio ≤ 0 then return ∅
14: cut← ∅
15: for k = |path| . . . 1 do

16: row ← Remove R Sets And Add Slack(pathk, R+
k ,R−

k)
17: Set Reformulation Status(row,refSta)
18: C+

k ← {j ∈ N+
k : x∗

j − (
∑K

i=k b+)y∗j > 0}

19: Q−
k ← {j ∈ N−

k : x∗
j > (

∑k
i=1 ȳi)uj}

20: cut← Update Cut(cut,row,refSta,C+,Q−)
21: end for

22: finalCut← Clean Cut(cut)
23: return finalCut
24: end procedure

85

5. Implementations, Algorithmic Improvements, and New Algorithms

the second loop. The reformulation as a binary single node flow set is done in the same

way as for the flow cover cut generator.

The actual task of the first loop is to check whether a simple network inequality based on

the input path is violated and to compute the values of ȳk =
∑

j∈C+
k

y∗j for k = 1 . . . K.

These values are needed to decide in the second loop which variables to use in the sets

Q−
k . To compute the simple network inequality, we need to decide on the sets C+

k . We

put a variable j into C+
k if it improves the violation of the cut, i.e. if x∗

j −
∑K

i=k b+y∗j > 0.

As in the case of the flow cover cut generator we use > instead of ≥ although this does

not mean a difference in the violation of the cut.

In the second loop the cut generator produces an extended network inequality. The sets

from the first loop are used in the same way as before but now we use some of the variables

j ∈ N−
k to strengthen the cut. Whether a variable can be used to strengthen the cut

can be decided directly by checking whether x∗
j > (

∑k
i=1 ȳi)uj . We assume that this is

what van Roy and Wolsey meant on page 52 of [93]. In section 6.5 we investigate how

important it is to use the extended instead of the simple network inequality.

5.6. The Path Mixing Cut Generators

5.6.1. Path Mixing Inequalities

In this section we propose two new separation algorithms and discuss their implemen-

tation. The idea of the algorithms is to be more general substitutes for the flow path

cut separation algorithm. Therefore we need valid inequalities for more general sets than

fixed charge paths. We call these more general sets mixed integer paths.

Definition 5.2. A mixed integer path is described by a set of K constraints of the form

n∑

j=1

aj1xj +

p
∑

j=1

gj1yj = b1

n∑

j=1

aj2xj +

p
∑

j=1

gj2yj = b2

...
n∑

j=1

ajKxj +

p
∑

j=1

gjKyj = bK

86

5.6. The Path Mixing Cut Generators

with ajk + ajk+1 = 0 for at least one j ∈ {1 . . . n} and all k = 1 . . .K − 1. Note that

x ∈ R
n
+, a ∈ R

n × R
K , g ∈ R

p × R
K , y ∈ Z

p
+, b ∈ R

K and that ajk and gjk might be 0 for

some (j, k), j = 1 . . . n, k = 1 . . .K.

To find valid inequalities for mixed integer paths we follow the same approach used for

finding the MIR inequalities. We relax the structure to a very simple set and apply valid

inequalities for this simple set. The simple set we relax the mixed integer paths to is the

mixing set first studied by Günlük and Pochet in [52] (see section 2.6) and we call the

resulting inequalities path mixing inequalities.

Proposition 5.1. Let δ ∈ R
K
>0 and T ⊆ {1 . . .K}, |T | = t. Furthermore

fk =

∑k
i=1 bi

δk

−

⌊∑k
i=1 bi

δk

⌋

for k = 1 . . .K,

hjk =

∑k
i=1 gji

δk

−

⌊∑k
i=1 gji

δk

⌋

for j = 1 . . . p, k = 1 . . .K,

and suppose that i1, . . . , it is an ordering of T such that 0 = fi0 ≤ fi1 ≤ · · · ≤ fit . Then

the path mixing inequalities

s ≥
t∑

τ=1

(
fiτ − fiτ−1

)

⌈
b̄iτ

⌉
−
∑

j∈I1

⌈∑iτ
i=1 gji

δk

⌉

yj −
∑

j∈I2

⌊∑iτ
i=1 gji

δk

⌋

yj

and

s ≥
t∑

τ=1

(
fiτ − fiτ−1

)

⌈
b̄iτ

⌉
−
∑

j∈I1

⌈∑iτ
i=1 gji

δiτ

⌉

yj −
∑

j∈I2

⌊∑iτ
i=1 gji

δiτ

⌋

yj

+(1− fit)

bb̄i1c −
∑

j∈I1

⌈∑i1
i=1 gji

δi1

⌉

yj −
∑

j∈I2

⌊∑i1
i=1 gji

δi1

⌋

yj

where I = {1, . . . , p},I = (I1, I2),

s =
n∑

j=1

(

max
k∈T

{∑k
i=1 aji

δk

})+

xj +
∑

j∈I2

(

max
k∈T
{hjk}

)+

yj

and

b̄k =

∑k
i=1 bi

δk

for k = 1 . . . K

are valid inequalities for mixed integer paths (see definition 5.2).

87

5. Implementations, Algorithmic Improvements, and New Algorithms

Proof. We sum the first k rows of the mixed integer path to get an aggregated path of

the form
k∑

i=1

n∑

j=1

ajixj +
k∑

i=1

p
∑

j=1

gjiyj =
k∑

i=1

bi for k ∈ {i1, . . . , it}.

Now we divide each row of the aggregated path by a value δk and split the integer variables

yj , j ∈ I into two disjunct sets I1 and I2. For I1 we relax the coefficients by rounding up

and for I2 we split the coefficient into the integer part and the fractional part hjk. The

result is the following aggregated path

n∑

j=1

∑k
i=1 aji

δk

xj +
∑

j∈I2

hjkyj +
∑

j∈I1

⌈∑k
i=1 gji

δk

⌉

yj +
∑

j∈I2

⌊∑k
i=1 gji

δk

⌋

yj ≥

∑k
i=1 bi

δk

for k ∈ {i1, . . . , it}

which can be rewritten as a mixing set

s +
∑

j∈I1

⌈∑k
i=1 gji

δk

⌉

yj +
∑

j∈I2

⌊∑k
i=1 gji

δk

⌋

yj

︸ ︷︷ ︸

y′

k
∈Zt

≥

∑k
i=1 bi

δk

for k ∈ {i1, . . . , it}.

This is a mixing set because

s ≥
n∑

j=1

∑k
i=1 aji

δk

xj +
∑

j∈I2

hjkyj ≥ 0 for all k ∈ {i1, . . . , it}.

Applying the mixing inequalities from section 2.6 yields the path mixing inequalities.

These path mixing inequalities have several advantages. One is that they generalize the

MIR inequality in the sense that a path mixing cut from a single row of an aggregated

path is the same as an MIR cut from this row. If we assume that in the mixed integer

path some variables are complemented they even generalize the cMIR inequalities. An-

other advantage is that, as shown in [52], several classes of problem specific cuts can be

generated as path mixing cuts. This includes the (k,l,S,I) inequalities (see [83]) for the

constant capacity lot-sizing problem, which is shown in example 5.7, as well as several

other lot-sizing and network design based problem classes.

88

5.6. The Path Mixing Cut Generators

Example 5.7. Consider an instance of the constant capacity lot-sizing problem (called

LS-CC in [85])

min
n∑

t=1

ptxt +
n∑

t=0

htst +
n∑

t=1

qtyt

st−1 + xt = dt + st for 1 ≤ t ≤ n

xt ≤ Cyt for 1 ≤ t ≤ n

s ∈ R
n+1
+ , x ∈ R

n
+, y ∈ {0, 1}n

with n = 4, (p, h, q) = {2, 3, 2, 1, 100, 1, 1, 1, 1, 80, 80, 80, 80}, d = {2, 6, 4, 5} and C = 10.

By substituting the variable upper bounds for all production variables xj we can generate

the mixed integer path

s0 + 10y1 − s1 − r1 = 2

s1 + 10y2 − s2 − r2 = 6

s2 + 10y3 − s3 − r3 = 4

s3 + 10y4 − s4 − r4 = 5

where the variables rk, k = 1 . . . n, are slack variables. Applying the first path mixing

inequality with I2 = ∅, T = {1, 4}, and δ1 = δ4 = 10 yields the cut

s0 ≥ 12− 7y1 − 5y2 − 5y3 − 5y4

which also is a (k,l,S,I) inequality and a facet of the convex hull for this problem.

In the context of this thesis especially important is the fact that flow path cuts can also

be generated using path mixing inequalities. We show this by first relaxing the rows of

a fixed charge path to an appropriate mixed integer path. The first step is to relax bk to

b+
k . Then we introduce slack variables rk to get equality rows and substitute the variable

bounds for all j ∈ C+
k ⊂ N+, k = 1 . . . K. The result is the mixed integer path

xk−1 − xk +
∑

j∈N+
k
\C+

k

xj −
∑

j∈N−

k

xj + rk +
∑

j∈C+
k

ujyj −
∑

j∈C+
k

tj = b+
k for k = 1, . . . , K

where x0 = xK = 0. Now we apply the first path mixing inequality with

δ̄ = max

{
K∑

i=1

b+
i , max

j∈
⋃K

i=1 C+
i

uj

}

,

89

5. Implementations, Algorithmic Improvements, and New Algorithms

δk = δ̄ for all k = 1 . . . K, I1 =
⋃K

k=1 C+
k , and T = {1 . . . K}. The indices in T are already

ordered by increasing fk because the right hand sides are non-negative. The resulting

inequality is

K∑

k=1

∑

j∈N+
k
\C+

k

xj

δ̄
+

K∑

k=1

rk

δ̄
≥

K∑

k=1

(fk − fk−1)

⌈∑k
i=1 b+

i

δ̄

⌉

−
k∑

i=1

∑

j∈C+
i

⌈uj

δ̄

⌉

yj

 .

Now because δ̄ is large enough and fk − fk−1 =
∑k

i=1 b+i
δ̄

−
∑k−1

i=1 b+i
δ̄

=
b+
k

δ̄
we get

K∑

k=1

∑

j∈N+
k
\C+

k

xj

δ̄
+

K∑

k=1

rk

δ̄
≥

K∑

k=1

b+
k

δ̄

1−
k∑

i=1

∑

j∈C+
i

yj

 .

After multiplying by −δ̄ and rewriting this gets

−
K∑

k=1

∑

j∈N+
k
\C+

k

xj −
K∑

k=1

rk ≤ −
K∑

k=1

b+
k +

K∑

k=1

b+
k

k∑

i=1

∑

j∈C+
i

yj .

Substituting the slack variables and rewriting again yields the simple network inequality.

To get the extended network inequality we replace the variables j ∈ Q−
k ⊆ N−, k = 1 . . .K

by their upper bounds uj . The result is that

fk =

∑k
i=1(b

+
i +

∑

j∈Q−

i
uj)

δ̄
for k = 1 . . . K.

Following the same steps as above results in the extended network inequality.

Another very interesting relation is the one between cMIR and path mixing inequalities.

In [37] Dash and Günlük give a proof that the MIR rank of a mixing inequality from

a mixing set with K rows is at most K. Dey shows in [41] that a lower bound on the

split rank of the first mixing inequality is dlog2(k + 1)e. These results suggest that it

should be possible to generate path mixing inequalities from short paths with a cMIR

cut separation algorithm that generates cuts out of cuts. This can actually be observed

in the implementation done for this thesis, example 5.8 illustrates this. Note that Marc-

hand showed in chapter 4 of his thesis [69] that inequalities for the capacitated lot-sizing

problem can also be generated using lifting.

90

5.6. The Path Mixing Cut Generators

Example 5.8. In the following path

x1 − 2y1 − s1 ≤ 0

s1 + x2 − s2 = 6

s2 + x3 − s3 = 4

s3 + x4 − s4 = 5,

the first row is the MIR cut generated from the flow balance constraint s0 + x1 − s1 = 2

of the LS-CC problem in example 5.7. By aggregating this path and after substituting all

variable bounds we get the mixed integer knapsack

−t1 − t2 − t3 − t4 − s4 + 8y1 + 10y2 + 10y3 + 10y4 ≤ 15,

where tj is the slack variable of the variable upper bound constraint of j. Applying the

cMIR inequality using δ = 10 and C = ∅ this results in the cut

x1 + x2 + x3 + x4 − s4 − 7y1 − 5y2 − 5y3 − 5y4 ≤ 5

which is equivalent to the facet found in example 5.7. It is equivalent because we can

substitute x1 + x2 + x3 + x4 − s4 = 17− s0 and multiply by −1 to get the same cut. We

now use a slightly more difficult example. In this mixed integer path

x4 − 5y4 − s4 ≤ 0

−s3 − x4 + s4 = −5

−s2 − x3 + s3 = −4

−s1 − x2 + s2 = −6

−s0 − x1 + s1 = −5,

the first row is again a simple MIR cut. The other rows have been multiplied by −1. After

adding a slack variable p for the first row, aggregating, multiplying by −1 and substituting

all variable upper bounds we get the following reversed mixed integer knapsack set

−t1 − t2 − t3 − p + 10y1 + 10y2 + 10y3 + 5y4 ≤ 17.

Applying the cMIR inequality using δ = 10, C = ∅, and substituting p yields

x1 + x2 + x3 + x4 − s4 − 7y1 − 7y2 − 7y3 − 5y4 ≤ 3.

91

5. Implementations, Algorithmic Improvements, and New Algorithms

An equivalent cut can also be found by applying the path mixing inequality to the mixed

integer path

s0 + 10y1 − s1 = 2

s1 + 10y2 − s2 = 6

s2 + 10y3 − s3 = 4

s3 + 10y4 − s4 = 5

with δk = 10, k = 1 . . .K, I2 = ∅ and T = {3, 4} and multiplying the result by δ.

5.6.2. Two Separation Algorithms

The two path mixing cut separation algorithms we want to present here are both based

on the path mixing approach. It is a generalization and formalization of the approach

used by Günlük and Pochet in [52] to demonstrate that certain strong valid inequalities

can be generated using mixing inequalities. Starting with a mixed integer path defined

in the last section we go through the following steps:

1. Aggregate the first k rows of the path for k = 1 . . .K,

2. Use bound substitution to reformulate each of these aggregated rows into a reversed

mixed integer knapsack,

3. choose a set T ⊆ {1 . . . K},

4. choose a value δk ∈ R>0 for each aggregated row k,

5. sort the elements in T by increasing fk,

6. start with the path mixing cut generated from the first element in T ,

7. extend the cut by running through the remaining elements in T .

The basic idea of our first path mixing separation algorithm is to imitate the flow path cut

separation algorithm. We call it the uncapacitated path mixing cut (uPMC) separation

algorithm because it generates the (l, S)-inequalities (see [19]) that are facet defining for

the uncapacitated lot-sizing problem. The first step is to aggregate the first k rows for

k = 1 . . .K to get an aggregated path. These rows then are reformulated into reversed

mixed integer knapsack sets. We choose T as the first t reversed mixed integer knapsacks

for which
∑k

i=1 bi, k = 1 . . . t is increasing. If all bk in the original rows are greater than

or equal to 0 then t = K. For all δk we choose a value M that is arbitrarily large.

92

5.6. The Path Mixing Cut Generators

Now because fk = bk

δk
, T is already sorted and we can add the reversed mixed integer

knapsacks to the cut one by one. In this one by one extension of the cut it can be decided

whether to place an integer variable in the I2 set, specified in the definition of the path

mixing inequality, by checking whether gj < (fk − fk−1). Each time we added a reversed

mixed integer knapsack set we check whether the resulting cut is violated. If it is, this

is the cut the algorithm returns. If not, the algorithm continues up to a parameter

for maximum path length. This procedure in many cases generates the same cuts as

a flow path cut separation algorithm. Its performance partially depends on the bound

substitution heuristic used. See example 5.9 for an demonstration of this algorithm.

Example 5.9. Assume the following mixed integer path

2x1 + 10y1 − x3 = 4

x3 − x1 + x2 + 2y2 − x4 = 3

x4 + x2 + 10y3 − x5 = 5

x ∈ R
5
+,y ∈ Z

3
+.

By aggregation and bound substitution (we assume that all continuous variables have been

replaced by a static lower bound of 0) we get the three reversed mixed integer knapsack

sets

10y1 + 2x1
︸︷︷︸

s1

≥ 4

10y1 + 2y2 + x1 + x2
︸ ︷︷ ︸

s2

≥ 7

10y1 + 2y2 + 10y3 + x1 + 2x2
︸ ︷︷ ︸

s3

≥ 12.

We now add these reversed mixed integer knapsack sets one by one to our cut. The cut

from the first reversed mixed integer knapsack set is

2x1 ≥ 4(1− y1).

Now we add the second reversed mixed integer knapsack set and get

2x1 + x2 ≥ 4(1− y1) + 3(1− y1)− 2y2.

Note that we have put y2 into the set N2 of the path mixing inequality and that we added

x2 to the left hand side. For x1 nothing changed because the coefficient in the cut is larger

93

5. Implementations, Algorithmic Improvements, and New Algorithms

than the one in the reversed mixed integer knapsack. After checking that this cut is not

violated, we add the third reversed mixed integer knapsack set and get

2x1 + 2x2 + 2y2 ≥ 4(1− y1) + 3(1− y1) + 5(1− y1 − y3).

We again have put y2 into the set N2 and because it had already been in the cut it was not

added again. The coefficient of x2 in the cut was increased to 2. Note that the continuous

variables do not correspond to maxk={1,2,3} sk. The maximum of the coefficient has to be

taken for each variable individually. Using s1 + s2 + s3 is also possible but would result

in a weaker cut.

The second path mixing cut separation algorithm presented here tries to generate cuts

that go beyond flow path cuts. We call it the capacitated path mixing cut (cPMC) sepa-

ration algorithm because it generates the (k, l, S, I)-inequalities (see [83]) that are facet

defining for the constant capacity lot-sizing problem. The idea is to use the separation

algorithm for the simple mixing set described in section 2.6 in this more complex situa-

tion. Again we aggregate the rows of the path and reformulate them as reversed mixed

integer knapsack sets. Then the algorithm tries to find cuts using several different sets

for T . To decide on these sets, the mixed integer knapsack sets are sorted by a decreasing

value of βk, where

βk =

⌈
bk

δk

⌉

−
∑

j∈I

⌈
gjk

δk

⌉

y∗j .

For δk we use the maximal gj in the reversed mixed integer knapsack set k. This definition

of βk corresponds to the one for β in the description of the separation algorithm for the

simple mixing set in [85] (see section 2.6). Once the rows are sorted we use the δk of

the first row, i.e. the row with the largest βk, as δk for all k. The algorithm then tries

to generate a cut from the r reversed mixed knapsack sets where βk is largest. To do

so the first r rows are sorted by increasing fk and then the cut is generated. This is

done for r = 2 . . .K until a violated cut is found. We demonstrate this algorithm in

example 5.10.

94

5.6. The Path Mixing Cut Generators

Example 5.10. We use the same set of reversed mixed integer knapsack sets as in the

previous example

10y1 + 2x1
︸︷︷︸

s1

≥ 4

10y1 + 2y2 + x1 + x2
︸ ︷︷ ︸

s2

≥ 7

10y1 + 2y2 + 10y3 + x1 + 2x2
︸ ︷︷ ︸

s3

≥ 12.

The current LP solution we try to cut off is the point (x∗, y∗) =
(
2, 3, 0, 0, 0, 0, 1, 1

5

)
. In

this case δk = 10 for all k and the values of βk are

β1 =1− 0 = 1

β2 =1− 0− 1 = 0

β3 =2− 0− 1−
1

5
=

4

5
.

We now sort by βk and generate the cut for the two reversed mixed integer knapsack sets

with largest βk, i.e. T = {1, 3}. T has to be sorted by fk, so we get T = {3, 1} and thus

can compute the cut

2x1 + 2x2 + 2y2 ≥ 2(2− y1 − y3) + 2(1− y1)

where we used y2 in I2. As this cut is not violated, the next step is to try the three reversed

mixed integer knapsack sets with largest βk, i.e. T = {3, 1, 2}. This time T is already

sorted so we get

2x1 + 2x2 + 2y2 ≥ 2(2− y1 − y3) + 2(1− y1) + 3(1− y1)

for which the violation is larger than for the last cut, but still not larger than 0. The

algorithm stops without having found a violated cut.

5.6.3. Implementation of the Path Mixing Cut Generators

For the implementation of the aforementioned path mixing cut separation algorithms

we make use of the fact that many parts of the cMIR cut generator can be reused.

95

5. Implementations, Algorithmic Improvements, and New Algorithms

Aggregation and bound substitution are done in the framework for both the cMIR and

the path mixing cut generators. Note that only reversed mixed integer knapsack sets

generated from the (aggregated) rows, but not from reversed rows, are used. So basically

the path mixing cut generators are called once for every two times the cMIR and flow

cover cut generators are called.

In algorithm 7 we show the program flow of the uPMC generator. When the uPMC

generator is called the first time it is initialized with cut = ∅ and flast = 0. In the

following iterations of the framework’s aggregation loop the uPMC separation routine is

called with the current reversed mixed integer knapsack set until it generates a violated

cut or the maximum path length is reached. As a result of this way of implementing the

uPMC separation algorithm, an existing cMIR cut generator can very easily be extended

to also generate path mixing cuts and separating these additional cuts does not increase

the runtime very much.

Algorithm 7 The uPMC Cut Generator

1: procedure uPMC Generator(mik,cut,flast)
2: if b < flast then

3: cut← ∅
4: flast ← 0
5: return ∅
6: end if

7: f ← b
8: newCut← Append MIK To Cut(mik,cut,f − flast,M)
9: if vio(newCut) > 0 then

10: finalCut← Clean Cut(newCut)
11: return finalCut
12: else

13: cut← newCut
14: flast ← f
15: end if

16: end procedure

The core of the uPMC cut generator is the procedure in line 8. It appends the reversed

mixed integer knapsack set to the current cut generated in previous iterations. Based

on the coefficients in the current cut it checks whether the violation increases more if a

variable is put into set I1 or I2. It also checks whether a variable has been used in I2 in

a previous iteration and thus potentially does not change the value of the left hand side.

Finally, the procedure in line 8 rescales the cut internally to be in the same scale as the

input row (see section 5.2.3). The final cut is cleaned as described in section 5.2.3 and

additionally the last aggregated row is subtracted from the resulting cut. This is done to

96

5.6. The Path Mixing Cut Generators

get exactly the same cut as a flow path cut generator would and not an equivalent one

(see example 5.8).

The cPMC generator is both implementationally more demanding and slower in its ex-

ecution than the uPMC generator. On the other hand it potentially generates cuts not

obtainable by using a flow path cut or uPMC generator. Its implementation is outlined

in algorithm 8. First, the reversed mixed integer knapsack sets are stored in a linked list

data structure. This list then is sorted by βk. In the loop from line 6 to line 21 the first r

reversed mixed integer knapsack sets are sorted by ft. This step can be implemented vary

fast by inserting the t-th reversed mixed integer knapsack set into the already sorted set

1 to t− 1. Then the cut is generated using a similar procedure as in the implementation

of the uPMC generator. Note that here the rescaling of the cut happens after a violated

cut has been found.

Algorithm 8 The cPMC Cut Generator

1: procedure cPMC Cut Generator(mik, β, δ, mikList, k)
2: mikListk ← mik
3: δk ← maxj∈I |gj |

4: βk ←
⌈

bk

δk

⌉

−
∑

j∈I

⌈
gjk

δk

⌉

y∗j
5: sort r ∈ mikList by βr

6: for r = 2 . . . k do

7: flast ← 0
8: cut← ∅
9: δ̄ = δ1

10: sort t ∈ {mikList1, mikList2, . . .mikListr} by ft = bt

δ̄
−
⌊

bt

δ̄

⌋

11: for t = 1 . . . r do

12: newCut← Append MIK To Cut(mikListk,cut,f − flast)
13: cut← newCut
14: flast ← f
15: end for

16: if vio(cut) > 0 then

17: cut← cut · δ̄
18: finalCut← Clean Cut(cut)
19: return finalCut
20: end if

21: end for

22: end procedure

Both path mixing cut generators suffer and benefit from the fact that they use the cMIR

bound substitution heuristic. On the one hand they can not generate quite as good cuts

as the flow path cut generator in some situations because in the flow path cut generator

97

5. Implementations, Algorithmic Improvements, and New Algorithms

the bound substitution is always done in a way that leads to the most violated cuts. On

the other hand they can make use of improvements to the cMIR cut generator such as

the improved bound substitution from section 5.2. See section 6.5 for a computational

evaluation of the quality of these cut generators.

98

6. Evaluation

6.1. Evaluation Methods

6.1.1. Empirical Analysis of Algorithms

Since several decades researchers in operations research and other fields struggle with the

problem of how to evaluate algorithms. The classical approach is complexity theory that

looks at algorithms in a strictly formal way and proves asymptotical bounds. Unfortu-

nately it is a known fact that worst-case and also average-case complexity results for a

sophisticated algorithm usually are both hard to obtain and not very enlightening about

the real runtime of an implementation of the algorithm. Therefore the approach in this

thesis is to use empirical analysis of algorithms (as discussed in [53] and [74]). Empirical

means in this context: experimental testing of hypotheses.

Empirical analysis of algorithms has two big advantages. The first is that it can be used to

measure the real impact an implementation of an algorithm has on the overall performance

of a system that uses it. In the context of this thesis this means that we can test whether

the cut generators help the MIP solver to meet the expectations of the users. The user

expects from an MIP solver that it solves a given problem instance fast or at least finds

a reasonable good solution with a small duality gap. He also expects it to work correctly

within the tolerances of the solver. The cut generators in a solver have a big influence on

both of these expectations. The second advantage is that empirical studies can be used

to test hypotheses. This means that experimental testing can also help researchers to a

better understanding of algorithms and relations between algorithms. In this thesis most

hypotheses are concerned with the performance of separation algorithms in relation to

other separations algorithms or other implementations of the same algorithm.

Empirical analysis has a number of pitfalls that, if not evaded, can easily result in wrong

conclusions. There are several publications that give hints and state rules one should

obey when performing empirical analysis of algorithms, for example [55] and [34]. One

large problem is that the runtimes of two algorithms are influenced by many factors which

make a fair comparison very hard. In the following we describe the experimental setups

99

6. Evaluation

used in this thesis and discusses their strengths and weaknesses. Another big problem

is that empirical analysis depends on the problem instances used for the experiments.

The next section discusses the problem instances used in this thesis and justifies their

usage.

In the context of this thesis, empirical analysis of algorithms is used to compare cut gener-

ators implemented in the same framework. This supports a fair comparison between the

cut generators. We do not compare the implemented cut generators to implementations

in other solvers. The reason for this is that in an MIP solver a large number of compo-

nents have a strong influence on the results of the solver. Even very small differences in

the solvers can result in huge differences in the overall performance. Mapping differences

in the results to a specific component of the solver, say a cut generator, is sometimes

possible but typically they have several reasons. It is, of course, viable to compare the

performance of MIP solvers to each other but only to evaluate the overall performance of

the solvers, not to evaluate the performance of the cut generators. Even if one compares

the dual bounds after the root node the cut generators are not the only components that

influence these results. IP and LP preprocessing techniques might have a major impact

on the dual bound even if not a single cut is generated. But also the way in which the

cut generators are called, how many rounds of cuts are generated, when cut generation

stops, and other implementation details influence these results.

In two situations we divert from not comparing to cut generators implemented outside

of the framework described in chapter 5 and not even implemented in the MOPS MIP

solver. The first is that we compare the results of our cut generators to the corresponding

implementations currently used in the MOPS MIP solver. This is done to show the

progress achieved through this thesis. The second situation is that we compare the

results of our cut generators to results reported in papers about these cut generators.

Although the comparison is not fair because different solvers with very difference settings

are used these comparisons can be used to justify the claim that our cut generators are

capable of competing with the original implementations.

6.1.2. Problem Instances

When performing experimental analysis of algorithms one has to decide on the set of

test problems to use, the test set. In principle there are three possibilities: First, to use

random generated instances, second to use public test sets, or third to use a proprietary

collection of test problems. Table 6.1 lists pros and cons for these three alternatives based

on a similar (but outdated) table in [34] and pitfalls pointed out in [55].

100

6.1. Evaluation Methods

Random Public Proprietary

- Usually do not represent
real-world behavior

+ Can consist of real-world
problems

+ Can consist of real-world
problems and/or problems
tailored/selected towards
the experiment

+ The population of the
problems is known and can
be controlled, statistical
analysis is more reliable

- Are usually not repre-
sentative and may contain
problems that are not rele-
vant to an experiment

- Removing or adding sin-
gle instances may influence
the results very much

- There is danger to eval-
uate properties of the ran-
dom instances instead of
properties of the algorithm

- The origin of problems
sometimes is not known

- Other researchers can not
compare the results with
their own

- A lot of work is needed to
design a good random in-
stance generator

+ The problems and their
characteristics including
optimal solutions can be
obtained easily from the
internet

- The problems and their
characteristics have to be
collected

Table 6.1.: Pros and cons for random generated, public and proprietary sets of problem
instances

101

6. Evaluation

Random generated test problems have the big advantage that, as stated by Lin and Rardin

in [63], they allow statistical conclusions about all problems that can be generated by a

certain random instance generator. Random instance generators come in two flavors,

those that perturb the data of real-world instances or try to mimic them and those that

generate completely synthetic instances. Examples for instance generators are the one

for capacitated lot-sizing problems described in appendix II of [49] or the generator for

small hard 0-1 problems described by Cornuéjols and Dawande in [33].

Public test sets might also contain random generated problems but usually many of the

problems in these sets are real-world instances. Their big advantage is that they consist

of a variety of different problems. This helps when trying to evaluate the robustness of

implementations of algorithms, that means their capability to deal with many different

problem types. This advantage is lost when only some of the problems in a problem library

are used. On the other hand it seams a waste of computing time to work on problem

instances that are not suited for a certain method. Nevertheless we claim that all instances

should be used to capture situations where a method, although not meant to be used with

a certain problem type, spends a lot of computation time trying to do something useful

but fails. Our opinion is that leaving out instances should be considered very carefully

and only used as a last resort. Another problem is that usually public problem sets are

biased towards hard problems because easy to solve problems are typically not considered

interesting. Fortunately, instances considered hard in the past are often easy today. So

combining old and new public test problems can make up for this disadvantage.

Proprietary test sets have the advantage that they can capture new trends, for example

larger problems, that are not yet present in the public test sets. They can also be used to

show that there are problems where new algorithms have their strengths. The results on

a proprietary test set can easily be influenced by removing or adding problems, therefore

comparing averages or similar metrics for them is even more problematic. Neverthe-

less, they are sometimes needed in addition to public test sets for the aforementioned

reasons.

The approach of this thesis is to rely on two test sets, one consisting of a combination of

instances from several public test sets and the other consisting of proprietary instances.

We justify this decision with the aim of this thesis to improve performance of MIP solvers

on practical instances.

The public problem instances used in this thesis are those available on the websites of the

public test sets MIPLIB3 [23], MIPLIB2003 [6], MITTELMANN [75] and LOTSIZELIB

[20]. By adding the LOTSIZELIB problems, the test set gets slightly biased towards

102

6.1. Evaluation Methods

4LIB MOPSLIB

BIN 35 0
INT 4 0
MIB 94 16
MIP 36 9
total number of problems 169 25
(min, max) variables (18,204880) (147,1798971)
(min, max) constraints (6,159488) (231,2039724)
(min, max) nonzero elements (40,1024059) (399,4864543)
optimum unknown 16 13

Table 6.2.: Summary of problems in 4LIB and MOPSLIB

lot-sizing problems. As path-based cut generators are an important part of this thesis

and they typically work well on lot-sizing instances this increases the number of instances

relevant for this thesis. As our set of public test problems consists of the problems

from four public test sets it is called 4LIB. If not stated differently, it is used for all

experiments.

Table C.1 on page 161 in the appendix lists the problem instances in 4LIB including

the problem type. The table distinguishes four problem types: pure binary problems

(BIN), pure integer problems (INT), mixed integer binary problems (MIB) and general

mixed-integer problems (MIP).

The second set of problems used is a proprietary set further on called MOPSLIB. It

consists of problem instances collected by the DS&OR Lab at the University of Paderborn

for testing the performance of the MOPS MIP solver. The instances all have a real-world

background. It is used in addition to 4LIB because it contains some very large instances

that more and more often come up in industry projects. These instances have up to

1,798,971 variables and can only be solved using a 64bit architecture. So all tests with

the MOPSLIB are performed using a 64bit version of the MOPS solver. Some of the

instances are from project partners of the DS&OR Lab that do not want their data to be

published. Therefore the instances in MOPSLIB can not be given to other researchers for

experimentation. Characteristics for the instances in MOPSLIB are given in table C.2

on page 162 in the appendix. Table 6.2 lists a summary of the instances in 4LIB and

MOPSLIB.

103

6. Evaluation

6.1.3. Computational Experiments and Performance Measures

This subsection discusses experimental setups and performance measures for testing cut

generators. We start with some definitions. The tests in this thesis are designed to

compare a set S of solver versions. By a solver version we mean a MOPS executable

with a set of parameter settings. To perform the tests, a set P of test problem instances

is needed. For some tests we need a solution to the problems in P. A solution sp in the

set of solutions Ip for a problem p consists of an objective function value z̄p and a pair

of vectors (x̄p, ȳp). It is called ε-optimal if z̄p − ε < zMIP
p where zMIP

p is the objective

function value of an optimal solution to p. If all constraints are violated by at most ε

it is called ε-feasible and if all elements of ȳp satisfy 1 − ε < |ȳi
p − bȳ

i
pc| < ε it is called

ε-integer. The optimal solution to the LP relaxation of the initial problem p is denoted

by zLP
p . In the following, for each test used in this thesis we describe the experimental

setup and discuss advantages and disadvantages.

The k-round Test

The classical approach to test the quality of cut generators, for example used in [51], [70],

and [93], is to compare the dual bound (LP bound) in the root node after adding cuts for

a number of rounds. In addition to the dual bound, usually the number of cuts generated

and the time spent in the rounds is reported. In this thesis we call this experimental

design a k-round test where k is the number of rounds.

In our experimental setup for k-round tests we usually test one cut generator and de-

activate all others. Nevertheless, we use all preprocessing methods such as probing and

bound reduction with their default settings. An exception are the path-based cut gener-

ators that in our implementations do not generate cuts from single rows. Therefore we

always test them together with the cMIR cut generator. In figure B.1 on page 155 we

show a typical configuration file used in a k-round test.

The conclusions that can be drawn from a k-round test are limited. As already pointed

out by Margot in [71], this test is mostly useless for measuring accuracy because invalid

cuts would only become apparent if they lead to infeasibility or a dual bound worse than

the optimum. Concerning the efficiency, the problem is that if more cuts are found and

more rounds can be done, the separation obviously takes longer. But usually measures

used in comparisons do not consider the trade-off between time and quality. For most

instances they do not have to because the time spent in the cut generators is extremely

small, especially compared to the time needed to resolve the LP relaxation.

104

6.1. Evaluation Methods

Quite surprising is the fact that a k-round test can not even measure the quality of

separation algorithms in all cases. There are several reasons to support this claim. Firstly,

it is obvious that a k-round test does not give any insight if the optimal objective function

value for the LP relaxation and the MIP are the same. Another is that after the first

round of the cut generation different algorithms get different input, i.e. it might happen

that a very good algorithm accidentally runs into an LP relaxation solution that can

not be cut off with a cut of the family it uses. The reason described next is even more

substantial. Example 6.1 shows that even if the dual bound is better this does not mean

that the formulation has improved more and hence the optimal solution will be obtained

faster.

Example 6.1. We assume an instance of the constant capacity lot-sizing problem (called

LS-CC in [85])

min
n∑

t=1

ptxt +
n∑

t=0

htst +
n∑

t=1

qtyt

st−1 + xt = dt + st for 1 ≤ t ≤ n

xt ≤ Cyt for 1 ≤ t ≤ n

s ∈ R
n+1
+ , x ∈ R

n
+, y ∈ {0, 1}n

with n = 4, (p, h, q) = {6, 4, 3, 6, 100, 1, 1, 1, 1, 20, 20, 20, 20}, d = {7, 6, 5, 7} and C = 10.

For this instance two separation algorithms generate different cuts. Algorithm 1 generates

the MIR cuts

s0 ≥ 7− 7y1

s1 ≥ 6− 6y2.

The dual bound after adding these cuts is z1 = 172 with the solution y = (1, 0.5, 1, 0).

Branching on y2 results in two nodes that can not be pruned right away.

Algorithm 2 generates one MIR cut and one mixing cut

s1 ≥ 6− 6y2

s1 ≥ 11− 8y2 − 3y3 − 2y4.

After adding these cuts the dual bound is z2 = 167 with the solution y = (0.7, 1, 1, 0). In

this case branching on y1 results in two nodes that are integral and one is the optimal

solution of 173. So in this example it can be seen that although z1 > z2 the improvement

105

6. Evaluation

of the formulation by algorithm 2 is clearly better. Of course this example is artificial in

the sense that two algorithms that generate exactly these cuts are not likely to be used. But

the example hints at how situations like this can happen in more complex souroundings.

Because of these reasons evaluating separation algorithms solely based on k-round tests

is problematic. Nevertheless this experimental design can be used and gives important

insights if the weaknesses of the method are considered. A large advantage of k-round tests

is that they can be done very fast. As the solution of the LP relaxations can be restored

from a saved basis file and the separation algorithms usually need at most a few seconds,

many instances can be tested in less than 10 minutes. This makes this experimental design

attractive for comparing and testing variants of separation algorithms. When using a 1-

round test the time gets even less. It can be used very well to investigate whether two

variants of a cut generator generate roughly the same cuts (as done in [17]) or to see

whether changing a small detail in the algorithm changes the outcome significantly. The

disadvantage of a 1-round test is that the effect of separating inequalities with a rank

(see section 2.5) larger than one can not be tested. When interpreting the results of a

k-round test, minor differences should not be considered. What can be considered worth

an interpretation are large differences in the dual bound, the runtime, or the number of

cuts. Important findings in a k-round test should be verified using other experiments.

The k-hour Test

Another classical test to evaluate cut generators is to include them in a branch-and-cut

algorithm of an MIP solver and run it until a time limit is reached. This has the advantage

that the quality and the efficiency of the cut generators are tested. Furthermore, diversity

is also tested to a certain degree when comparing cut generator configurations with each

other. Finally, accuracy is tested because it is implicitly checked whether the optimal

solution is cut off.

In this thesis we call this experimental setup a k-hour test where k is the number of

hours that is used as a time limit for the solver. The main performance measure reported

usually is the time to solve the problem instances in the test set. The obvious advantage

of this experimental design and this measure is that it reflects the situation that a user

of a solver cares for. The downside of it is that the performance results in this test do

not solely depend on the cut generators. They are also influenced (among other factors)

by the primal heuristics used, the branching strategy, and the node selection strategy of

the solver. The results are also subject to some randomness, for example, if the addition

106

6.1. Evaluation Methods

of a certain cut results in a failure of a heuristic to find a good feasible solution early in

the branch-and-cut tree.

When evaluating the results, other measures than time are sometimes investigated. These

measures are number of nodes, number of LP iterations, and some form of gap for those

instances that could not be solved within the time limit. The number of nodes usually

is a very bad indicator of performance especially when comparing different solvers. How

much time is spent in a node strongly depends on the techniques used in the node and on

the size and difficulty of the LP relaxation. As adding cuts increases the formulation of

the problem adding more cuts might result in an increase of the average time needed to

resolve a node in the branch-and-cut tree. So the number of nodes does not say anything

about the trade-off between solving small nodes fast or large nodes slow. The number of

LP iterations can give a hint of how much work the solver did but is a less direct measure

than total time and excludes the effort spent in other parts of the solver.

Reporting some form of gap when the solver failed to solve an instance within the time

limit does make sense because the gap is an important information for the practical use

of the results. A typical gap is the duality gap, in a slightly different form also used in

[85]. It is defined as

Γduality
p =

|z̄p − zp|

|z̄p|+ ε

where z̄p is the best known primal bound and zp is the smallest (when minimizing) dual

bound of the nodes in the node list when the solver is stopped. A very small number ε

is added to avoid divison by zero. Note that some solvers report other gaps during the

execution of the algorithm.

In the k-hour tests for this thesis we use default settings for all solver parameters that are

not related to the cut generators based on row relaxations. This means that we use all

preprocessing techniques and cover, implication, clique and Gomory cuts together with

the cuts we activate for the experiment. In the description of the configuration we use the

state-of-the-art (SOTA) configuration as a reference. The state-of-the-art configuration

for row relaxation-based cuts is to use flow cover, cMIR, and flow path cut generators

with a traditional aggregation and bound substitution strategy. In section 6.6 we compare

this to the improved SOTA configuration where we additionally use our new path-based

tightest row aggregation and improved bound substitution. Figure B.2 on page 155 shows

a typical configuration file used in a k-hour test.

A slight variation of the k-hour test is the truncated k-hour test. In this experimental

setup the solver is given the optimal objective function value zMIP
p as a primal bound.

107

6. Evaluation

By doing this the solver is only used to prove the optimality of this solution. This

has the advantage that primal heuristics have no impact on the solution process and

the influence of the branching decisions is also reduced. It emphasizes the influence a

better dual bound obtained by adding cuts has on proving optimality. The effect of an

improved formulation with which it is easier to find good solutions in the tree and in

primal heuristics is eliminated. Truncated k-hour tests can be used in addition to normal

k-hour tests to validate their results.

The ε-validity Test

This is an experimental design that can be used to test the accuracy of cut generators.

The idea is to check for each cut generated in a k-round test whether it cuts-off a given

integer solution z̄p by more than a certain tolerance ε. We call such a cut ε-invalid.

The solutions for these tests in this thesis are generated by running MOPS with all

preprocessing (LP and IP) deactivated and a time limit of 10 hours. Additionally we

also decrease the tolerances in MOPS to require solutions to be ζ-optimal, ζ-integer and

ζ-feasible with ζ = 1 × 10−7. The result of this is that the accuracy of the solutions

mainly depends on the accuracy of the MOPS LP solver. Only solutions that are within

the optimality tolerance of MOPS are used for the test, these are 113 out of the 4LIB

test set and 8 out of the MOPSLIB test set.

As a result of this test we report the instances where ε-invalid cuts are generated. If no

cut is ε-invalid for the solutions I to the problems in P we say that the implementation

is ε-accurate for (P, I) in this k-round test. This way of testing for accuracy has several

weaknesses like the problem that for some instances generating valid solutions is very

hard. Its inherent strength is that it allows us to say that the results of a k-round test

are not influenced by invalid cuts and that the implementations compared have the same

minimal standard for accuracy. As it can be done relatively fast it can also be used

very well for debugging. An improvement to this test would be to use several optimal

or near optimal solutions. Another way of testing the accuracy of separation algorithms

is described in [71]. It is called the random dives test and promises much better insight

into the accuracy of the tested separation algorithms. Unfortunately it needs 0-feasible

solutions and generating these can be very troublesome. Another drawback of this method

is that it needs some implementation effort.

108

6.1. Evaluation Methods

6.1.4. Presentation

The results of an experimental analysis of algorithms usually are many pages full of data.

Although all this data is needed for an in-depth analysis, interpretation of the results is

very much simplified by a sophisticated presentation of the results. Unfortunately, using

a bad presentation can lead to wrong conclusions. Therefore the presentation method

has to be selected very carefully.

Researchers in computational MIP apply many different presentation methods to their

results. One is to use sums, arithmetic or geometric means, medians, and quartiles to

aggregate the results for many problem instances into a single number (or a few numbers)

for each algorithm that can easily be compared. The problem with these methods is that

they tend to be influenced by single or just a few instances and that it has to be decided

how to deal with instances where the algorithm fails. See [42] for a discussion of these

methods. Another approach is to rank the performance of algorithms for each instance

and then report average ranks. The problem with these methods is that information about

the size of the difference between algorithms is lost. An example for this presentation

can be found in [65].

Using statistical tests to compare algorithms is also a viable approach, it is for example

used in [63]. Recently Margot brought it back to attention by using it in [71]. The

problem with this approach is that much of the transparency is lost and the evaluation

of the outcome of statistical tests might be hard to understand for readers who are not

familiar with the topic. We choose to use the presentation techniques described below

in this thesis in addition to tables with detailed results. The graphical displays for

both of these presentation methods follow the design principles for the visual display of

quantitative information by Tufte [90].

Gap Difference Diagrams

The gap difference diagram is a presentation method newly introduced in this thesis. It

is based on first simplifying the interpretation and presentation of k-round tests by com-

puting gap closed ratios. These ratios are designed to give an idea about how successful a

separation algorithm was in closing the gap between the initial solution of the LP relax-

ation and the IP optimal solution. Reporting just the dual bound has the problem that

we can not compare two instances in the same scale. We consider two slightly different

109

6. Evaluation

ratios for this purpose. The first is the absolute gap closed :

% =
z∗ − zLP

zMIP − zLP + ε

where zLP is the initial solution of the LP relaxation, z∗ is the dual bound after k rounds

of cuts and zMIP is an optimal solution to the problem instance or the best known primal

bound. The very small number ε is added to avoid a division by zero. The other ratio is

the relative gap closed :

ζ =
z∗ − zLP

zbest − zLP + ε

where the same notation as above is used and zbest is the best dual bound that any of

the compared algorithms achieved. The advantage is that for %rel no optimal solution is

needed and the best algorithm(s) in a comparison for one instance can easily be identified

because their ratio is 1.00. For the presentation in this thesis we use the absolute gap

closed because we know the optimal solutions or reasonably good bounds for all problems

in our test sets.

The gap difference diagram is a visual display that helps to compare the results of two

k-round tests performed with two solver versions A and B. It shows the gap closed

difference ∆s = %A
s − %B

s for each instance s in the test set using a bar chart. A positive

value of ∆s means that algorithm A closed more of the gap than algorithm B for instance

s whereas a negative ∆s implies that algorithm B closed more of the gap. To improve the

readability, the instances are sorted by ∆s and labels are added to the instances where the

first time ∆s ≤ 0.001 and ∆s ≤ −0.001. The result is a diagram as shown in figure 6.1.

An valid interpretation of the example in figure 6.1 is that algorithm A overall performs

better than algorithm B because for many instances more of the gap is closed. For one

instance the difference goes up to more than 80%. On the other side of the diagram

we see that for a few instances worse bounds are achieved. To make a final conclusion

whether to use algorithm A or B it is advisable to check (using an 1-hour test) that the

differences for these instances do not result in a situation were an instance can not be

solved within reasonable time. The numbers in the diagram can be interpreted in the

way that for 92% of the instances algorithm A closes more or the same amount of the

gap and it is only worse for 8% of the instances.

A major drawback of this visual display is that only two solver versions can be compared.

But for comparing two solver versions it gives a very good impression of how different

two algorithms are and for how many instances the results of one algorithm are better

than the results of another one. It also gives information whether they differ by a small

110

6.1. Evaluation Methods

47%

92%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.1.: An example of a gap difference diagram comparing the results of a 10-round
test for two solver versions A and B.

or large amount. Together with a table sorted by ∆s, as we show in the appendix of this

thesis, it can help to identify instances where improvements are needed.

Performance Profiles

In this thesis performance profiles as introduced by Dolan and Moré in [42] are used to

present the results of k-hour tests. The performance profile of an MIP solver is based on

a performance ratio:

rps =
tps

mini∈S{tpi}

Here tps is the time needed to solve problem p with solver version s. We define that

rps ∈ [1, rM] and that rps = rM only if problem p is not solved by solver s within the

time limit. What rps actually says is that if for example rps = 4 then solver version

s solves problem instance p four times slower than the fastest solver version in this

comparison. The performance profile of a solver is the cumulative distribution function

for a performance metric, so as we use rps as performance metric, the performance profile

used in this thesis is

ρs(τ) =
1

|P|
|{p ∈ P : rps ≤ τ}|.

111

6. Evaluation

0.55

0.33

0.26

0.59

0.37

0.62

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5 6 7 8 9 10

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

A

B

C

Figure 6.2.: An example of a diagram showing performance profiles for three solver ver-
sions A, B and C.

The performance profile of a solver version depends on the set S of solver versions it is

compared with and on the set P of problem instances. We choose to show the performance

profiles on a logarithmic scale as suggested in [42]. The performance profiles are displayed

in a digram as shown in figure 6.2.

The small numbers in the diagram show the values for τ = 0 and τ = rM (or the

appropriate logarithmic value). This simplifies observing how many instances were solved

fastest and how many instances were solved at all. For the further interpretation of a

diagram with performance profiles the general rule is that a solver version is better if its

profile is further up and to the left of the diagram. So from the example in figure 6.2 the

conclusion can be drawn that solver version C performs best. From the numbers we can

see that it solves about 37% of the instances fastest. Furthermore they indicate that is

solves about 62% of the instances within the time limit. For the solver versions A and B

we can not clearly say which one is better. A solves more instances fastest and B solves

more instances within the time limit. An interpretation of this could be that A is faster

for some instances but B is better for solving hard instances. Note that we only show a

part of the y-axis to focus on the interesting part of the diagram.

112

6.2. Accuracy Evaluation

The advantages of using performance profiles are explained in detail in [42]. One worth

mentioning is that they give the same weight to each instance in the test set so that the

interpretation is not influenced by a small number of instances as it is the case when using

averages. In the last few years performance profiles enjoyed great popularity in the field

of computational optimization and are used in articles of major journals (see for example

[64] and [60]).

In addition to a diagram with the performance profiles we show tables with detailed

results for each solver version tested. These tables can be found in the appendix. Note

that some solutions reported optimal by the solver differ from the optimal solutions listed

in table C.1 and table C.2. We attribute this to the default values of the tolerances in

the MOPS MIP solver.

6.1.5. The Test Environment

All computational experiments for this thesis are performed on a personal computer

(PC) with an Intel Core 2, 2.40 Ghz, CPU and 8 GB random access memory (RAM).

The operating system of this machine is Windows XP Professional x64. The code of the

described cut generators, the framework, and a new version of the cut pool for MOPS

10.0 is linked to a MOPS version 9.19 library (LIB) and compiled using release settings

of the Intel Fortran Compiler 10.0.026. For tests using the 4LIB test set a 32-bit binary

is generated as this is the usual way MOPS is distributed. For experiments with the

MOPSLIB test set a 64-bit binary is generated because some of the instances need to

address more memory than the 32-bit version can allocate. If not stated differently,

the MOPS parameters are at their default settings that can be found in [77] and [78].

Performance measures are obtained from the MOPS statistic files and these, as well as

MOPS message and option files, are archived by the author.

6.2. Accuracy Evaluation

In this section we evaluate the accuracy of the implemented cut generators. For this

purpose we do ε-validity, 10-round tests with ε ∈ {1× 10−4, 1× 10−5, 1× 10−6, 1× 10−7}

for each cut generator. As mentioned in section 5.6, our path-based cut generators do

not generate cuts from single rows. Therefore in the tests for flow path cut, uPMC and

cPMC generators the cMIR cuts are also activated.

113

6. Evaluation

flow cover - - - -

cMIR - -
b4-12b

rgn
b4-12b

rgn

flow path - - rgn

b4-12
b4-12b

rgn

uPMC - - rgn

b4-12
b4-12b

rgn

cPMC - - rgn

b4-12
b4-12b

rgn

1× 10−4 1× 10−5 1× 10−6 1× 10−7

ε

Table 6.3.: Results of the accuracy tests. The table shows the names of the instances for
which invalid cuts were generated.

In section 6.1 we explain the ε-validity test and mentioned that the solutions for this test

are generated with an accuracy of 1 × 10−7. Therefore testing for smaller numbers of ε

does not make sense. The primal tolerance of the MOPS LP/MIP solver is by default

1 × 10−4. Hence we require that all cuts generated are at least 1 × 10−4 accurate, that

means that for no instance of our accuracy test set a cut is generated that violates our

accurate optimal solution by more than 1 × 10−4. As one can see in table 6.3, which

lists the instances where ε-invalid cuts are generated, this is the case for all of the cut

generators.

The results for smaller values of ε indicate that numerical issues lead to slightly violated

cuts for a very small number of the 113 instances. Whether the reason for this lies in the

LP solver or the cut generation can not be said from this experiment. Overall this test

shows that the implementations are accurate enough to be used in a commercial MIP

solver. Nevertheless note that this test only uses a subset of our test problems because

114

6.3. Evaluation of the Flow Cover Cut Generator

70%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.3.: Comparison between the default version of the flow cover cut generator that
does not generate cuts from aggregated rows (A) and a version that does (B).

we were not able to generate accurate optimal solutions for the other problem instances.

Among the other instances are numerically difficult instances that cause a lot of problems

for LP solvers and cut generators. For these instances this test could not be used but it

was checked that no obviously invalid cuts are generated.

6.3. Evaluation of the Flow Cover Cut Generator

6.3.1. Implementation Details

In this section we show how much impact the implementation details described in sec-

tion 5.3 have on the performance of a flow cover cut generator. The first thing we want to

investigate is whether generating flow cover cuts from aggregated rows is advantageous.

In figure 6.3 we see a gap difference diagram for the comparison of the default version

of the implemented flow cover cut generator that does not generate flow cover cuts for

aggregated rows and a version of the cut generator that does.

The gap difference diagram indicates that generating flow cover cuts from aggregated rows

results in better dual bounds for about 30% of the problem instances in the 4LIB test

115

6. Evaluation

0.51

0.63

0.61

0.35

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 0.5 1 1.5 2

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

w/o aggregated flow cover cuts

with aggregated flow cover cuts

Figure 6.4.: Performance profiles for two solver versions, both using an improved SOTA
configuration, one with aggregation for the flow cover cuts, the other without.

set. The detailed results in table D.1 on page 164 show that getting these improved dual

bounds needs much more computation time. The sum over the time spent in supernode

processing for all instances (not only those listed in table D.1) is 924.99 seconds without

aggregation and 1545.40 seconds with aggregation. Furthermore we assume that the flow

cover cuts found through aggregation can also be found using cMIR cuts. Therefore we

show the results of two 1-hour tests where we compare the improved SOTA solver version

with aggregated and without aggregated flow cover cuts. The results of these tests are

shown in the performance profiles in figure 6.4.

From the performance profiles we can see that the version without aggregated flow cover

cuts performs clearly better than the one with aggregated flow cover cuts. One reason

for this is that although better bounds are achieved in the direct comparison of the two

flow cover cut generators alone, in combination with the cMIR cut generator that uses

aggregation, the additional time spent to get aggregated flow cover cuts does not pay

off.

The detailed results in table D.21 (page 187) and table D.22 (page 190) reveal that with

aggregated flow cover cuts the instance bc1 can be solved. Without aggregated flow cover

116

6.3. Evaluation of the Flow Cover Cut Generator

10%

97%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.5.: Comparison between the default version of the flow cover cut generator that
generates cuts out of cuts (A) and a version that does not (B).

cuts this instance is not solved but the two instances b4-10 and tr12-30 are. We assume

that this is not the effect of a better or worse cut generator but the result of differences

in the way the branch-and-bound tree is searched. More important is the fact that for

a large number of instances the solution time is much larger because of the time spent

in the cut generation. One reason for this might be the exact solution of the flow cover

finding knapsack problem. We discuss this later in this section. As a result of these

experiments we do not use aggregation for flow cover cuts in the default version of the

flow cover cut generator. We do include an parameter to activate it to solve instances

where every bit of improvement in the dual bound is needed.

Another aspect concerning the input rows of a flow cover cut generator is whether to

generate cuts out of cuts. The gap difference diagram in figure 6.5 shows a comparison

of two 10-round tests with different flow cover cut generator versions. In version A, the

default version, cuts are generated out of cuts added in previous iterations of the cut

generation. In version B only original rows of the constraint matrix are considered as

input rows. Note that in neither case aggregation is used.

The diagram shows that the impact of generating cuts out of cuts is fairly small. Only

for a few instances better or worse dual bounds are achieved. The computation times

117

6. Evaluation

2%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.6.: Comparison between the default version of the flow cover cut generator that
uses binary variable bounds on integer variables (A) and a version that does
not (B).

shown in the detailed results in the appendix (table D.2, page 165) do not increase very

much. Therefore we generate cuts out of cuts in the default version of our flow cover cut

generator despite its small impact.

Concerning the reformulation of rows we now investigate whether using variable upper

bounds on integer variables influences the performance of the flow cover cut generator.

To do so we perform two 10-round tests with two versions of the flow cover cut generator,

one that does use binary variable bounds on integer variables and one that does not. The

results are shown in a gap difference diagram in figure 6.6.

These results indicate that only for three instances the use of binary variable bounds on

integer variables yields clearly better dual bounds. See table D.3 on page 165 for detailed

results. For the three instances, ches3, ches5, and neos671048, the improvement is large.

An inspection of other results in this thesis reveals that the ches3 and ches5 instances a

always solved within seconds and that neos671048 is also not a very problematic instance.

Therefore the result of this experiment is that using binary variable bounds on integer

variables in a flow cover cut generator can improve the dual bound of some MIP problem

instances but in our test set this extension of the original reformulation approach does

not lead to an improved performance.

118

6.3. Evaluation of the Flow Cover Cut Generator

22%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.7.: Comparison between the default flow cover cut generator using y∗j =
x∗

j

uj
(A)

for variables without a variable upper bound and a version that uses y∗j = 1
(B) for these.

As mentioned in section 5.3 the flow cover finding is the most important aspect of a flow

cover cut generator. There we also point out that in the objective function of the flow

cover finding knapsack problem using

y∗j =
x∗

j

uj

for variables that do not have a variable upper bound is a better choice than using

y∗j = 1

as it is implied by the reformulation. We test this by comparing two versions of the cut

generator where we used the default version with the first rule mentioned (version A) and

a version with the rule implied by the reformulation (version B). We show the results in

the gap difference diagram in figure 6.7. Detailed results can be found in table D.4 on

page 166.

As expected using version A yields significantly better results for many instances. Sur-

prisingly, the dual bound is the same or better for all but one instance for which the

119

6. Evaluation

14%

91%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.8.: Comparison between the default version of the flow cover cut generator that
uses an exact algorithm to solve the flow cover finding knapsack problem (A)
and a version that uses a heuristic (B).

difference in the bound is very small. This is an indication that this implementation

detail is very important for a good flow cover cut generator.

Another implementation detail that is connected with the flow cover finding of the flow

cover cut generator is how to solve the flow cover finding knapsack problem. In figure 6.8

we show the results of the comparison of two versions of the flow cover cut generator.

The first, version A, uses an exact branch-and-bound-based method for solving the flow

cover finding knapsack problem. The second, version B, uses a simple greedy heuristic

(described in [80]).

The gap difference diagram shows that for some instances using the exact method results

in much better dual bounds. For a few instances the dual bounds are worse. A comparison

of the runtime of the two cut generator versions reveals that for all 175 test problem

instances version A spends 924.99 seconds in the supernode processing phase and version

B 935.07 seconds. For most of the instances the runtime is the same leading to the

conclusion that, although a similar amount of time is spent, solving the flow cover finding

knapsack problem exactly improves the dual bounds obtained. Note that there is a node

limit of 100000 on the branch-and-bound method to avoid getting stuck in a very hard

instance.

120

6.3. Evaluation of the Flow Cover Cut Generator

19%

98%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.9.: Comparison between the default version of the flow cover cut generator that
uses the rule L− = {j ∈ N− : λy∗j < x∗

j} (A) and a version that uses the rule
L− = {j ∈ N− : λy∗j ≤ x∗

j} (B).

Another decision that has to be made in the flow cover cut generator is which variables

to put into the set L−. As mentioned in section 5.3, L− = {j ∈ N− : λy∗j < x∗
j} is a

reasonably good rule for this as it maximizes the violation of the cut and thus increases

the chance to find a violated inequality. If we use the same rule except that we use less

than or equal (≤) instead of less than (<) this would also maximize the violation. We

compare these two versions in the gap difference diagram shown in figure 6.9.

These results indicate that there is a measurable difference between the two solver ver-

sions. They also indicate that using the rule with less than leads to better results, but

not for all instances. Therefore we choose to use the rule with less than for the default

version of the flow cover cut generator.

Finally we want to investigate how important the lifting is for the quality of the flow cover

inequalities. To do so we compare the results of two 10-round tests. In the first version

of the flow cover cut generator we generate LSGFCIs (version A) and in the second just

SGFCIs, i.e. we do not use lifting (version B). The results are shown in figure 6.10 and

table D.7 on page 169.

For some instances lifting makes a difference but in general it does not. A reason for this

121

6. Evaluation

8%

91%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.10.: Comparison between the default version of the flow cover cut generator that
uses lifting (A) and a version that does not (B).

might be that the flow cover finding does not consider the lifting process. Nevertheless,

as the lifting is sequence independent it can be done very quickly and does not increase

the runtime very much. Thus we use it in the default version of our flow cover cut

generator.

6.3.2. Comparison to the Previous Flow Cover Cut Generator

In this section we compare the described flow cover cut generator to the one that is

currently used in the MOPS solver. It is an implementation by the author of this thesis

but done 3 years ago and not in the framework described in this thesis. We compare

the results of two 10-round tests, one with the new flow cover cut generator (without

aggregation) (A) and one with the old flow cover cut generator (B). Figure 6.11 shows

the results in a gap difference diagram and table D.8 on page 170 lists the actual numbers

in a sorted table.

The gap difference diagram shows that for almost all instances the new cut generator

performs at least as good as the old one. For some instances the improvement is extremely

large. The table with the detailed results shows that these instances are pure binary

problems and that the old cut generator did not generate cuts at all. The reason for this

122

6.3. Evaluation of the Flow Cover Cut Generator

27%

92%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.11.: Comparison between the new (A) and the old (B) flow cover cut separation
algorithm of MOPS .

is that the old cut generator did not use pure binary rows as input. This makes sense

from a theoretical point of view but the practical results indicate that, although flow cover

inequalities are not intended to generate cuts for pure binary rows, our implementation

generates them quite successfully. Most of the implementation details described in this

thesis were actually identified when the old cut generator was implemented or from the

comparison of the old and the new cut generator.

6.3.3. Comparison to Published Results

Here we compare the results obtained with the described flow cover cut separation algo-

rithm to the results reported by Gu, Nemhauser and Savelsbergh in [51]. In table 6.4 we

list those problem instances of their test set publically available, the results they reported,

and our results. Unfortunately the comparison is not fair because different solvers are

used and we do not know the exact settings in which their results were obtained. Nev-

ertheless these results can give a hint whether the implementation by Gu, Nemhauser,

and Savelsbergh does something totally different than our implementation. To ease the

identification of the best result for each instance we print it in bold face. For MOPS ,

the column cuts gen. lists the cuts generated, the column cuts sel. lists the cuts selected

by the cut pool.

123

6. Evaluation

Gu et al. 1998 MOPS
name cuts XLP cuts gen. cuts sel. XLP

egout 14 556.4 46 17 565.9

fiber 360 381837.8 156 89 382576.8

fixnet3 83 51880.8 44 17 51611.3
fixnet4 190 8307.8 257 57 8405.8

fixnet6 169 3507.4 267 52 3564.3

khbo05250 122 106608880 331 88 106724316.4

mod013 54 267.3 80 31 269.6

modglob 366 20662084 282 80 20675896.1

rentacar 60 29219168 29 12 29017833.3
rgn 74 64.6 29 20 48.8
set1al 400 15867.2 269 180 15464.5
set1cl 400 6484.2 269 180 5996.5

Table 6.4.: Comparison to the results from [51].

The results show that for more than half of the instances our cut generator achieved a

better dual bound than the one by Gu, Nemhauser and Savelsbergh described in [51].

The reason for this is not necessarily that the cut generator is better, differences between

the underlying solvers, for example in IP and LP preprocessing, might as well be the

reason. For five of the instances the Gu, Nemhauser, Savelsberg cut generator achieves

better results, again the exact reasons are not clear. We know from experimentation that

using a different configuration of the cut pool can lead to much better dual bounds with

our cut generator.

Based on these results we claim that the cut generator described in this thesis is able to

recreate or improve upon the results in [51]. Obtaining these results is only possible with

close attention to the implementation details not mentioned in any publication before

but described for the first time in section 5.3 of this thesis.

6.4. Evaluation of the cMIR Cut Generator

6.4.1. Implementation Details and Algorithmic Improvements

In this section we show how much impact the implementation details and algorithmic

improvements presented in section 5.4 have on the performance of the cMIR cut generator.

The first implementation detail we want to investigate is whether generating cuts out

of cuts improves the performance of a cMIR cut generator. Figure 6.12 shows a gap

124

6.4. Evaluation of the cMIR Cut Generator

38%

93%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.12.: Comparison between the default version of the cMIR cut generator (A) and
a version that does not generate cuts out of cuts (B).

difference diagram for a computational experiment where we compare a version of the

cMIR cut generator that generates cuts out of cuts (A) with one that does not (B).

The diagram shows that for many instances slightly better dual bounds are obtained

by generating cuts out of cuts. One reason for this is, as discussed in section 5.6, that

some path inequalities can be generated by aggregating cuts generated in previous rounds

with constraints of the original constraint matrix. The detailed results in table D.9 on

page 172 reveal that some of the instances where the difference is large are lot-sizing

instances, which supports this observation. An important question is whether there are

higher-rank cMIR inequalities that we can not generate using a path-based cut generator

but which are needed to solve some of the MIP problems in our test set. To investigate

this we compare two cut generator configurations for which we perform a 1-hour test. In

both cut generator configurations we use the flow cover, the flow path, and the cMIR cut

generators. In one configuration all cut generators generate cuts out of cuts in the other

they do not. The performance profiles for the two cut generator configurations are shown

in figure 6.13.

These results show that the use of cuts out of cuts slows down the solver for some

instances. On the other hand it allows to solve much more instances within one hour.

125

6. Evaluation

0.38

0.63

0.47

0.60

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5 6 7

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

with cuts out of cuts

without cuts out of cuts

Figure 6.13.: Comparison between two cut generator versions, one that generates cuts
out of cuts and one that does not.

Although the version that does not generate cuts out of cuts also used flow path cuts

some lot-sizing instances were not solved. In these cases the fact that some path-based

cuts can not be generated as flow path cuts but can be generated as higher-rank cMIR

cuts might play a role. Overall we consider the possibility to solve more problems more

important and thus use cuts out of cuts in our default setting.

In section 5.2 we suggest algorithmic improvements for the cMIR cut separation algorithm

that involve changes to the aggregation and bound substitution strategies. The results

are called path-based tightest row aggregation and improved bound substitution. We now

compare the combination of these two strategies to the traditional strategies suggested

by Marchand and Wolsey in [70]. These traditional strategies were also implemented by

Gonçalves and Ladanyi in [48]. For this comparison we perform two 10-round tests for

different cMIR cut generator versions. The first uses the new path-based tightest row

aggregation and the extended bound substitution (version A) and the other the traditional

strategies (version B). Figure 6.14 shows the corresponding gap difference diagram.

These results show that for 92% of the instances in our test set the improved version of

the cMIR cut generator results in equal or better dual bounds. The detailed results can

126

6.4. Evaluation of the cMIR Cut Generator

37%

92%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.14.: Comparison between a cut generator version using path-based tightest row
aggregation and extended bound substitution (A) and version using tradi-
tional aggregation and bound substitution (B).

be found in table D.10 on page 173. Only for a few instances the traditional aggregation

and bound substitution methods obtain better results.

We now look at the two algorithmic improvements separately. First we inspect the path-

based tightest row aggregation. The path-based tightest row aggregation improves the

aggregation heuristic by Marchand and Wolsey in [70] in two points. First, as indicated

in section 5.2, we change the selection of the aggregation variable to emphasize finding

path structures. Second, we specify that in the row selection of the aggregation heuristic

the tightest row is used. Marchand and Wolsey did not specify which row to use but

Gonçalves and Ladanyi [48] used the first row they found. In figure 6.15 we show a gap

difference diagram for a comparison of two 10-round tests for two cMIR cut generator

versions. The first version uses the path-based tightest row aggregation (version A) the

second uses the traditional aggregation heuristic from [70] and [48], i.e. choosing the

variable farthest from its bounds and the first row found (version B). Both versions use

the extended bound substitution method.

The diagram shows that the path-based tightest row aggregation contributes significantly

to the good results of our improved cMIR cut generator. Table D.11 on page 177 lists the

detailed results. Another important aspect of the path-based tightest row aggregation

127

6. Evaluation

37%

92%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.15.: Comparison between a cMIR cut generator version that uses path-based
tightest row aggregation (A) and one that uses the traditional aggregation
strategy (B).

is that it leads to better results for the path-based cut generators. This is evaluated in

section 6.5.

Now we investigate how large the impact of the improved bound substitution method

on the performance of our cMIR cut generator is. The largest difference between the

traditional and the improved bound substitution is the use of extended bounds. The idea

of using extended bounds is to make up for the fact that the path-based tightest row

aggregation less frequently incorporates information about complex bound structures.

Other differences are the use of variable bounds on integer variables and an improved

bound substitution rule. Again we show a gap difference diagram (figure 6.16) for two

versions of the cMIR cut generator. The first version (A) uses the improved bound

substitution, the second (B) the traditional one. In both cases we use the path-based

tightest row aggregation.

These results show that the impact of the improved bound substitution is also significant

but it seems to be less influential than the aggregation strategy. We also see that the

impact of combining both methods is higher than of the individual methods.

The impact of using binary variable bounds on integer variables in the bound substitution

128

6.4. Evaluation of the cMIR Cut Generator

26%

89%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.16.: Comparison between a version of the cMIR cut generator that uses the
improved bound substitution (A) and one that does not (B).

is shown by the gap difference diagram in figure 6.17. These results are obtained by

running two 10-round tests with two cMIR cut generator versions. The first uses binary

variable bounds for integer variables (A), the second does not (B).

As observed in a similar experiment for the flow cover cuts using binary variable bounds

on integer variables only influences very few instances. See table D.13 on page 179 for

details. Note that by using variable bounds on integer variables we eliminate one of the

advantages of the flow cover cut generator over the cMIR cut generator.

6.4.2. Comparison to the Previous cMIR Cut Generator

In this section we compare the new cMIR cut generator to the old one. This old cMIR cut

generator was implemented by Wesselmann as part of his diploma thesis [95] and includes

some of the improvements also used in the new cMIR cut generator. In figure 6.18 we

show the gap difference diagram for the comparison of the new cMIR cut generator (A)

and the old one (B).

The results show that for almost half of the instances using the new cMIR cut generator

results in better dual bounds. For a few instances the old cut generator performs better.

129

6. Evaluation

99%

2%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.17.: Comparison between a version of the cMIR cut generator that uses binary
variable bounds on integer variables (A) and one that does not (B).

47%

89%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.18.: Comparison between the new cMIR cut generator (A) and the old one (B).

130

6.4. Evaluation of the cMIR Cut Generator

A closer inspection of the detailed results, shown in table D.14 on page 175, reveals that

the instances for which the negative difference is large are easily solvable or unsolvable

for either version and therefore the advantage of the old cMIR cut generator does not

influence the overall performance very much. The largest difference between the old and

the new cut generator is that the old one did not use mixed integer knapsack sets without

continuous variables. Hence among the largest positive differences in the dual bounds

obtained are some pure 0-1 instances. Concerning efficiency, the new cMIR cut generator

needs much more time for some instances. These instances are mainly very hard ones so

that we assume that spending more time on them does not have an impact on the overall

performance of the solver. In section 6.6 we compare the overall performance of the solver

using the old and the new cut generators to get a picture of the overall improvement of

the performance.

6.4.3. Comparison to Published Results

In this section we compare the results of our cMIR cut generator with the results published

by Marchand and Wolsey in [70]. As pointed out in section 6.1, comparing cut generators

implemented in different solvers gives only limited insights. To make this comparison as

fair as possible we compare the results in [70] with our results where we do not generate

cuts out of cuts (see table 6.5).

The comparison of the results indicates that for about half of the instances our results are

the same or better. For the other half the results by Marchand and Wolsey are better.

The only large difference is observed for the instance khb05250. When investigating this

instance more closely we see that if we deactivate the MOPS LP preprocessing, the dual

bound after 10-rounds of cuts is 106825740.22, so even better than the result by Marchand

and Wolsey. This is one symptom of the many important differences in the underlying

solvers. One such a difference is the MOPS cut pool, which leads to much smaller number

of cuts even if the same or a better dual bound is obtained. Overall we claim that it is

viable to conclude from these results that our implementation is capable of competing

with the original one by Marchand and Wolsey.

6.4.4. Comparison between the Flow Cover and the cMIR Cut Generator

In this section we want to check whether our cMIR cut generator renders our flow cover

cut generator obsolete. In section 4.2 we show that the cMIR approach can be used to

generate SGFCIs and even LSGFCIs in some cases. In the evaluation of the flow cover

131

6. Evaluation

Marchand and Wolsey 2001 MOPS
name cuts root cuts gen. cuts sel. root

egout 213 561.00 64 14 566.94

fixnet6 1788 3832.00 436 66 3646.79
modglob 530 20726103.00 608 106 20679686.42
pp08a 593 7123.00 914 164 7161.51

pp08aCUTS 1071 7219.00 1346 117 7189.71
qiu 0 -931.64 0 0 -931.64

rgn 151 82.20 234 60 81.80
set1ch 1328 51814.00 2263 402 51762.61
vpm1 468 20.00 90 40 20.00

vpm2 652 12.69 470 129 12.93

gen 42 112313.00 114 37 112313.36

khb05250 259 106857080.00 164 16 96070104.35
dcmulti 64 184283.00 920 96 186264.76

flugpl 1 1167875.00 0 0 1167185.73
rentacar 175 29449924.00 350 17 29274325.20
misc06 0 12841.00 64 7 12841.69

mod011 922 -5844969.00 3298 317 -59493500.53
bell3a 13 873351.00 48 15 870793.00
arki001 176 7579798.00 1314 155 7579814.00

bell5 18 8621775.00 110 20 8926029.48

danoint 863 62.72 1007 105 62.69
blend2 693 7.17 25 8 7.04
pk1 9 0.00 0 0 0.00

noswot 335 -43.00 12 6 -43.00

rout 1444 982.64 28 15 981.86

Table 6.5.: Results from [70] and results for a version of the cMIR cut generator that does
not generate cuts out of cuts. The best dual bound in each row is marked
bold, cuts gen. are the cuts generated by MOPS and cuts sel. are the cuts
selected by the cut pool.

132

6.4. Evaluation of the cMIR Cut Generator

47%

93%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.19.: Gap difference diagram for a comparison between the cMIR cut genera-
tor (A) and the flow cover cut generator (B). In both cases aggregation is
activated.

inequalities in section 6.3 we observed that lifting does not improve the flow cover cut

generator very much. So the idea that a cMIR cut generator implemented in certain way

can make up for the existence of a flow cover cut generator comes into mind.

In a first experiment we compare the cMIR cut generator and the flow cover cut generator

in a 10-round test. To do so, the flow cover cut generator is used with aggregation. The

results are shown in the gap difference diagram in figure 6.19. Detailed results can be

found in table D.15 on page D.15.

The results show that for almost half of the instances the cMIR cut generator moves the

bound more than the flow cover cut generator. The actual differences between the two

cut generators are the way in which the set of complemented variables, i.e. the cover, is

chosen, the bound substitution rule, and the fact that several values for δ are tried in the

cMIR cut generator. That the flow cover cut generator uses lifting is also a difference but

it does not seem very important. One instance where the flow cover cut generator is better

is khb05250. Note that this is not an instances for which we found that lifting improves

the dual bound. Our experience is that for some pure integer problems trying different

values for δ results in better dual bounds and that in some instances the flow cover cut

generator is better because of its superior way of handling the bound substitution step.

133

6. Evaluation

0.63

0.44

0.64

0.46

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

impr. SOTA

impr. SOTA without flow cover cuts

Figure 6.20.: Performance Profiles for the comparison between a state-of-the-art cut con-
figuration with and without flow cover cuts.

We now check how much impact the flow cover cut generator has on the overall per-

formance of the solver by testing the improved SOTA cut configuration with the flow

cover cut generator and without it. The results are shown in the performance profiles in

figure 6.20.

The performance profiles indicate that the version with the flow cover cut generator shows

a slightly worse performance on our test set than the one without it. The only problem

instance that is not solved without flow cover cuts but with the other version is m20-75-4

(see table D.21 on page 187 and table D.24 on page 195). On the other hand the problem

instances bc1 and prod1 are only solved without flow cover cuts.

From these results we conclude that there are instances where the flow cover cut generator

can contribute cuts that are needed to solver certain problem instances. For many other

problem instances this is not the case, the performance profiles even suggest that the

performance might increase by not using flow cover cuts. We think that using a flow cover

cut generator together with a cMIR cut generator adds to the diversity of the generated

cuts which in some cases is just what is needed to solve certain problem instances. Maybe

it is possible to achieve similar results by using two cMIR cut generators with different

configurations. It is also possible that the reason why the flow cover cut generator still

134

6.5. Evaluation of the Path-based Cut Generators

30%

92%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.21.: Comparison between the solver version that uses path-based tightest row
aggregation (A) and a version that uses the traditional cMIR aggregation
(B).

sometimes is needed lies in the fact that the heuristics for bound substitution, cover

finding, and cut generation in the cMIR cut generator are not good enough.

6.5. Evaluation of the Path-based Cut Generators

6.5.1. Implementation Details of the Flow Path Cut Generator

We now briefly evaluate the impact of some implementation details on the performance of

the flow path cut generator. The first of these implementation details is the aggregation/

path-finding strategy. We evaluate it by comparing the results of 10-round tests for two

solver versions where the cMIR and flow path cut generators are activated. In one version

we use the path-based tightest row aggregation (version A) and in the other we use the

traditional cMIR aggregation strategy (version B). A description of these strategies can be

found in section 5.2.5 of this thesis. The results are shown in the gap difference diagram

in figure 6.21. Note that we include the cMIR cut generator to also generate cuts from

single rows.

135

6. Evaluation

6%

94%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.22.: Comparison between a solver version that uses extended network inequali-
ties (A) and a version that uses simple network inequalities (B).

The gap difference diagram shows that the dual bounds obtained with the path-based

tightest row aggregation are much better than with the traditional aggreagtion strategy.

Some of these improvements can be attributed to the improved separation of the cMIR cut

generator. Overall the results are not surprising because in the flow path cut separation

algorithm the most important step is to identify a path structure in the problem. The

other parts of the flow path cut generator just follow simple rules to get the most violated

cut out of a path.

A second implementation detail we want to investigate is how important the use of

extended network inequalities in contrast to using simple network inequalities is. For

this purpose we compare the results of 10-round tests for two solver versions with cMIR

and flow path cut generators activated. In the first version (A), we use extended network

inequalities, in the second only simple network inequalities (B). The results are shown in

the gap difference digram in figure 6.22.

These results show that using extended network inequalities only has an impact on very

few instances. Measured in the absolute gap that is closed in the root node even on these

instances the impact is not very high. At the same time the additional implementation

effort needed to generate extended network inequalities is quite large. Nevertheless we

136

6.5. Evaluation of the Path-based Cut Generators

use them in the default version because every little improvement might count in certain

situations. One explanation for the small improvement is that the flow path cut separation

algorithm only tries to generate an extended network inequality if the corresponding

simple network inequality is violated. Thus the extended network inequality is only used

to improve upon cuts found, not to generate more cuts.

6.5.2. Comparison of Path-based Cut Generators

In this section we compare the cut generators for path-based cuts. In the tests described

in the following we again always use the cMIR cut generator in addition to a path-based

cut generator to also generate cuts from single rows. We start with a number of 10-

round tests to compare four solver versions that generate path-based cuts with a solver

version that does not. The version that does not generate path-based cuts uses the cMIR

cut generator that does not generate cuts out of cuts. We compare it to the cMIR cut

generator that does generate cuts out of cuts, i.e. we also generate cuts with an cMIR rank

larger than one. We call this generating higher-rank cMIR cuts. As shown in example 5.8

on page 90 it is possible to generate path mixing cuts as higher-rank cMIR cuts. The

corresponding gap difference diagram is also used in evaluating implementation details

of the cMIR cut generators and therefore can be found in figure 6.12 on page 125. The

sorted results are listed in table D.9 on page 172.

From the digram we see that generating cuts out of cuts results in better dual bounds for

about 38% of the problems in our test set. For about 7% of the instances slightly worse

dual bounds are obtained. We attribute this to the random behaviour of adding rounds

of cuts and to the influence of the MOPS cut pool.

In the next tests we want to show how much adding flow path cuts improves the dual

bounds of our problem instances. To concentrate on the actual improvement through

flow path cuts we do not generate cuts out of cuts. The results are shown in figure 6.23

and in table D.18 in the appendix.

These results indicate that generating flow path cuts makes a smaller difference than

generating higher ranking cMIR cuts. We conclude from this that in the previous test

higher ranking cMIR cuts were generated that the flow path cut generator did not generate

and probably not even are path-based cuts. From the detailed results in table D.18

(page 182) we see that the problem instances with the largest difference in the dual

bound are the tr*-* instances and set1ch. These instances are lot-sizing problems from

LOTSIZELIB [20] and, as expected, the flow path cut generator works very well for them.

137

6. Evaluation

15%

97%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.23.: Comparison between a solver version where the flow path cut generator and
the cMIR cut generator are used (A) and a version where only the cMIR
cut generator is used (B). In both cases no cuts are generated out of cuts.

By comparing these results to the one in table D.9 (page 172) from generating higher-

rank cMIR cuts we notice that the dual bounds obtained by using the flow path cut

generator are better than the one obtained by using higher-rank cMIR cuts. We assume

the reason for this is that the flow path cut generator uses the lot-sizing structure more

directly and also is able to generate path-based cuts in earlier rounds than the cMIR cut

generator. The cMIR cut generator first needs to generate the cuts with rank one before

it can obtain a path-based cut. When using the flow path cut generator the path-based

cuts are generated in addition to cMIR cuts and not instead of them.

We now perform the same test for the uPMC generator. Again we do not generate cuts

out of cuts. The results are shown in figure 6.24 and table D.19.

Except for two outliers the results look similar to the results for the flow path cut gen-

erator. As the uPMC generator is designed to imitate the flow path cut generator this

is not surprising. From the detailed results in table D.19 (page 183) we can see that the

outliers are liu, with a much better dual bound, and clorox, where the dual bound is

much worse. Both instances are not very interesting because liu is not solved by MOPS

within one hour regardless of the dual bound obtained and clorox is solved within sec-

onds by all solver versions we tested. Another observation from the sorted table is that

138

6.5. Evaluation of the Path-based Cut Generators

14%

94%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.24.: Comparison between a solver version where the uPMC generator and the
cMIR cut generator are used (A) and a version where only the cMIR cut
generator is used (B). In both cases no cuts are generated out of cuts.

the lot-sizing problems, where the flow path cut generator improved the dual bounds sig-

nificantly, are also among the instances where the uPMC generator improves the bounds

most. Comparing the detailed results we see that the dual bounds produced using the

flow path cut generator are slightly better. We assume that the main advantage of the

flow path cut generator is that it does the decision which variables to put into the set

C+ in the best possible way. In the uPMC generator the equivalent to this step is done

heuristically in the bound substitution procedure.

Finally, we compare a solver version with the cMIR cut and cPMC generators with a

version using just the cMIR cut generator. Again we do not generate cuts out of cuts.

The results are shown in figure 6.25 and details are shown in table D.20.

The results indicate that using the cPMC generator improves the dual bounds of more

problem instances than the other path-based cut generators but still less than generating

higher rank cMIR cuts. Again, as expected, the lot-sizing instances are those with the

largest increase in the dual bound. The dual bounds for these instances are most of the

time better than the ones obtained using the uPMC generator but typically not better

than the ones from using the flow path cut generator. This is quite surprising because

the cPMC cut generator can generate path mixing cuts that are facets of the constant

139

6. Evaluation

19%

94%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

problem instances

d
if

fe
re

n
c

e
 (

A
 -

 B
)

in
 %

 a
b

s
o

lu
te

 g
a

p
 c

lo
s

e
d

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

Figure 6.25.: Comparison between a solver version where the cPMC generator and the
cMIR cut generator are used (A) and a version where only the cMIR cut
generator is used (B). In both cases no cuts are generated out of cuts.

capacity lot-sizing problem and can not be obtained using a flow path cut generator. The

same cuts can be generated as higher-rank cMIR cuts. It seems as if these additional

cuts are not very successful for the instances in our testset. It might also be that they

are not necessary for practically solving MIP problems.

To confirm the results we obtained from the 10-round tests we compare the four different

cut generators that can generate path-based cuts in a 1-hour test. This time we generate

cuts out of cuts in all cut generators to get a more realistic comparison of the improve-

ments obtained by adding path-based cut generators. The performance profiles for these

tests are shown in figure 6.26. The detailed results for the four solver versions can be

found in table D.24, table D.25, table D.26 and table D.27.

The performance profiles show that surprisingly the cMIR cut generator performs very

good in this comparison. It solves about 43% of the instances fastest and the 64%

of the instances within the time limit. The only other solver version that solves as

many instances is the one using the flow path cut generator. The performance profile

of the flow path cut generator is very close to the one of the cMIR cut generator and

sometimes better. The versions with the uPMC generator or the cPMC generator are not

as successful as expected. Using the uPMC generator, MOPS solves as many instances

140

6.5. Evaluation of the Path-based Cut Generators

0.64

0.38

0.63

0.38

0.63

0.34

0.60

0.41

0.64

0.43

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5 6

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

Flow Path

uPMC

cPMC

cMIR-

cMIR

Figure 6.26.: Performance profiles for the four cut generators that generate path-based
cuts and the cMIR cut generator that does not generate cuts out of cuts
(cMIR-). In all other configurations cuts are generated out of cuts.

141

6. Evaluation

fastest as the flow path cut generator but does not solve as many instances within the

time limit. Using the cPMC generator, it solves even less instances fastest but only a

few less within the time limit. We include a performance profile for a version that uses

just a cMIR cut generator without generating cuts out of cuts (MIR-) as a reference.

This solver version solves significantly less problems than the others. We investigate this

further in the next section.

We assume that one reason why the path mixing cut generators do not perform as well as

the flow path cut generator is the earlier mentioned dependence of our new cut generators

on the heuristic bound substitution step. Another reason might be that the combination

of the cMIR cut generator that generates cuts out of cuts and the flow path cut generator

results in more diverse cuts than using the cMIR cut generator with a path mixing cut

generator. In the latter case both cut generators us the same reversed mixed integer

knapsack sets whereas in the first case more different cuts might be found. Future im-

provements of the bound substitution process or adjusting implementation details might

lead to versions of the path mixing cut generators that are more successful than the ones

described here.

The cMIR cut generator performs very well alone but looses some of its power if combined

with one of the path mixing cut generators. We assume that the cMIR cut generator

only works well if it is not disturbed by another cut generator. To generate path-based

cuts with a cMIR cut generator in a later round the exactly right cuts have to be added

in earlier rounds. Thus this process is not very reliable but it works fast and is very

successful.

6.5.3. Evaluation of the Need for a Path-based Cut Generator

In this section we investigate whether our best path-based cut generator, the flow path

cut generator, improves the results of an MIP solver. To do so we run 1-hour tests for two

solver versions. The first solver version uses the improved state-of-the-art (SOTA) setting,

i.e. flow cover, cMIR, and flow path cuts with a path-based tightest row aggregation and

improved bound substitution. The second solver version is identical except that the flow

path cut generator is deactivated. The results are shown in figure 6.27, table D.21, and

table D.29.

The results of this comparison show that the version with the flow path cut generator

performs clearly better than the one without. The one without solves some instances

faster but not very many and not very much. The version with the flow path cuts solves

142

6.6. Comparison of Cut Configurations

0.63

0.53

0.61

0.45

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 0.5 1 1.5 2 2.5

0.40

0.45

0.50

0.55

0.60

0.65

0.70

impr. SOTA w. FP

impr. SOTA w/o FP

Figure 6.27.: Performance profiles for the improved SOTA solver version with and without
flow path cuts.

significantly more instances within the time limit. Looking into table D.21 on page 187

reveals that these are mainly the lot-sizing instances already mentioned in the previous

experiments. It seems as if including the flow cover cut generator disturbs the cMIR cut

generator in a way that it can not reliably generate path-based cuts anymore.

6.6. Comparison of Cut Configurations

In this section we compare four different configurations of row relaxation-based cut gen-

erators to show the improvement through our new implementation. A second purpose

of these experiments is to find out which of the configurations is a good default con-

figuration. Two of the configurations tested are the SOTA and the improved SOTA

configuration described in section 6.1. The third configuration is the old configuration

of the MOPS solver (called OLD). This configuration uses the old cMIR and flow cover

generators. It does not use a flow path cut generator. The fourth configuration is the

improved SOTA configuration were the flow cover cuts have been deactivated. For these

four settings we first perform 1-hour tests with the 4LIB test set. The results are shown

in the performance profiles displayed in figure 6.28.

143

6. Evaluation

0.32

0.64

0.31

0.63 0.63

0.25

0.36

0.59

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0 1 2 3 4 5 6 7 8 9

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

impr. SOTA w/o flow cover

impr. SOTA

SOTA

OLD

Figure 6.28.: Performance profiles for the four different cut configurations.

The performance profiles indicate that our new implementations perform significantly

better than the OLD configuration. The only point were the OLD setting is slightly better

is the number of instances that are solved fastest. But for theses instances the difference

is not large enough to move the performance profile on top of the others. Furthermore

we see again that the improved SOTA configuration without flow cover cuts performs

slightly better than the one with them. We discussed this already in section 6.4.

The difference between the SOTA and the improved SOTA configuration is also notice-

able. Both configurations solve the same number of instances but the improved version

does so slightly faster. We conclude from this that our algorithmic improvements, i.e.

path-based tightest row aggregation and improved bound substitution, influence the per-

formance of both the cMIR and flow path cut generator positively. For more detailed

results we refer to the tables in the appendix (impr. SOTA: page 187, SOTA: page 206,

OLD: page 211, impr. SOTA w/o flow cover: page 195).

We would like to point out that all three configurations that use the new implementations

successfully solve the instance tr12-30 within one hour. This instance is part of the MI-

PLIB2003 test set and typical state-of-the-art MIP solvers struggle to solve this instance

to optimality within a few hours. We assume that out improved implementations of the

flow path and the cMIR cut generators lead to this result.

144

6.6. Comparison of Cut Configurations

name impr. SOTA SOTA OLD impr. SOTA w/o FC

mopsMIB001 10.85% 6.54% 6.86% 10.85%
mopsMIB002 - - - -
mopsMIB003 26.66% 26.74% 21.76% 26.84%
mopsMIB004 - - 26.87% -
mopsMIB005 149.99% 151.84% 155.09% 149.98%

mopsMIB006 2.21% 2.12% 0.49% 2.21%
mopsMIB007 0.01% 0.01% * 0.01%

mopsMIB008 59.61 53.24 - 57.57
mopsMIB009 - - - -
mopsMIB010 - - - -
mopsMIB011 - - - -
mopsMIB012 - - - -
mopsMIB013 0.21% 0.22% 0.23% 0.21%

mopsMIB014 0.02% 0.02% 0.01% 0.02%
mopsMIB015 8.75% 8.27% 9.21% 8.48%
mopsMIB016 - - 42.7% 31.77%

mopsMIP001 0.90 0.63 0.94 0.90
mopsMIP002 15.5% 15.56% 18.41% 15.5%

mopsMIP003 1.28 0.49 0.79 1.30
mopsMIP004 9.76% 9.76% 9.01% 9.34%
mopsMIP005 37.99 41.52 35.75 31.17

mopsMIP006 0.52 0.61 1.62 0.48

mopsMIP007 10.75% 34.38% 9.99% 10.75%
mopsMIP008 67.02% 66.04% 68.73% 67.02%
mopsMIP009 84.9% 64.84% 76.09% 76.09%

Table 6.6.: Results for the MOPSLOB test set, time in minutes or duality gap after 1-
hour. The * indicates that MOPS reported a wrong solution.

Now we also investigate the results for the MOPSLIB test set. The same configurations

as above are tested. We show the results of the 1-hour tests in table 6.6 instead of showing

performance profiles because only a few of the instances are solved within the time limit.

Values in % are the duality gap when the solver terminated. A ’-’ indicates that no

duality gap could be report as no primal bound was found. The best values in each row

are marked bold.

The results for this test set with many very large and difficult instances show that there

are instances for which the conclusions obtained through the previous experiments do not

necessarily hold. By comparing the values in the table we can not clearly say which con-

figuration works best. The duality gap results depend very much on the primal heuristics

of MOPS and these results indicate that they need to be improved, especially for large

145

6. Evaluation

and difficult instances. The detailed results can be found in the appendix (impr. SOTA:

page 212, SOTA: page 213, OLD: page 213, impr. SOTA w/o flow cover: page 212).

The problem instance mopsMIB008 is solved by all configurations except OLD. The prob-

lem with this instance is that it contains many rows with hundreds of elements for which

the cMIR cut generation can take a very long time. Only because our new implementa-

tion limits the maximal number of elements in a row, this instance can be solved with

MOPS within one hour.

Overall we see that finding a good default configuration for an MIP solver is very hard

and depends on the test set. Nevertheless does this also show that our improved SOTA

configuration with and without flow cover cuts can compete with other configurations

and does not results in generally worse solution behaviour.

146

7. Conclusions and Outlook

7.1. Conclusions

In this thesis we discuss several aspects of five separation algorithms for cutting planes

based on mixed integer row relaxations. The most important aspect is the implemen-

tation of separation algorithms in the context of an MIP solver. Besides outlining the

general implementation of the five separation algorithms we also point out implementa-

tion details that have not been mentioned in previous publications. Furthermore these

implementations, i.e. the five cut generators, are evaluated to identify the importance

of some implementation details and to compare them to each other. This leads us to

insights about how these separation algorithms should be implemented and which type

of cut generators are actually needed in an MIP solver.

Concerning the flow cover cut separation algorithm we describe its implementation in

more detail than any other publication. Especially our results on how to exactly formulate

the flow cover finding knapsack problem are vital for implementing a competitive flow

cover cut generator. By implementing it in a framework with the cMIR cut generator

we are able to evaluate its importance in comparison to this other very important row

relaxation based cut generator.

A result of this evaluation is that in most cases the flow cover cut generator is not

needed as long as a cMIR cut generator is used. This cMIR cut generator needs to be

implemented in a certain way in order to be a good substitute. For a few instances (only

one in our test set) the flow cover cut generator helps to solve otherwise not solvable

instances. Reasons for this might be that the flow cover cut generator handles the bound

substitution step more carefully or that it sometimes generates different cuts than the

cMIR cut generator and thus increases the overall diversity of the cuts. On the other

hand using it together with the cMIR cut generator can also lead to not solving some

instances. The reasons for this can be manyfold and include some randomness.

Concerning the cMIR cut generator the result of this thesis is a detailed description of its

implementation as well as a number of algorithmic improvements. One algorithmic im-

147

7. Conclusions and Outlook

provement is the way in which the aggregation step in the cMIR cut separation algorithm

is done. We introduce the path-based tightest row aggregation strategy that focusses on

finding path structures in MIP problems. Using this aggregation strategy improves the

performance of the cMIR cut generator and allows us to use the same strategy for a

path-based cut generator. A drawback of this strategy is that it mostly does not consider

extended bound structures for aggregation. Therefore we also introduce an improved

bound substitution step for the cMIR cut separation algorithm. This improved bound

substitution step not only considers extended bound structures, it also makes use of bi-

nary variable bounds on integer variables and refines the decision whether to substitute

the upper or the lower bound. An evaluation of these algorithmic improvements reveals

that they largely improve the performance of the cMIR cut generator on our test set.

Concerning path-based separation algorithms our first result is the description of a cut

generator for flow path cuts. Again this description is more detailed than any in the

current literature and mentions implementation aspects not considered anywhere else.

We also show that it is possible to use the same aggregation/path-finding method for

both a cMIR cut generator and a flow path cut generator.

An important result of this thesis is the definition of the path mixing inequalities and the

description of two new path-based separation algorithms. The path mixing inequalities

are important because they are a superset of the flow path inequalities. Cut generators for

flow path cuts are very limited in their use and can not be extended easily. Path mixing

inequalities are based on the more general mixing procedure. As we show, this can be

used to suggest an algorithm and implement a cut generator, called the uPMC generator,

that uses parts of the cMIR cut generator to generate flow path cuts implicitly. A further

strength of this cut generator is that it can be implemented easily and efficiently.

The implementation of a second separation algorithm described for path mixing cuts

results in the cPMC generator. It is aimed at generating path-based cuts that go beyond

flow path cuts, as it is designed to generate facet-defining cuts for the constant capacity

lot-sizing problem. It is less easy to implement but also uses parts of the cMIR cut

generator and potentially generates cuts not obtainable with a flow path cut generator.

Another result of this thesis concerning path-based cuts is that, if implemented in a

certain way, a cMIR cut generator can generate path mixing cuts implicitly. This only

works if it generates cuts out of cuts, i.e. if it combines cuts generated in a previous round

and original rows of the constraint matrix in the aggregation step. Although the results

of this method are subject to random influences we show that it works very well.

148

7.2. Outlook

The evaluation chapter of this thesis also includes experiments with configurations of cut

generators. We show that configurations using our newly implemented cut generators

outperform the existing ones of the MOPS MIP solver. Furthermore we show that our

algorithmic improvements to the cMIR cut generator result in an improved overall per-

formance of the state-of-the-art configuration for row relaxation-based cut generators.

These results also include solving the very difficult MIP problem instance tr12-30 that

with our new cut generators can be solved in about 40 minutes. Other commercial MIP

solvers usually do not solve this instance to optimality within one hour. Our work on

generating cuts for paths also improves the solution times for other lot-sizing based MIP

problems.

The computational experiments in this thesis are conducted on a large set of problem

instances from publically available problem libraries. By not leaving out any problem

instance we obtained results for a wide spectrum of problems. We evaluate the results

using well-established and newly developed methods, i.e. performance profiles and gap

difference diagrams. These experiments and their evaluation also illustrate the difficulties

one has to face when evaluating the performance of cut generators and MIP solvers. Many

components of an MIP solver interfere with each other and small changes in one part of

the solver can influence other parts of the solver very much. Only extensive testing and

clearly defined performance measures can lead to usable information. From the results

for the MOPSLIB test set we see that a different set of problem instances implies new

challenges for solvers and their components.

7.2. Outlook

The field of computational mixed integer programming holds a vast number of challenges.

Parts of this thesis are merely a starting point for future research. In this section we want

to point out possible research opportunities arising from our work and from current topics

in MIP.

Concerning the cMIR cut generator it is apparent that the current bound substitution

procedures are not leading to the best possible results. The goal of future research could

be to use optimization methods to find a way of generating a mixed integer knapsack set

such that it leads to a violated cut. One way of doing this is to formulate the non-linear

separation problem for MIR cuts as an MIP using linearization techniques, as described

in [38]. As this is currently not efficient, a smart way of solving this problem, or only

parts of it, has to be found. Another way of improving upon the cMIR cut generator is

149

7. Conclusions and Outlook

to use its principles with other families of valid inequalities such as the mingling [12] or

two-step MIR inequalities [36]. First steps in this direction are already done but it is not

clear whether this approach really leads to better computational results.

The path mixing inequalities and separation algorithms proposed in this thesis are meant

as a starting point for future developments. In direct comparison to the well tested and

refined flow path cut generator they currently are not competitive. Nevertheless they have

some nice properties that future research can build upon. Their current weakness is the

bound substitution process that, although improved by the new method in this thesis,

still is not good enough to outperform the flow path cut generator. A different way

of implementing a path mixing cut separation algorithm may overcome this drawback.

Alternatively, research on the cMIR cut generator could lead to a new bound substitution

method that would also improve the path mixing cut generators. The closeness to the

cMIR cut generator might also be used to implement a cut generator that generates both

cMIR and path mixing cuts directly.

In our opinion, the general process of generating cuts in an MIP solver needs more

attention from researchers. As we see in some of our experiments, other parts of the

solver such as LP preprocessing have an influence on how cut generators perform. There

also are non trivial interactions when several cut generators are used together. Finally,

we see in our experiments that a cut pool can have a large influence on the performance

of an MIP solver. All these topics need intensive computational studying in order to

understand better how MIP solvers can be improved.

Other important topics in MIP solver development also demand attention. In mixed

integer programming, one topic that is discussed in recent publications is how to handle

symmetries in MIP problems. Applying the results from this research into state-of-the-

art MIP solvers will probably lead to large performance improvements. Another research

direction is called MIPing (see [43] for an overview). MIPing means modeling and solving

problems occurring in an MIP solver, such as finding feasible solutions or cut generation,

as MIP problems. Currently, this approach is successfully used for some components of

the solver but is not efficient for others. Future developments might change this. An area

that needs more attention are semi-continuous and semi-integer variables. When these

modeling methods become more widely used, MIP solvers might have to deal with them

in a more efficient way and adjust many of their components to them.

Since quite a while publications in MIP discuss paralellization of MIP solvers. Now that

multi-core CPUs are the standard for desktop computers, this topic becomes increasingly

interesting. A problem with parallelization is its non-deterministic behaviour that users

150

7.2. Outlook

of MIP solvers do not expect. Therefore the leading solver companies provide parallel

MIP solvers with a deterministic behaviour. Research in this area is also likely to have a

huge influence on the performance of MIP solvers in the future.

151

7. Conclusions and Outlook

152

A. Notation

Mathematical Notation

MIP Mixed integer programming

LP Linear programming

MIR Mixed integer rounding

cMIR complemented mixed integer rounding

uPMC uncapacitated path mixing cut

cPMC capacitated path mixing cut

R
n the set of n-dimensional real numbers

R
n
+ the set of n-dimensional real numbers ≥ 0

R
n
>0 the set of n-dimensional real numbers > 0

Z
n the set of n-dimensional integer numbers

Z
n
+ the set of n-dimensional integer numbers ≥ 0

x∗
j the current LP solution of a continuous variable j

y∗j the current LP solution of a 0–1 or general integer variable j

z∗j the current LP solution of a general integer variable j

(a)+ max{0, a}

|a| absolute value of a, i.e. a if a ≥ 0 and −a if a < 0

bac the largest integer number ≤ a

dae the smallest integer number ≥ a

∅ the empty set, is also used to indicate empty data structures

A = (B, C) If B and C are sets, (B, C) is a partition of the set A,

i.e. B ∪ C = A, B ∩ C = ∅

If B and C are matrices, then A is the matrix where

C is placed next to B

153

A. Notation

Pseudo-code Notation

row, aggRow, etc. data structure to store rows of the form:
∑

j∈N ajxj +
∑

j∈P gjyj = b, x ∈ R
|N |, y ∈ Z

|P |
+

refSta data structure to store the reformulation status

usableRows data structure to store a list of usable rows

path data structure to store an ordered list of rows

cut, bestCut, etc. data structure to store a cut

mik data structure to store a reversed mixed integer knapsack set:
∑

j∈I gjyj + s ≥ b, yj ≤ uj for j ∈ I, y ∈ Z
|I|
+ , s ∈ R

1
+

154

B. Example Configuration Files

xmxdsk = 5000 xoutsl = 0 xmxmin = 60 xmxmic = 500

xstart = 3

xmxnod = 1

xheutp = 0

xgomct = 0

xcovct = 0

xclict = 1

ximpli = 1

xmxagg = 6

xaggst = 4

xmicuc = 1

xextbs = 1

xnwmic = 1

xflwct = 0

xmirct = 1

xflwpa = 0

xmingc = 0

xmixct = 0

xmxpsu = 10

Figure B.1.: Configuration file for a 10-round test with the cMIR cut generator.

xmxdsk = 5000 xoutsl = 0 xmxmin = 60 xmxmic = 500

xmxagg = 6

xaggst = 4

xmicuc = 1

xextbs = 1

xnwmic = 1

xflwct = 1

xmirct = 1

xflwpa = 2

xmingc = 0

xmixct = 0

Figure B.2.: Configuration file for a 1-hour test with the improved SOTA configuration.

155

B. Example Configuration Files

156

C. Test Sets

NAME CON INT BIN M NZ IP 1 TYP S 2

10teams 225 0 1800 230 11437 924.00 MIB 1 3 4

30 05 100 1 0 10771 12050 45879 9.00 BIN 4

30 95 100 1 0 10975 12526 46657 3.00 BIN 4

30 95 98 1 0 10989 12471 46365 12.00 BIN 4

a1c1s1 3456 0 192 3312 12917 11503.44 MIB 3

acc0 0 0 1620 1737 7304 0.00 BIN 4

acc1 0 0 1620 2286 13047 0.00 BIN 4

acc2 0 0 1620 2520 15478 0.00 BIN 4

acc3 0 0 1620 3249 16766 0.00 BIN 4

acc4 0 0 1620 3285 16955 0.00 BIN 4

acc5 0 0 1339 3052 15792 0.00 BIN 4

aflow30a 421 0 421 479 13211 1158.00 MIB 3

aflow40b 1364 0 1364 1442 35695 1168.00 MIB 3

air03 0 0 10757 124 91210 340160.00 BIN 1

air04 0 0 8904 823 48359 56137.00 BIN 1 3 4

air05 0 0 7195 426 36460 26374.00 BIN 1 3 4

arki001 850 96 442 1048 19107 7580813.05 MIP 1 3

atlanta-ip 1965 106 46667 21732 184445 90.01 MIP 3

b4-10 700 0 480 1509 6017 14050.84 MIB 2

b4-10b 700 0 480 2871 13321 14050.84 MIB 2

b4-12 840 0 576 1823 7397 16103.88 MIB 2

b4-12b 840 0 576 3857 22806 16103.88 MIB 2

b4-20b 1560 0 1080 9707 104534 23358.21 * MIB 2

BASF6-10 6350 0 1300 3610 21774 21267.57 MIB 2

BASF6-5 3175 0 650 1805 10784 12071.58 MIB 2

bc1 1499 0 252 1913 188174 3.34 MIB 4

bell3a 62 32 39 123 191 878430.32 MIP 1

bell5 46 28 30 91 348 8966406.49 MIP 1

bienst1 477 0 28 576 3384 46.75 MIB 4

bienst2 470 0 35 576 3729 54.60 MIB 4

binkar10 1 2128 0 170 1026 4798 6742.20 MIB 4

blend2 89 25 239 274 2581 7.60 MIP 1

cap6000 0 0 6000 2176 15556 -2451377.00 BIN 1 3 4

ches1 84 32 114 212 702 74.34 MIP 2

ches2 287 81 800 516 2762 -2889.85 * MIP 2

continued on the next page

157

C. Test Sets

NAME CON INT BIN M NZ IP 1 TYP S 2

ches3 330 33 363 234 1836 -1303896.92 MIP 2

ches4 66 22 242 145 667 -647402.75 MIP 2

ches5 432 54 486 366 2376 -7342.82 MIP 2

clorox 345 0 75 737 5121 21217.81 MIB 2

Con-12 360 0 120 554 2402 7593.07 MIB 2

con-24 720 0 240 1118 4516 25804.96 * MIB 2

dano3 3 13804 0 69 3202 112192 576.34 MIB 4

dano3 4 13781 0 92 3202 115184 576.44 MIB 4

dano3 5 13758 0 115 3202 115207 576.92 MIB 4

dano3mip 13321 0 552 3202 120299 688.90 * MIB 1 3

danoint 465 0 56 664 4527 65.67 MIB 1 3

dcmulti 473 0 75 290 2754 188182.00 MIB 1

disctom 0 0 10000 399 29674 -5000.00 BIN 3

dlsp 543 0 177 954 2499 613.00 MIB 2

ds 0 0 67732 656 1024059 180.00 * BIN 3

dsbmip 1694 0 192 1854 7668 -305.20 MIB 1

egout 86 0 55 98 165 568.10 MIB 1

enigma 0 0 100 21 373 0.00 BIN 1

fast0507 0 0 63009 507 416441 174.00 BIN 1 3

fiber 44 0 1254 363 2822 405935.18 MIB 1 3

fixnet6 500 0 378 478 5042 3983.00 MIB 1 3

flugpl 7 11 0 18 40 1201500.00 MIP 1

gen 720 6 144 780 1064 112313.36 MIP 1

gesa2 816 168 240 1392 5319 25779856.37 MIP 1 3

gesa2 o 504 336 384 1248 5637 25779856.37 MIP 1 3

gesa3 768 168 216 1368 3623 27991042.65 MIP 1

gesa3 o 480 336 336 1224 3524 27991042.65 MIP 1

glass4 20 0 302 396 2884 1200012600.00 MIB 3

gt2 0 164 24 29 604 21166.00 INT 1

harp2 0 0 2993 112 6870 -73899798.00 BIN 1 3

khb05250 1326 0 24 101 6376 106940226.00 MIB 1

l152lav 0 0 1989 97 9240 4722.00 BIN 1

liu 67 0 1089 2178 11627 1104.00 * MIB 3

lrn 4798 0 2455 8701 34460 44479487.02 MIB 4

lseu 0 0 89 28 916 1120.00 BIN 1

m20-75-1 20 425 75 445 6839 -50322.00 MIP 4

m20-75-2 20 425 75 445 8821 -50322.00 MIP 4

m20-75-3 20 425 75 445 9331 -51158.00 MIP 4

m20-75-4 20 425 75 445 7454 -52752.00 MIP 4

m20-75-5 20 425 75 445 6659 -51349.00 MIP 4

manna81 0 3303 18 6480 12960 -13164.00 INT 3

markshare1 12 0 50 6 404 1.00 MIB 1 3

markshare1 1 17 0 45 6 425 0.00 MIB 4

continued on the next page

158

NAME CON INT BIN M NZ IP 1 TYP S 2

markshare2 14 0 60 7 513 1.00 MIB 1 3

markshare2 1 20 0 54 7 612 0.00 * MIB 4

mas74 1 0 150 13 4702 11801.19 MIB 1 3 4

mas76 1 0 150 12 2595 40005.05 MIB 1 3 4

misc03 1 0 159 96 1824 3360.00 MIB 1

misc06 1696 0 112 820 3731 12850.86 MIB 1

misc07 1 0 259 212 8260 2810.00 MIB 1 3 4

mitre 0 0 10724 2054 50031 115155.00 BIN 1

mkc 2 0 5323 3411 30176 -563.85 MIB 1 3

mod008 0 0 319 6 3462 307.00 BIN 1

mod010 0 0 2655 146 1603 6548.00 BIN 1

mod011 10862 0 96 4480 34050 -54558535.00 MIB 1 3 4

modglob 324 0 98 291 2348 20740508.10 MIB 1 3

momentum1 2825 0 2349 42680 64386 109143.49 MIB 3

momentum2 1923 1 1808 24237 172786 12314.22 MIP 3

momentum3 6933 1 6598 56822 563233 264954.00 * MIP 3

msc98-ip 853 53 20237 15850 83152 19839497.01 MIP 3

multiA 1440 0 480 972 3482 3774.76 MIB 2

multiB 1440 0 480 972 4129 3964.90 MIB 2

multiC 1440 0 480 972 4105 2083.29 MIB 2

multiD 1440 0 480 972 5583 6089.07 * MIB 2

multiE 720 0 240 492 3390 2710.59 * MIB 2

multiF 540 0 180 372 2728 2428.90 MIB 2

mzzv11 0 251 9989 9499 133833 -21718.00 INT 3 4

mzzv42z 0 235 11482 10460 144136 -20540.00 INT 3 4

neos1 0 0 2112 5020 10601 19.00 BIN 4

neos10 0 5 23484 46793 140413 -1135.00 MIP 4

neos11 320 0 900 2706 9506 9.00 MIB 4

neos12 847 0 3136 8317 20045 13.00 MIB 4

neos13 12 0 1815 20852 215701 -95.47 MIB 4

neos2 1061 0 1040 1103 11157 454.86 MIB 4

neos20 198 30 937 2446 5200 -434.00 MIP 4

neos21 1 0 613 1085 12391 7.00 MIB 4

neos22 2786 0 454 5208 12402 779715.00 MIB 4

neos23 245 0 232 1568 3845 137.00 MIB 4

neos3 1387 0 1360 1442 18122 368.84 MIB 4

neos4 5712 0 17172 38577 23530 -48603440751.00 MIB 4

neos5 10 0 53 63 2016 15.00 MIB 4

neos6 446 0 8340 1036 252166 83.00 MIB 4

neos648910 66 0 748 1491 3838 32.00 MIB 4

neos671048 13 880 2695 23762 64054 5001.00 MIP 4

neos7 1102 20 434 1994 5608 721934.00 MIP 4

neos8 0 4 23224 46324 138343 -3719.00 MIP 4

continued on the next page

159

C. Test Sets

NAME CON INT BIN M NZ IP 1 TYP S 2

neos9 79309 0 2099 31600 245910 798.00 MIB 4

net12 12512 0 1603 14021 69440 214.00 MIB 3

noswot 28 25 75 182 765 -41.00 MIP 1 3

nsrand-ipx 1 0 6620 735 137144 51200.00 MIB 3

nug08 0 0 1632 912 5936 214.00 BIN 4

nw04 0 0 87482 36 636666 16862.00 BIN 1 3 4

opt1217 1 0 768 64 2976 -16.00 MIB 3

p0033 0 0 33 16 225 3089.00 BIN 1

p0201 0 0 201 133 1930 7615.00 BIN 1

p0282 0 0 282 241 1584 258411.00 BIN 1

p0548 0 0 548 176 2454 8691.00 BIN 1

p2756 0 0 2756 755 9113 3124.00 BIN 1 3

pk1 31 0 55 45 915 11.00 MIB 1 3 4

pp08a 176 0 64 136 1886 7350.00 MIB 1 2 3

pp08aCUTS 176 0 64 246 2214 7350.00 MIB 1 3

prod1 101 0 149 208 4596 -56.00 MIB 4

prod2 101 0 200 211 10490 -62.00 MIB 4

protfold 0 0 1835 2112 21776 -31.00 BIN 3

qap10 0 0 4150 1820 15480 340.00 BIN 4

qiu 792 0 48 1192 3696 -132.87 MIB 1 3 4

qnet1 124 129 1288 503 5977 16029.69 MIP 1

qnet1 o 124 129 1288 456 4643 16029.69 MIP 1

ran10x26 260 0 260 296 5366 4270.00 MIB 4

ran12x21 252 0 252 285 5080 3664.00 MIB 4

ran13x13 169 0 169 195 3248 3252.00 MIB 4

rd-rplusc-21 165 0 457 125899 308457 165395.28 MIB 3

rentacar 9502 0 55 6803 21869 30356760.98 MIB 1

rgn 80 0 100 24 1336 82.20 MIB 1

rgna 100 0 20 84 150 82.20 MIB 2

roll3000 428 492 246 2295 28828 12890.00 MIP 3

rout 241 15 300 291 3998 1077.56 MIP 1 3

set1ch 472 0 240 492 3478 54537.75 MIB 1 2 3

seymour 0 0 1372 4944 33536 423.00 BIN 1 3

seymour1 921 0 451 4944 33243 410.76 MIB 4

sp97ar 0 0 14101 1761 307920 661984000.00 * BIN 3

stein27 0 0 27 118 398 18.00 BIN 1

stein45 0 0 45 331 1034 30.00 BIN 1

stp3d 0 0 204880 159488 598863 500.74 * BIN 3

swath 81 0 6724 884 28736 467.41 MIB 3

swath2 4399 0 2406 884 27447 385.20 MIB 4

swath3 4099 0 2706 884 27080 397.76 MIB 4

t1717 0 0 73885 551 325689 201736.00 * BIN 3

timtab1 226 94 77 171 1995 764772.00 MIP 3

continued on the next page

160

NAME CON INT BIN M NZ IP 1 TYP S 2

timtab2 381 164 130 294 2708 1132271.00 * MIP 3

tr12-15 360 0 180 375 2690 74634.00 MIB 2

tr12-30 720 0 360 750 7065 130596.00 MIB 2 3

tr24-15 720 0 360 735 6091 136509.00 MIB 2

tr24-30 1440 0 720 1470 7891 288424.00 * MIB 2

tr6-15 180 0 90 195 1685 37721.00 MIB 2

tr6-30 360 0 180 390 2747 61746.00 * MIB 2

vpm1 210 0 168 234 1364 20.00 MIB 1

vpm2 210 0 168 234 1865 13.75 MIB 1 3

vpm2a 210 0 168 234 1547 13.75 MIB 2

vpm5 328 0 512 928 4131 3003.20 MIB 2

Table C.1.: Instances of the 4LIB test set.

1a * indicates that this solution is not proven to be in the optimality tolerance of MOPS
2Source of the instance, 1: MIPLIB3, 2: LOTSIZELIB, 3: MIPLIB2003, 4: MITTELMANN

161

C. Test Sets

NAME CON INT BIN M NZ IP 1 TYPE

mopsMIB001 45800 0 229 50029 229860 106006.00 * MIB
mopsMIB002 1922 0 1907 62696 192028 2058282.50 * MIB
mopsMIB003 968 0 961 22862 37821 2507914.50 MIB
mopsMIB004 1922 0 1914 62753 105846 4815524.00 * MIB
mopsMIB005 1467392 0 13 225347 1175596 748880.61 MIB
mopsMIB006 876801 0 2115 441143 1245281 4716275376.94 * MIB
mopsMIB007 140267 0 4117 66863 413621 71713031.88 MIB
mopsMIB008 1342207 0 456764 2039724 4864543 -58327.46 MIB
mopsMIB009 12168 0 6500 56732 100464 76826357.30 * MIB
mopsMIB010 24336 0 13000 113128 178693 58714511.02 * MIB
mopsMIB011 6084 0 3250 28542 61912 46176589.81 * MIB
mopsMIB012 342586 0 35136 245952 809591 -60671181.71 * MIB
mopsMIB013 6562 0 672 4704 14873 -959206.58 * MIB
mopsMIB014 6562 0 672 4704 14806 -961513.04 MIB
mopsMIB015 2731 0 1365 2730 6825 6344.86 * MIB
mopsMIB016 1 0 118738 41517 416674 410.02 MIB
mopsMIP001 34 0 113 296 399 20675.00 MIP
mopsMIP002 1197 0 257 1831 3632 6341.44 * MIP
mopsMIP003 306 0 47 271 1408 2726.80 MIP
mopsMIP004 5 46 1018 231 12764 1842.00 MIP
mopsMIP005 2416 90 2955 9496 81762 2536.81 MIP
mopsMIP006 2356 91 2865 9256 73341 208.68 MIP
mopsMIP007 357 0 73 535 1518 693.84 MIP
mopsMIP008 1629 0 402 2525 8610 4153.53 * MIP
mopsMIP009 930 90 615 1692 11248 21188.11 * MIP

Table C.2.: Instances of the MOPSLIB test set.

1a * indicates that this solution is not proven to be in the optimality tolerance of MOPS

162

D. Test Results

163

D. Test Results

without aggregation with aggregation
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
neos22 6 777291.43 0.99 0.38 6 777191.43 0.99 4.50 0.000273
. . .

momentum1 0 79203.00 0.18 7.67 29 79203.04 0.18 12.36 -0.000001
atlanta-ip 254 81.28 0.00 15.59 394 81.28 0.00 20.64 -0.000033
momentum2 79 10696.29 0.68 68.83 179 10696.59 0.68 101.03 -0.000059
dano3mip 3 576.23 0.00 1.30 32 576.24 0.00 59.53 -0.000110
fiber 89 382576.78 0.91 0.22 93 382638.99 0.91 0.23 -0.000249
ches5 34 -7372.07 0.73 0.08 37 -7372.00 0.73 0.08 -0.000662
momentum3 697 92033.22 0.00 215.61 978 92326.39 0.00 570.41 -0.001695
lrn 224 44301814.15 0.88 4.03 342 44306047.77 0.88 8.62 -0.002911
neos3 0 -6111.38 0.07 1.31 14 -6082.65 0.07 4.91 -0.004140
multiD 17 3716.49 0.02 0.08 20 3727.38 0.02 0.09 -0.004506
neos2 0 -4360.27 0.07 0.89 13 -4336.13 0.07 3.89 -0.004666
danoint 0 62.64 0.00 0.01 11 62.65 0.01 0.22 -0.005650
timtab2 54 100112.69 0.02 0.06 93 106236.65 0.02 0.19 -0.005840
dano3 5 1 576.23 0.00 0.94 12 576.24 0.01 32.72 -0.006988
gesa2 o 58 25586469.19 0.36 0.12 74 25588610.23 0.37 0.12 -0.007058
ran10x26 93 4019.63 0.39 0.09 108 4023.88 0.40 0.11 -0.010282
a1c1s1 397 3365.38 0.23 1.03 497 3475.07 0.24 1.64 -0.010441
egout 17 565.88 0.99 0.02 22 568.10 1.00 0.05 -0.011061
fixnet6 52 3564.30 0.85 0.11 74 3601.85 0.86 0.16 -0.013497
gesa3 o 26 27849140.37 0.10 0.06 35 27851274.98 0.11 0.11 -0.013561
gesa2 45 25586549.38 0.36 0.14 58 25591166.32 0.38 0.16 -0.015219
timtab1 18 34269.53 0.01 0.01 30 49751.13 0.03 0.06 -0.021033
BASF6-10 84 20906.74 0.17 1.05 172 20915.93 0.19 1.88 -0.021179
BASF6-5 80 11791.59 0.16 0.67 157 11799.69 0.19 1.09 -0.024184
dano3 4 2 576.23 0.00 0.94 17 576.24 0.03 40.62 -0.026305
ran13x13 87 2929.39 0.42 0.06 104 2945.17 0.45 0.09 -0.028149
mas74 0 10482.80 0.00 0.01 13 10526.33 0.03 0.09 -0.033024
aflow30a 77 1032.00 0.28 0.44 148 1038.00 0.31 0.64 -0.034319
mas76 0 38893.90 0.00 0.02 12 38936.52 0.04 0.08 -0.038356
dano3 3 2 576.23 0.01 0.91 18 576.24 0.05 45.92 -0.040965
multiB 9 3609.56 0.03 0.05 19 3627.72 0.08 0.49 -0.049661
vpm2 65 11.47 0.41 0.05 106 11.68 0.46 0.09 -0.054200
vpm5 0 3001.95 0.00 0.03 21 3002.02 0.06 0.17 -0.060049
multiC 7 1447.49 0.02 0.03 47 1487.38 0.08 1.30 -0.061710
vpm2a 30 11.47 0.23 0.03 57 11.68 0.30 0.06 -0.070762
b4-10 14 12997.04 0.09 0.11 127 13088.64 0.17 0.61 -0.079268
rentacar 12 29017833.29 0.06 0.17 15 29151329.73 0.16 0.47 -0.093460
modglob 80 20675896.08 0.79 0.08 112 20706399.26 0.89 0.11 -0.098537
b4-12 20 14291.34 0.06 0.19 199 14503.76 0.17 0.86 -0.110261
aflow40b 148 1054.00 0.30 3.66 310 1075.00 0.43 7.53 -0.129362
b4-20b 10 22093.99 0.03 2.52 146 22313.58 0.20 13.26 -0.168172
multiA 23 3512.67 0.04 0.11 51 3559.78 0.21 1.34 -0.172175
Con-12 14 3230.33 0.30 0.03 104 4378.27 0.48 0.24 -0.185481
tr24-30 695 186022.74 0.61 0.50 984 237735.59 0.81 0.77 -0.196063
tr6-15 82 31252.53 0.79 0.05 222 37237.48 0.98 0.22 -0.198477
vpm1 11 17.00 0.35 0.00 22 18.00 0.56 0.03 -0.218182
clorox 148 12183.95 0.56 0.31 191 17360.22 0.81 0.52 -0.251801
b4-10b 3 13735.45 0.12 0.23 45 13826.25 0.37 1.48 -0.254235
mod011 55 -61787185.56 0.04 1.03 345 -59836429.49 0.30 1.86 -0.257919
dcmulti 9 184522.72 0.13 0.03 89 185634.93 0.39 0.26 -0.264404
con-24 12 12690.11 0.13 0.05 170 16845.27 0.40 0.53 -0.276603
tr6-30 172 45919.74 0.68 0.05 369 60973.69 0.98 0.47 -0.302019
tr24-15 336 98886.65 0.69 0.22 787 136111.83 1.00 0.98 -0.308198
multiF 27 1832.07 0.11 0.02 109 2043.54 0.43 0.12 -0.314699
tr12-15 159 54554.69 0.65 0.05 423 73789.76 0.99 0.42 -0.332308
pp08a 69 5576.53 0.61 0.05 179 7189.99 0.97 0.14 -0.350626
b4-12b 6 15571.01 0.07 0.39 77 15781.85 0.44 2.97 -0.367313
tr12-30 350 86236.45 0.61 0.17 897 129852.81 0.99 1.12 -0.387798
set1ch 153 42196.72 0.45 0.16 469 52560.13 0.91 0.31 -0.459982
pp08aCUTS 28 6048.22 0.30 0.06 129 7188.53 0.91 0.19 -0.609989

Table D.1.: Comparison between a flow cover cut generator that does not generate ag-
gregated flow cover cuts and one that does.

164

with cuts out of cuts without cuts out of cuts
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
mitre 850 114963.00 0.54 4.03 754 114909.00 0.41 3.88 0.130283
a1c1s1 397 3365.38 0.23 1.03 201 2192.94 0.11 0.61 0.111598
gen 53 112286.02 0.85 0.09 38 112276.38 0.80 0.06 0.052583
ran12x21 117 3361.72 0.40 0.11 103 3335.15 0.35 0.09 0.052437
binkar10 1 55 6656.92 0.19 0.26 45 6653.90 0.16 0.23 0.028750
fixnet6 52 3564.30 0.85 0.11 43 3499.03 0.83 0.11 0.023459
net12 139 72.00 0.28 10.55 89 69.00 0.26 8.55 0.015248
aflow30a 77 1032.00 0.28 0.44 83 1030.00 0.27 0.38 0.011440
tr6-15 82 31252.53 0.79 0.05 82 30920.70 0.77 0.03 0.011005
ran13x13 87 2929.39 0.42 0.06 85 2923.45 0.41 0.06 0.010596
lseu 29 1006.00 0.60 0.03 26 1003.00 0.59 0.03 0.010515
modglob 80 20675896.08 0.79 0.08 74 20672764.29 0.78 0.06 0.010117
p0282 49 254545.00 0.95 0.09 49 254164.00 0.95 0.08 0.004672
egout 17 565.88 0.99 0.02 17 565.13 0.99 0.00 0.003731
BASF6-5 80 11791.59 0.16 0.67 79 11791.13 0.16 0.69 0.001360
lrn 224 44301814.15 0.88 4.03 254 44300215.97 0.88 6.45 0.001099
gesa3 o 26 27849140.37 0.10 0.06 25 27849063.75 0.10 0.05 0.000487
gesa2 45 25586549.38 0.36 0.14 40 25586413.48 0.36 0.11 0.000448
momentum3 697 92033.22 0.00 215.61 535 91987.89 0.00 167.49 0.000262
multiA 23 3512.67 0.04 0.11 20 3512.62 0.04 0.06 0.000150
atlanta-ip 254 81.28 0.00 15.59 220 81.28 0.00 12.78 0.000105
mod011 55 -61787185.56 0.04 1.03 43 -61787962.93 0.04 0.59 0.000103
gesa2 o 58 25586469.19 0.36 0.12 58 25586449.27 0.36 0.09 0.000066
khb05250 88 106724316.42 0.98 0.17 86 106723801.31 0.98 0.16 0.000047
roll3000 85 11099.34 0.00 1.41 82 11099.28 0.00 1.22 0.000036
prod2 86 -85.31 0.39 0.50 87 -85.31 0.39 0.62 0.000009
. . .

momentum2 79 10696.29 0.68 68.83 71 10696.32 0.68 68.58 -0.000005
prod1 63 -81.47 0.42 0.23 62 -81.47 0.42 0.22 -0.000059
fiber 89 382576.78 0.91 0.22 88 382624.88 0.91 0.25 -0.000192
vpm2 65 11.47 0.41 0.05 66 11.47 0.41 0.03 -0.001589
BASF6-10 84 20906.74 0.17 1.05 94 20907.45 0.17 1.38 -0.001634
p0548 162 7967.00 0.91 0.16 158 7983.00 0.91 0.14 -0.001937
ran10x26 93 4019.63 0.39 0.09 79 4020.96 0.40 0.08 -0.003215
aflow40b 148 1054.00 0.30 3.66 149 1060.00 0.33 3.78 -0.036961
mod008 24 295.00 0.25 0.11 27 296.00 0.32 0.11 -0.062232

Table D.2.: Comparison between a flow cover cut generator that does generate cuts out
of cuts and one that does not.

with integer var. bounds without integer var. bounds
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
ches3 19 -1303896.92 1.00 0.03 0 -1303932.92 0.00 0.02 1.000000
ches5 34 -7372.07 0.73 0.08 0 -7421.26 0.28 0.06 0.452388
neos671048 7 2999.00 0.50 3.14 0 2001.00 0.25 1.80 0.249750
roll3000 85 11099.34 0.00 1.41 82 11099.28 0.00 1.25 0.000036
. . .

Table D.3.: Comparison between a flow cover cut generator that does use binary variable
bounds on integer variables and one that does not.

165

D. Test Results

with improved knapsack with normal knapsack
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
ches3 19 -1303896.92 1.00 0.03 20 -1303932.92 0.00 0.01 1.000000
m20-75-1 74 -53226.01 0.67 0.39 0 -59156.76 0.00 0.31 0.671297
tr24-15 336 98886.65 0.69 0.22 5 18429.26 0.02 0.06 0.666130
tr12-15 159 54554.69 0.65 0.05 6 17381.99 0.01 0.06 0.642200
tr6-30 172 45919.74 0.68 0.05 1 14315.61 0.05 0.03 0.634057
tr6-15 82 31252.53 0.79 0.05 2 12244.04 0.16 0.02 0.630372
tr24-30 695 186022.74 0.61 0.50 5 27948.60 0.01 0.16 0.599318
m20-75-5 72 -55037.62 0.60 0.39 0 -60527.44 0.00 0.33 0.598122
tr12-30 350 86236.45 0.61 0.17 4 20912.38 0.02 0.06 0.580804
m20-75-2 75 -54436.00 0.57 0.39 0 -59987.20 0.00 0.36 0.574349
m20-75-4 75 -56669.00 0.56 0.44 0 -61651.23 0.00 0.34 0.559849
m20-75-3 73 -55795.88 0.51 0.41 0 -60670.37 0.00 0.33 0.512437
fiber 89 382576.78 0.91 0.22 39 265936.97 0.44 0.19 0.466834
ches5 34 -7372.07 0.73 0.08 29 -7406.98 0.41 0.05 0.321003
set1ch 153 42196.72 0.45 0.16 0 35118.11 0.14 0.01 0.314186
ches1 2 69.12 0.18 0.01 0 67.99 0.00 0.01 0.178064
a1c1s1 397 3365.38 0.23 1.03 244 2194.16 0.11 0.66 0.111483
fixnet6 52 3564.30 0.85 0.11 37 3335.57 0.77 0.09 0.082216
lrn 224 44301814.15 0.88 4.03 119 44198527.78 0.81 2.76 0.071030
rentacar 12 29017833.29 0.06 0.17 2 28928379.62 0.00 0.11 0.062626
b4-10 14 12997.04 0.09 0.11 5 12947.21 0.04 0.08 0.043125
gesa2 o 58 25586469.19 0.36 0.12 36 25573940.58 0.32 0.11 0.041299
b4-12 20 14291.34 0.06 0.19 6 14213.83 0.02 0.09 0.040233
gesa3 o 26 27849140.37 0.10 0.06 14 27843412.69 0.06 0.05 0.036387
mod011 55 -61787185.56 0.04 1.03 3 -61941416.54 0.02 0.22 0.020392
net12 139 72.00 0.28 10.55 0 69.00 0.26 3.59 0.015248
timtab2 54 100112.69 0.02 0.06 1 84523.00 0.00 0.03 0.014866
gesa3 12 27851274.98 0.11 0.08 4 27849063.75 0.10 0.06 0.014048
gesa2 45 25586549.38 0.36 0.14 28 25584194.25 0.36 0.14 0.007763
timtab1 18 34269.53 0.01 0.01 0 28694.00 0.00 0.01 0.007575
dano3 3 2 576.23 0.01 0.91 1 576.23 0.00 1.53 0.005684
vpm2a 30 11.47 0.23 0.03 24 11.46 0.22 0.03 0.004318
multiD 17 3716.49 0.02 0.08 19 3707.15 0.01 0.08 0.003869
khb05250 88 106724316.42 0.98 0.17 88 106688575.21 0.98 0.19 0.003243
dano3 4 2 576.23 0.00 0.94 1 576.23 0.00 1.89 0.003155
vpm2 65 11.47 0.41 0.05 66 11.46 0.41 0.05 0.002105
multiA 23 3512.67 0.04 0.11 19 3512.22 0.04 0.05 0.001639
dano3 5 1 576.23 0.00 0.94 1 576.23 0.00 2.66 0.000804
neos22 6 777291.43 0.99 0.38 6 777191.43 0.99 0.42 0.000273
bc1 1 2.19 0.55 7.19 0 2.19 0.55 7.34 0.000200
b4-12b 6 15571.01 0.07 0.39 5 15570.99 0.07 0.39 0.000050
roll3000 85 11099.34 0.00 1.41 82 11099.26 0.00 1.30 0.000049
b4-20b 10 22093.99 0.03 2.52 6 22093.93 0.03 1.80 0.000047
dano3mip 3 576.23 0.00 1.30 1 576.23 0.00 1.12 0.000005
. . .

atlanta-ip 254 81.28 0.00 15.59 297 81.28 0.00 19.22 -0.000108

Table D.4.: Comparison between the default flow cover cut generator and a version that
uses y∗j = 1 for variables without variable upper bound in the objective func-
tion of the flow cover finding knapsack problem.

166

exact knapsack heuristic knapsack
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
ches3 19 -1303896.92 1.00 0.03 18 -1303932.92 0.00 0.02 1.000000
m20-75-1 74 -53226.01 0.67 0.39 0 -59156.76 0.00 0.30 0.671297
m20-75-5 72 -55037.62 0.60 0.39 0 -60527.44 0.00 0.33 0.598122
m20-75-2 75 -54436.00 0.57 0.39 1 -59987.14 0.00 0.41 0.574343
m20-75-4 75 -56669.00 0.56 0.44 0 -61651.23 0.00 0.31 0.559849
m20-75-3 73 -55795.88 0.51 0.41 0 -60670.37 0.00 0.30 0.512437
tr6-30 172 45919.74 0.68 0.05 44 22393.90 0.21 0.03 0.471987
fiber 89 382576.78 0.91 0.22 19 279819.65 0.50 0.11 0.411271
tr6-15 82 31252.53 0.79 0.05 44 21513.62 0.46 0.03 0.322968
tr12-30 350 86236.45 0.61 0.17 190 54367.61 0.32 0.12 0.283350
mod010 7 6535.00 0.18 0.83 2 6533.00 0.06 0.44 0.125654
a1c1s1 397 3365.38 0.23 1.03 314 2397.88 0.13 0.88 0.092092
lrn 224 44301814.15 0.88 4.03 199 44225571.09 0.83 3.99 0.052433
ches5 34 -7372.07 0.73 0.08 35 -7377.68 0.68 0.05 0.051560
b4-10 14 12997.04 0.09 0.11 12 12967.48 0.06 0.11 0.025580
tr24-30 695 186022.74 0.61 0.50 677 181868.22 0.60 0.48 0.015751
b4-12 20 14291.34 0.06 0.19 19 14261.78 0.04 0.19 0.015343
ran13x13 87 2929.39 0.42 0.06 85 2921.77 0.41 0.06 0.013598
gesa3 12 27851274.98 0.11 0.08 8 27850058.93 0.10 0.12 0.007725
fixnet6 52 3564.30 0.85 0.11 54 3553.47 0.85 0.11 0.003891
gesa2 45 25586549.38 0.36 0.14 41 25585499.80 0.36 0.14 0.003460
gesa2 o 58 25586469.19 0.36 0.12 58 25585535.60 0.36 0.11 0.003077
tr12-15 159 54554.69 0.65 0.05 158 54438.49 0.65 0.05 0.002008
msc98-ip 233 19553706.29 0.10 16.23 235 19553341.12 0.10 14.16 0.001146
atlanta-ip 254 81.28 0.00 15.59 125 81.27 0.00 12.52 0.000545
vpm2 65 11.47 0.41 0.05 66 11.47 0.41 0.03 0.000514
binkar10 1 55 6656.92 0.19 0.26 51 6656.89 0.19 0.27 0.000246
roll3000 85 11099.34 0.00 1.41 107 11099.34 0.00 1.23 0.000005
momentum2 79 10696.29 0.68 68.83 73 10696.27 0.68 60.02 0.000004
. . .

momentum3 697 92033.22 0.00 215.61 674 92033.32 0.00 243.38 -0.000001
danoint 0 62.64 0.00 0.01 1 62.64 0.00 0.03 -0.000004
modglob 80 20675896.08 0.79 0.08 85 20675899.93 0.79 0.06 -0.000012
set1ch 153 42196.72 0.45 0.16 155 42198.77 0.45 0.14 -0.000091
vpm2a 30 11.47 0.23 0.03 34 11.47 0.23 0.03 -0.000092
pp08a 69 5576.53 0.61 0.05 72 5577.73 0.61 0.05 -0.000261
multiD 17 3716.49 0.02 0.08 20 3717.78 0.02 0.09 -0.000532
p0282 49 254545.00 0.95 0.09 58 254589.00 0.95 0.08 -0.000540
p0548 162 7967.00 0.91 0.16 142 7978.00 0.91 0.16 -0.001332
BASF6-5 80 11791.59 0.16 0.67 90 11792.09 0.17 0.75 -0.001505
prod1 63 -81.47 0.42 0.23 105 -81.40 0.42 0.28 -0.001620
prod2 86 -85.31 0.39 0.50 166 -85.24 0.39 0.95 -0.001793
mitre 850 114963.00 0.54 4.03 764 114964.00 0.54 3.64 -0.002413
BASF6-10 84 20906.74 0.17 1.05 99 20910.05 0.18 1.30 -0.007641
sp97ar 4 652568542.94 0.00 3.28 13 652645381.10 0.01 3.33 -0.008154
ran10x26 93 4019.63 0.39 0.09 86 4023.84 0.40 0.09 -0.010185
dcmulti 9 184522.72 0.13 0.03 14 184567.50 0.14 0.01 -0.010646
aflow30a 77 1032.00 0.28 0.44 65 1035.00 0.30 0.36 -0.017159
pp08aCUTS 28 6048.22 0.30 0.06 30 6089.24 0.33 0.06 -0.021943
lseu 29 1006.00 0.60 0.03 34 1013.00 0.62 0.03 -0.024534
aflow40b 148 1054.00 0.30 3.66 126 1059.00 0.33 3.92 -0.030800
mod008 24 295.00 0.25 0.11 28 296.00 0.32 0.11 -0.062232
ran12x21 117 3361.72 0.40 0.11 130 3398.03 0.48 0.11 -0.071674
mod011 55 -61787185.56 0.04 1.03 266 -59712010.24 0.32 1.22 -0.274369

Table D.5.: Comparison between the default flow cover cut generator that uses an exact
method for solving the flow cover finding knapsack problem and a version
that uses a heuristic.

167

D. Test Results

less than less than or equal
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
fiber 89 382576.78 0.91 0.22 51 193492.98 0.15 0.19 0.756781
khb05250 88 106724316.42 0.98 0.17 45 104126076.70 0.74 0.14 0.235759
modglob 80 20675896.08 0.79 0.08 49 20608767.91 0.57 0.05 0.216850
lseu 29 1006.00 0.60 0.03 8 948.00 0.40 0.00 0.203282
p0282 49 254545.00 0.95 0.09 86 242243.00 0.80 0.11 0.150864
mod010 7 6535.00 0.18 0.83 3 6533.00 0.06 0.44 0.125654
m20-75-2 75 -54436.00 0.57 0.39 59 -55580.79 0.46 0.42 0.118444
m20-75-1 74 -53226.01 0.67 0.39 63 -54035.61 0.58 0.53 0.091638
m20-75-5 72 -55037.62 0.60 0.39 65 -55748.86 0.52 0.44 0.077490
aflow30a 77 1032.00 0.28 0.44 44 1023.00 0.23 0.22 0.051478
p0548 162 7967.00 0.91 0.16 164 7625.00 0.87 0.16 0.041398
m20-75-4 75 -56669.00 0.56 0.44 70 -57004.19 0.52 0.48 0.037665
m20-75-3 73 -55795.88 0.51 0.41 69 -56106.81 0.48 0.48 0.032687
fixnet6 52 3564.30 0.85 0.11 60 3475.23 0.82 0.12 0.032015
binkar10 1 55 6656.92 0.19 0.26 37 6654.73 0.17 0.20 0.020846
net12 139 72.00 0.28 10.55 117 69.00 0.26 8.66 0.015248
tr6-15 82 31252.53 0.79 0.05 78 30874.75 0.77 0.03 0.012528
mitre 850 114963.00 0.54 4.03 1440 114958.00 0.52 6.56 0.012063
gesa2 45 25586549.38 0.36 0.14 45 25583187.88 0.35 0.17 0.011081
BASF6-10 84 20906.74 0.17 1.05 164 20903.44 0.16 1.62 0.007600
gesa2 o 58 25586469.19 0.36 0.12 70 25584764.94 0.36 0.20 0.005618
dano3 3 2 576.23 0.01 0.91 2 576.23 0.00 0.89 0.004867
ran10x26 93 4019.63 0.39 0.09 76 4018.28 0.39 0.08 0.003272
ran13x13 87 2929.39 0.42 0.06 66 2927.69 0.42 0.06 0.003028
BASF6-5 80 11791.59 0.16 0.67 126 11790.58 0.16 0.89 0.003015
dano3 4 2 576.23 0.00 0.94 2 576.23 0.00 0.91 0.002701
vpm2 65 11.47 0.41 0.05 71 11.46 0.41 0.03 0.002560
p2756 260 3065.00 0.86 1.03 399 3064.00 0.86 1.33 0.002353
prod1 63 -81.47 0.42 0.23 51 -81.56 0.42 0.20 0.002002
nsrand-ipx 83 49832.00 0.41 1.94 90 49829.00 0.41 2.11 0.001293
atlanta-ip 254 81.28 0.00 15.59 305 81.27 0.00 19.03 0.001043
set1ch 153 42196.72 0.45 0.16 141 42173.48 0.45 0.09 0.001031
dano3 5 1 576.23 0.00 0.94 1 576.23 0.00 0.55 0.000804
gesa3 12 27851274.98 0.11 0.08 12 27851190.35 0.11 0.08 0.000538
gesa3 o 26 27849140.37 0.10 0.06 21 27849060.37 0.10 0.08 0.000508
momentum3 697 92033.22 0.00 215.61 447 91971.43 0.00 114.00 0.000357
gen 53 112286.02 0.85 0.09 39 112285.99 0.85 0.08 0.000180
roll3000 85 11099.34 0.00 1.41 98 11099.27 0.00 1.61 0.000040
momentum2 79 10696.29 0.68 68.83 78 10696.27 0.68 61.74 0.000005
dano3mip 3 576.23 0.00 1.30 2 576.23 0.00 0.73 0.000005
bc1 1 2.19 0.55 7.19 3 2.19 0.55 10.84 0.000005
. . .

prod2 86 -85.31 0.39 0.50 89 -85.31 0.39 0.61 -0.000032
pp08a 69 5576.53 0.61 0.05 66 5577.47 0.61 0.05 -0.000204
lrn 224 44301814.15 0.88 4.03 384 44321742.90 0.89 5.06 -0.013705
aflow40b 148 1054.00 0.30 3.66 95 1060.00 0.33 2.80 -0.036961
clorox 148 12183.95 0.56 0.31 144 13499.84 0.62 0.31 -0.064012
ran12x21 117 3361.72 0.40 0.11 90 3419.31 0.52 0.09 -0.113670
rgn 20 48.80 0.00 0.02 60 64.60 0.47 0.03 -0.473054

Table D.6.: Comparison between the default flow cover cut generator that uses L− =
{j ∈ N− : λy∗j < x∗

j} and a version that uses L− = {j ∈ N− : λy∗j ≤ x∗
j}.

168

with lifting without lifting
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
lseu 29 1006.00 0.60 0.03 7 948.00 0.40 0.01 0.203282
mod008 24 295.00 0.25 0.11 21 292.00 0.07 0.11 0.186696
mod010 7 6535.00 0.18 0.83 4 6533.00 0.06 0.58 0.125654
binkar10 1 55 6656.92 0.19 0.26 56 6651.83 0.14 0.25 0.048419
ran12x21 117 3361.72 0.40 0.11 118 3341.70 0.36 0.09 0.039522
ran13x13 87 2929.39 0.42 0.06 77 2911.79 0.39 0.06 0.031402
nsrand-ipx 83 49832.00 0.41 1.94 80 49768.00 0.38 1.92 0.027586
ran10x26 93 4019.63 0.39 0.09 75 4008.48 0.37 0.08 0.027020
clorox 148 12183.95 0.56 0.31 147 11801.13 0.54 0.33 0.018622
mitre 850 114963.00 0.54 4.03 1309 114956.00 0.52 5.09 0.016889
p0282 49 254545.00 0.95 0.09 48 253881.00 0.94 0.08 0.008143
pp08aCUTS 28 6048.22 0.30 0.06 30 6035.06 0.30 0.06 0.007036
fiber 89 382576.78 0.91 0.22 92 381942.47 0.90 0.22 0.002539
lrn 224 44301814.15 0.88 4.03 205 44300543.58 0.88 3.36 0.000874
dano3mip 3 576.23 0.00 1.30 4 576.23 0.00 1.24 0.000004
. . .

roll3000 85 11099.34 0.00 1.41 97 11099.36 0.00 1.75 -0.000011
modglob 80 20675896.08 0.79 0.08 84 20675924.27 0.79 0.08 -0.000091
BASF6-5 80 11791.59 0.16 0.67 77 11791.62 0.16 0.67 -0.000098
gesa2 o 58 25586469.19 0.36 0.12 55 25586515.03 0.36 0.11 -0.000151
atlanta-ip 254 81.28 0.00 15.59 307 81.28 0.00 18.12 -0.000153
multiD 17 3716.49 0.02 0.08 18 3717.78 0.02 0.09 -0.000532
m20-75-3 73 -55795.88 0.51 0.41 75 -55789.00 0.51 0.41 -0.000723
dano3 5 1 576.23 0.00 0.94 7 576.23 0.00 1.22 -0.000822
a1c1s1 397 3365.38 0.23 1.03 417 3374.36 0.23 1.00 -0.000854
m20-75-1 74 -53226.01 0.67 0.39 75 -53218.00 0.67 0.39 -0.000906
gesa2 45 25586549.38 0.36 0.14 43 25587124.30 0.36 0.14 -0.001895
msc98-ip 233 19553706.29 0.10 16.23 357 19554347.01 0.10 17.45 -0.002011
vpm2a 30 11.47 0.23 0.03 33 11.48 0.23 0.03 -0.002276
BASF6-10 84 20906.74 0.17 1.05 91 20907.91 0.17 1.28 -0.002701
vpm2 65 11.47 0.41 0.05 74 11.48 0.41 0.05 -0.003809
m20-75-5 72 -55037.62 0.60 0.39 75 -54992.00 0.60 0.39 -0.004970
dano3 4 2 576.23 0.00 0.94 9 576.23 0.01 1.98 -0.004972
dano3 3 2 576.23 0.01 0.91 6 576.23 0.01 2.03 -0.007302
aflow30a 77 1032.00 0.28 0.44 91 1034.00 0.29 0.34 -0.011440
p0548 162 7967.00 0.91 0.16 173 8079.00 0.93 0.16 -0.013557
set1ch 153 42196.72 0.45 0.16 158 42609.30 0.47 0.14 -0.018313
fixnet6 52 3564.30 0.85 0.11 73 3615.69 0.87 0.12 -0.018472
aflow40b 148 1054.00 0.30 3.66 128 1057.00 0.32 3.14 -0.018480
bienst1 3 11.72 0.00 0.02 76 14.05 0.07 0.25 -0.066393
bienst2 4 11.72 0.00 0.02 100 14.92 0.07 0.31 -0.074490
timtab2 54 100112.69 0.02 0.06 142 228646.61 0.14 0.08 -0.122567
timtab1 18 34269.53 0.01 0.01 68 176889.67 0.20 0.03 -0.193757

Table D.7.: Comparison between the default version of the flow cover cut generator that
generates LSGFCIs and a version that generates SGFCIs.

169

D. Test Results

new old
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
p0282 49 254545.00 0.95 0.09 0 180001.00 0.04 0.00 0.914162
p2756 260 3065.00 0.86 1.03 0 2702.00 0.01 0.23 0.854012
p0548 162 7967.00 0.91 0.16 0 4571.00 0.50 0.01 0.411072
gesa2 o 58 25586469.19 0.36 0.12 0 25476489.68 0.00 0.02 0.362530
khb05250 88 106724316.42 0.98 0.17 60 103353448.27 0.67 0.11 0.305865
gen 53 112286.02 0.85 0.09 0 112233.78 0.57 0.01 0.284958
ches5 34 -7372.07 0.73 0.08 45 -7401.51 0.46 0.03 0.270719
neos671048 7 2999.00 0.50 3.14 0 2001.00 0.25 1.25 0.249750
mod008 24 295.00 0.25 0.11 0 291.00 0.00 0.02 0.248928
lrn 224 44301814.15 0.88 4.03 484 44004362.80 0.67 5.49 0.204558
lseu 29 1006.00 0.60 0.03 0 948.00 0.40 0.00 0.203282
fiber 89 382576.78 0.91 0.22 96 334836.04 0.72 0.20 0.191076
binkar10 1 55 6656.92 0.19 0.26 0 6637.19 0.00 0.02 0.187870
BASF6-10 84 20906.74 0.17 1.05 33 20849.88 0.04 0.62 0.130937
mod010 7 6535.00 0.18 0.83 0 6533.00 0.06 0.16 0.125654
BASF6-5 80 11791.59 0.16 0.67 32 11753.32 0.05 0.30 0.114290
p0033 21 2890.00 0.65 0.00 0 2829.00 0.54 0.00 0.107313
gesa3 o 26 27849140.37 0.10 0.06 3 27833697.15 0.00 0.03 0.098108
vpm2a 30 11.47 0.23 0.03 3 11.21 0.14 0.00 0.090018
vpm2 65 11.47 0.41 0.05 31 11.14 0.32 0.02 0.084205
nsrand-ipx 83 49832.00 0.41 1.94 0 49668.00 0.34 0.91 0.070690
msc98-ip 233 19553706.29 0.10 16.23 266 19532747.49 0.04 17.17 0.065798
rentacar 12 29017833.29 0.06 0.17 2 28928379.62 0.00 0.06 0.062626
gesa2 45 25586549.38 0.36 0.14 18 25568019.75 0.30 0.06 0.061080
ran12x21 117 3361.72 0.40 0.11 117 3345.76 0.37 0.08 0.031502
ran13x13 87 2929.39 0.42 0.06 70 2915.36 0.40 0.05 0.025032
ran10x26 93 4019.63 0.39 0.09 80 4009.41 0.37 0.06 0.024764
tr12-30 350 86236.45 0.61 0.17 342 83576.78 0.58 0.09 0.023647
tr6-15 82 31252.53 0.79 0.05 80 30559.87 0.76 0.03 0.022970
tr24-15 336 98886.65 0.69 0.22 329 96257.85 0.67 0.14 0.021765
mitre 850 114963.00 0.54 4.03 0 114954.00 0.52 4.06 0.021714
net12 139 72.00 0.28 10.55 47 69.00 0.26 3.44 0.015248
b4-12 20 14291.34 0.06 0.19 6 14263.36 0.04 0.06 0.014522
b4-10 14 12997.04 0.09 0.11 6 12981.92 0.07 0.06 0.013084
tr24-30 695 186022.74 0.61 0.50 687 182817.02 0.60 0.47 0.012154
pp08aCUTS 28 6048.22 0.30 0.06 17 6027.18 0.29 0.02 0.011254
prod1 63 -81.47 0.42 0.23 0 -81.84 0.41 0.03 0.008341
tr12-15 159 54554.69 0.65 0.05 160 54091.98 0.65 0.05 0.007994
pp08a 69 5576.53 0.61 0.05 58 5556.14 0.61 0.01 0.004430
b4-10b 3 13735.45 0.12 0.23 4 13733.88 0.11 0.16 0.004403
prod2 86 -85.31 0.39 0.50 0 -85.45 0.38 0.09 0.003818
b4-20b 10 22093.99 0.03 2.52 1 22089.07 0.03 1.41 0.003764
tr6-30 172 45919.74 0.68 0.05 171 45749.58 0.68 0.05 0.003414
atlanta-ip 254 81.28 0.00 15.59 58 81.25 0.00 4.20 0.002806
dcmulti 9 184522.72 0.13 0.03 6 184514.12 0.13 0.00 0.002044
b4-12b 6 15571.01 0.07 0.39 3 15569.86 0.07 0.31 0.002004
multiA 23 3512.67 0.04 0.11 7 3512.24 0.04 0.03 0.001546
sp97ar 4 652568542.94 0.00 3.28 0 652560391.11 0.00 2.11 0.000865
momentum3 697 92033.22 0.00 215.61 38 91953.22 0.00 23.23 0.000462
multiD 17 3716.49 0.02 0.08 12 3715.69 0.02 0.08 0.000334
neos22 6 777291.43 0.99 0.38 6 777191.43 0.99 0.28 0.000273
gesa3 12 27851274.98 0.11 0.08 9 27851253.46 0.11 0.06 0.000137
roll3000 85 11099.34 0.00 1.41 69 11099.29 0.00 2.56 0.000032
momentum2 79 10696.29 0.68 68.83 39 10696.25 0.68 24.70 0.000008
. . .

modglob 80 20675896.08 0.79 0.08 77 20675924.27 0.79 0.05 -0.000091
dano3 5 1 576.23 0.00 0.94 6 576.23 0.00 0.78 -0.000715
m20-75-3 73 -55795.88 0.51 0.41 75 -55789.00 0.51 0.44 -0.000723
egout 17 565.88 0.99 0.02 20 566.05 0.99 0.01 -0.000836
a1c1s1 397 3365.38 0.23 1.03 398 3374.90 0.23 0.50 -0.000906
m20-75-1 74 -53226.01 0.67 0.39 75 -53218.00 0.67 0.42 -0.000906
neos4 0 -49463016984.65 0.55 1.75 11 -49460660286.31 0.55 4.50 -0.001238
dano3 4 2 576.23 0.00 0.94 5 576.23 0.00 0.67 -0.001708
dano3 3 2 576.23 0.01 0.91 3 576.23 0.01 0.69 -0.002345
m20-75-5 72 -55037.62 0.60 0.39 75 -54992.00 0.60 0.42 -0.004970
aflow30a 77 1032.00 0.28 0.44 76 1034.00 0.29 0.34 -0.011440
mod011 55 -61787185.56 0.04 1.03 69 -61688425.49 0.06 0.69 -0.013058
clorox 148 12183.95 0.56 0.31 142 12498.71 0.58 0.16 -0.015312
set1ch 153 42196.72 0.45 0.16 138 42598.00 0.47 0.05 -0.017811
fixnet6 52 3564.30 0.85 0.11 69 3617.36 0.87 0.09 -0.019072
aflow40b 148 1054.00 0.30 3.66 117 1060.00 0.33 3.02 -0.036961
bienst1 3 11.72 0.00 0.02 76 14.05 0.07 0.14 -0.066384
bienst2 4 11.72 0.00 0.02 100 14.92 0.07 0.20 -0.074451
ches1 2 69.12 0.18 0.01 14 69.64 0.26 0.02 -0.081340
timtab2 54 100112.69 0.02 0.06 136 212322.94 0.12 0.05 -0.107002
timtab1 18 34269.53 0.01 0.01 70 159114.11 0.18 0.02 -0.169608

Table D.8.: Comparison between the new and the old flow cover cut generator.

170

with cuts out of cuts without cuts out of cuts

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

p2756 268 3063.00 0.86 1.31 253 2988.00 0.68 1.14 0.176449

m20-75-2 404 -52198.38 0.81 26.84 86 -53851.43 0.63 9.62 0.171031

m20-75-4 355 -54734.14 0.78 24.20 84 -56198.70 0.61 10.14 0.164571

m20-75-3 418 -53688.55 0.73 17.34 93 -55131.00 0.58 9.75 0.151640

m20-75-1 371 -51261.82 0.89 20.38 84 -52573.33 0.75 9.91 0.148448

m20-75-5 436 -53165.14 0.80 34.99 84 -54509.03 0.66 9.92 0.146418

tr12-30 823 129106.22 0.99 1.31 768 114684.92 0.86 0.76 0.128221

b4-10b 92 13936.59 0.68 2.03 71 13892.29 0.56 1.88 0.124029

tr6-30 345 60742.59 0.98 0.53 318 54863.91 0.86 0.31 0.117941

set1ch 413 54240.68 0.99 0.39 402 51762.61 0.88 0.31 0.109989

tr12-15 377 73297.66 0.98 0.52 366 67220.49 0.87 0.33 0.104990

tr24-15 716 135396.11 0.99 1.19 667 123906.69 0.90 0.78 0.095124

gesa3 o 170 27954866.51 0.77 0.55 127 27941030.41 0.68 0.44 0.087898

gesa3 116 27963866.98 0.83 0.50 93 27952173.63 0.75 0.42 0.074286

ches1 39 71.03 0.48 0.09 31 70.57 0.41 0.08 0.072794

gesa2 o 230 25774034.47 0.98 0.53 189 25752343.70 0.91 0.38 0.071500

momentum1 348 84003.68 0.31 48.66 207 81471.52 0.24 27.69 0.069660

gesa2 145 25775745.36 0.99 0.42 157 25755490.51 0.92 0.34 0.066767

tr6-15 197 36817.15 0.97 0.25 200 34865.27 0.91 0.14 0.064730

a1c1s1 686 5398.31 0.42 2.75 557 4783.40 0.36 2.09 0.058530

b4-20b 263 22466.70 0.32 18.56 247 22398.81 0.27 17.67 0.051997

b4-12b 159 15839.55 0.54 4.12 143 15816.09 0.50 3.78 0.040879

tr24-30 984 238004.34 0.81 0.83 984 227902.75 0.77 0.66 0.038299

con-24 266 17959.84 0.48 0.81 233 17428.04 0.44 0.53 0.035401

khb05250 25 96428245.44 0.05 0.16 16 96070104.35 0.01 0.12 0.032497

aflow30a 236 1075.00 0.53 1.61 174 1070.00 0.50 0.67 0.028599

arki001 232 7579847.42 0.20 6.52 155 7579814.00 0.18 6.30 0.027544

p0548 142 8232.00 0.94 0.20 132 8013.00 0.92 0.17 0.026509

ran13x13 120 3024.25 0.59 0.16 112 3009.58 0.57 0.11 0.026167

qnet1 o 83 15607.95 0.89 0.24 77 15505.78 0.87 0.22 0.025970

b4-10 157 13294.83 0.35 0.78 161 13266.11 0.32 0.74 0.024855

aflow40b 406 1082.00 0.47 16.73 269 1078.00 0.45 5.59 0.024640

multiF 129 2050.53 0.44 0.17 125 2036.01 0.42 0.12 0.021605

multiD 76 3884.64 0.09 0.38 31 3836.45 0.07 0.25 0.019947

ran10x26 106 4078.28 0.54 0.14 104 4070.56 0.52 0.12 0.018683

gt2 30 20726.00 0.94 0.01 25 20593.00 0.93 0.02 0.017260

modglob 112 20684799.25 0.82 0.12 106 20679686.42 0.80 0.09 0.016516

vpm5 107 3002.68 0.58 0.59 99 3002.66 0.57 0.50 0.016480

bell3a 17 870990.98 0.39 0.06 15 870793.00 0.38 0.05 0.016150

fiber 70 385611.78 0.92 0.24 59 381596.53 0.90 0.20 0.016070

roll3000 161 12120.94 0.57 3.50 163 12092.62 0.56 3.41 0.015797

dcmulti 94 186330.79 0.56 0.26 96 186264.76 0.54 0.22 0.015698

binkar10 1 62 6702.62 0.62 0.41 62 6701.06 0.61 0.38 0.014857

mod011 289 -59384558.73 0.36 1.77 317 -59493500.53 0.35 1.77 0.014404

bc1 63 2.61 0.72 117.22 45 2.58 0.70 109.08 0.013111

multiC 39 1497.49 0.09 0.22 48 1489.21 0.08 0.22 0.012813

neos7 269 668555.02 0.86 1.11 248 664469.73 0.84 0.99 0.011054

momentum2 1200 10804.25 0.70 106.23 1266 10750.92 0.69 114.74 0.010479

multiB 54 3627.88 0.08 0.27 33 3624.47 0.07 0.20 0.009315

BASF6-10 153 20920.55 0.20 1.89 150 20916.67 0.19 1.75 0.008945

msc98-ip 411 19564697.17 0.14 23.41 349 19561947.01 0.13 18.67 0.008634

lrn 367 44307469.65 0.88 9.83 264 44295040.60 0.87 9.17 0.008548

vpm2a 114 13.04 0.76 0.17 102 13.02 0.75 0.09 0.007301

mitre 1125 115026.00 0.69 5.84 1103 115023.00 0.68 5.59 0.007238

p0282 56 254264.00 0.95 0.11 55 253746.00 0.94 0.11 0.006352

bell5 31 8928247.67 0.89 0.09 20 8926029.48 0.89 0.05 0.006196

ran12x21 126 3451.51 0.58 0.19 123 3448.51 0.57 0.14 0.005930

egout 16 568.10 1.00 0.02 14 566.94 0.99 0.01 0.005754

fixnet6 82 3662.77 0.88 0.30 66 3646.79 0.88 0.17 0.005742

Con-12 168 4577.84 0.51 0.38 157 4549.96 0.51 0.25 0.004504

mas76 13 38998.28 0.09 0.51 12 38993.49 0.09 0.33 0.004310

timtab2 348 313976.30 0.22 0.62 325 309603.97 0.22 0.39 0.004169

dano3 3 23 576.24 0.04 5.30 16 576.24 0.04 4.00 0.003555

vpm2 133 12.94 0.79 0.17 129 12.93 0.79 0.09 0.003542

lseu 29 1030.00 0.68 0.05 25 1029.00 0.68 0.02 0.003505

timtab1 215 245864.72 0.30 0.28 200 245218.44 0.29 0.19 0.000878

bienst1 89 14.07 0.07 0.53 75 14.05 0.07 0.47 0.000725

bienst2 119 14.94 0.07 0.56 98 14.91 0.07 0.45 0.000648

continued on the next page

171

D. Test Results

with cuts out of cuts without cuts out of cuts

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

danoint 108 62.69 0.02 0.47 105 62.69 0.02 0.39 0.000204

prod1 129 -81.38 0.42 0.41 135 -81.38 0.42 0.41 0.000150

dano3mip 509 576.56 0.00 25.53 452 576.55 0.00 22.70 0.000092

mas74 14 10568.56 0.07 0.50 14 10568.52 0.07 0.36 0.000031

prod2 128 -85.22 0.39 1.81 126 -85.22 0.39 1.36 0.000009

. . .

atlanta-ip 133 81.25 0.00 12.23 116 81.25 0.00 12.27 -0.000006

dano3 4 60 576.25 0.11 9.41 64 576.25 0.11 9.34 -0.000315

BASF6-5 166 11800.92 0.19 1.12 147 11801.17 0.19 0.98 -0.000751

ches5 43 -7370.94 0.74 0.14 49 -7370.80 0.74 0.22 -0.001215

multiA 31 3562.04 0.22 0.31 34 3562.43 0.22 0.26 -0.001457

pp08a 154 7143.27 0.96 0.17 164 7161.51 0.96 0.11 -0.003962

multiE 79 2279.49 0.25 0.17 78 2284.15 0.26 0.14 -0.008073

momentum3 2694 93079.94 0.01 3270.88 3219 94616.58 0.02 3832.94 -0.008882

neos3 106 -5998.04 0.08 9.53 140 -5929.39 0.09 7.55 -0.009892

dano3 5 82 576.29 0.08 11.28 89 576.30 0.09 12.05 -0.012985

pp08aCUTS 123 7157.97 0.90 0.24 117 7189.71 0.91 0.17 -0.016978

neos2 87 -4311.53 0.08 6.42 121 -4223.46 0.10 5.72 -0.017026

b4-12 213 14587.80 0.21 1.03 212 14639.68 0.24 0.86 -0.026929

qnet1 71 15333.09 0.60 0.27 73 15432.66 0.66 0.30 -0.056714

p0033 8 2890.00 0.65 0.00 9 2926.00 0.71 0.01 -0.063333

mod008 17 296.00 0.32 0.28 16 299.00 0.50 0.22 -0.186696

clorox 152 13783.99 0.64 0.72 165 20708.61 0.98 0.61 -0.336850

Table D.9.: Comparison between the default version of the cMIR cut generator that gen-
erates cuts out of cuts and one that does not.

with algorithmic improvements without algorithmic improvements

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

b4-10b 92 13936.59 0.68 2.03 28 13756.33 0.18 0.78 0.504701

gesa2 o 230 25774034.47 0.98 0.53 172 25647400.29 0.56 0.44 0.417429

b4-12b 159 15839.55 0.54 4.12 40 15610.30 0.14 2.64 0.399406

swath 45 373.88 0.30 45.83 39 334.50 0.00 15.22 0.296334

b4-20b 263 22466.70 0.32 18.56 56 22135.24 0.06 7.34 0.253851

neos671048 3 2999.00 0.50 2.25 0 2001.00 0.25 2.06 0.249750

neos7 269 668555.02 0.86 1.11 75 590969.65 0.65 0.34 0.209932

rgn 76 81.80 0.99 0.16 78 75.30 0.79 0.14 0.194524

multiA 31 3562.04 0.22 0.31 5 3512.78 0.04 0.11 0.180017

aflow30a 236 1075.00 0.53 1.61 226 1051.00 0.39 3.05 0.137274

momentum1 348 84003.68 0.31 48.66 207 79204.21 0.18 32.91 0.132035

gesa2 145 25775745.36 0.99 0.42 152 25735855.19 0.85 0.42 0.131492

modglob 112 20684799.25 0.82 0.12 139 20644380.92 0.69 0.12 0.130567

aflow40b 406 1082.00 0.47 16.73 300 1063.00 0.35 20.06 0.117042

b4-10 157 13294.83 0.35 0.78 153 13169.68 0.24 0.73 0.108309

gesa3 o 170 27954866.51 0.77 0.55 157 27939930.76 0.68 0.41 0.094884

dcmulti 94 186330.79 0.56 0.26 68 185984.80 0.48 0.25 0.082253

ran10x26 106 4078.28 0.54 0.14 75 4045.22 0.46 0.12 0.080037

vpm5 107 3002.68 0.58 0.59 68 3002.58 0.50 0.50 0.078861

ches1 39 71.03 0.48 0.09 31 70.54 0.40 0.09 0.077788

bell3a 17 870990.98 0.39 0.06 8 870118.76 0.32 0.05 0.071152

b4-12 213 14587.80 0.21 1.03 173 14454.97 0.14 0.92 0.068952

fixnet6 82 3662.77 0.88 0.30 94 3478.62 0.82 0.47 0.066188

gesa3 116 27963866.98 0.83 0.50 131 27954645.62 0.77 0.49 0.058582

a1c1s1 686 5398.31 0.42 2.75 624 4841.65 0.37 2.97 0.052985

bell5 31 8928247.67 0.89 0.09 12 8911014.71 0.85 0.02 0.048138

khb05250 25 96428245.44 0.05 0.16 3 95919464.00 0.00 0.02 0.046166

ran13x13 120 3024.25 0.59 0.16 88 2999.68 0.55 0.14 0.043819

dano3 4 60 576.25 0.11 9.41 33 576.25 0.07 5.31 0.038523

multiD 76 3884.64 0.09 0.38 48 3810.93 0.06 0.38 0.030511

mod011 289 -59384558.73 0.36 1.77 263 -59611381.49 0.33 1.80 0.029989

vpm2 133 12.94 0.79 0.17 139 12.83 0.76 0.17 0.029653

roll3000 161 12120.94 0.57 3.50 163 12068.70 0.54 3.55 0.029136

seymour1 7 404.13 0.04 1.78 2 403.93 0.01 1.06 0.028544

arki001 232 7579847.42 0.20 6.52 66 7579813.21 0.18 2.58 0.028195

rentacar 21 29274325.20 0.24 0.41 34 29235639.28 0.22 1.27 0.027084

multiC 39 1497.49 0.09 0.22 26 1483.89 0.07 0.19 0.021052

continued on the next page

172

with algorithmic improvements without algorithmic improvements

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

momentum2 1200 10804.25 0.70 106.23 509 10697.37 0.68 90.73 0.021002

BASF6-10 153 20920.55 0.20 1.89 198 20911.68 0.18 2.50 0.020435

clorox 152 13783.99 0.64 0.72 139 13424.92 0.62 0.73 0.017467

neos3 106 -5998.04 0.08 9.53 9 -6111.38 0.07 1.41 0.016331

ran12x21 126 3451.51 0.58 0.19 107 3443.64 0.57 0.19 0.015535

bc1 63 2.61 0.72 117.22 25 2.58 0.70 102.69 0.013614

multiF 129 2050.53 0.44 0.17 87 2043.50 0.43 0.20 0.010463

vpm2a 114 13.04 0.76 0.17 101 13.01 0.75 0.19 0.009654

neos2 87 -4311.53 0.08 6.42 9 -4360.27 0.07 1.05 0.009423

msc98-ip 411 19564697.17 0.14 23.41 170 19561947.01 0.13 18.62 0.008634

BASF6-5 166 11800.92 0.19 1.12 176 11798.07 0.18 1.58 0.008513

dano3 5 82 576.29 0.08 11.28 74 576.28 0.07 10.94 0.008121

egout 16 568.10 1.00 0.02 19 566.59 0.99 0.02 0.007511

momentum3 2694 93079.94 0.01 3270.88 620 91952.39 0.00 1403.89 0.006518

ches2 44 -2891.65 0.11 0.11 33 -2891.67 0.11 0.06 0.006419

multiB 54 3627.88 0.08 0.27 33 3625.80 0.07 0.34 0.005683

m20-75-3 418 -53688.55 0.73 17.34 436 -53741.39 0.73 16.24 0.005554

con-24 266 17959.84 0.48 0.81 238 17882.60 0.47 0.78 0.005142

m20-75-2 404 -52198.38 0.81 26.84 401 -52242.91 0.80 19.16 0.004607

timtab2 348 313976.30 0.22 0.62 350 309224.26 0.22 0.61 0.004531

pp08a 154 7143.27 0.96 0.17 147 7128.87 0.95 0.17 0.003130

dano3 3 23 576.24 0.04 5.30 18 576.24 0.04 4.30 0.002682

m20-75-4 355 -54734.14 0.78 24.20 358 -54754.30 0.78 18.28 0.002265

dano3mip 509 576.56 0.00 25.53 253 576.33 0.00 27.41 0.002050

multiE 79 2279.49 0.25 0.17 51 2278.77 0.25 0.17 0.001240

neos22 51 777686.43 0.99 0.47 18 777291.43 0.99 0.53 0.001079

timtab1 215 245864.72 0.30 0.28 240 245606.81 0.29 0.30 0.000350

bienst2 119 14.94 0.07 0.56 107 14.93 0.07 0.53 0.000181

bienst1 89 14.07 0.07 0.53 85 14.07 0.07 0.53 0.000034

. . .

atlanta-ip 133 81.25 0.00 12.23 54 81.26 0.00 10.66 -0.000460

tr6-30 345 60742.59 0.98 0.53 355 60767.34 0.98 0.58 -0.000496

danoint 108 62.69 0.02 0.47 93 62.70 0.02 0.45 -0.001513

m20-75-5 436 -53165.14 0.80 34.99 537 -53147.81 0.80 21.05 -0.001888

m20-75-1 371 -51261.82 0.89 20.38 387 -51240.89 0.90 17.45 -0.002370

tr24-15 716 135396.11 0.99 1.19 642 136027.95 1.00 1.33 -0.005231

tr12-15 377 73297.66 0.98 0.52 355 73634.10 0.98 0.53 -0.005812

tr12-30 823 129106.22 0.99 1.31 768 129814.98 0.99 1.28 -0.006302

tr24-30 984 238004.34 0.81 0.83 984 240217.12 0.82 0.86 -0.008389

tr6-15 197 36817.15 0.97 0.25 183 37117.55 0.98 0.25 -0.009962

Con-12 168 4577.84 0.51 0.38 144 4651.23 0.52 0.36 -0.011857

pp08aCUTS 123 7157.97 0.90 0.24 101 7181.07 0.91 0.23 -0.012361

set1ch 413 54240.68 0.99 0.39 335 54520.18 1.00 0.39 -0.012406

lrn 367 44307469.65 0.88 9.83 352 44330450.86 0.90 9.55 -0.015804

ches5 43 -7370.94 0.74 0.14 27 -7369.12 0.76 0.09 -0.016696

qnet1 71 15333.09 0.60 0.27 68 15368.94 0.62 0.28 -0.020421

opt1217 10 -20.02 0.00 0.02 9 -19.94 0.02 0.03 -0.021277

Table D.10.: Comparison between a version of the cMIR cut generator that uses improved
bound substitution and aggregation strategies and one that uses traditional
strategies.

new old

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

p2756 268 3063.00 0.86 1.31 72 2703.00 0.01 0.38 0.846954

gesa3 o 170 27954866.51 0.77 0.55 98 27851070.81 0.11 0.16 0.659396

gesa2 o 230 25774034.47 0.98 0.53 203 25584088.13 0.35 0.22 0.626128

binkar10 1 62 6702.62 0.62 0.41 0 6637.19 0.00 0.02 0.623129

b4-10b 92 13936.59 0.68 2.03 9 13734.24 0.11 0.23 0.566564

gesa2 145 25775745.36 0.99 0.42 142 25605284.27 0.42 0.20 0.561898

gt2 30 20726.00 0.94 0.01 57 17191.00 0.48 0.02 0.458747

b4-12b 159 15839.55 0.54 4.12 10 15582.14 0.09 0.42 0.448451

dcmulti 94 186330.79 0.56 0.26 10 184624.15 0.15 0.02 0.405719

fiber 70 385611.78 0.92 0.24 25 297623.78 0.57 0.12 0.352160

swath 45 373.88 0.30 45.83 39 334.50 0.00 15.17 0.296334

continued on the next page

173

D. Test Results

new old

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

b4-20b 263 22466.70 0.32 18.56 26 22102.29 0.04 4.06 0.279082

b4-10 157 13294.83 0.35 0.78 62 12991.41 0.08 0.25 0.262579

modglob 112 20684799.25 0.82 0.12 141 20607394.77 0.57 0.08 0.250046

neos671048 3 2999.00 0.50 2.25 0 2001.00 0.25 1.47 0.249750

p0548 142 8232.00 0.94 0.20 149 6443.00 0.73 0.14 0.216551

neos7 269 668555.02 0.86 1.11 100 592877.12 0.65 0.30 0.204770

arki001 232 7579847.42 0.20 6.52 36 7579599.81 0.00 0.11 0.204091

ches1 39 71.03 0.48 0.09 13 69.81 0.29 0.02 0.192152

roll3000 161 12120.94 0.57 3.50 166 11779.41 0.38 2.75 0.190494

con-24 266 17959.84 0.48 0.81 189 15166.23 0.29 0.22 0.185966

gesa3 116 27963866.98 0.83 0.50 150 27935763.55 0.65 0.23 0.178536

multiA 31 3562.04 0.22 0.31 20 3514.36 0.05 0.17 0.174228

rgn 76 81.80 0.99 0.16 58 75.98 0.81 0.06 0.174201

b4-12 213 14587.80 0.21 1.03 63 14272.55 0.05 0.30 0.163638

vpm2a 114 13.04 0.76 0.17 97 12.58 0.60 0.09 0.158689

aflow30a 236 1075.00 0.53 1.61 205 1048.00 0.37 1.38 0.154433

lrn 367 44307469.65 0.88 9.83 662 44099096.67 0.74 6.16 0.143299

aflow40b 406 1082.00 0.47 16.73 264 1059.00 0.33 16.72 0.141682

msc98-ip 411 19564697.17 0.14 23.41 31 19520966.15 0.00 0.84 0.137290

momentum1 348 84003.68 0.31 48.66 270 79203.50 0.18 16.92 0.132054

mod010 3 6535.00 0.18 0.44 0 6533.00 0.06 0.17 0.125654

Con-12 168 4577.84 0.51 0.38 140 3825.00 0.39 0.11 0.121641

ran10x26 106 4078.28 0.54 0.14 84 4033.52 0.43 0.16 0.108363

dano3 4 60 576.25 0.11 9.41 1 576.23 0.00 0.72 0.107394

vpm5 107 3002.68 0.58 0.59 43 3002.54 0.48 0.17 0.106176

ran12x21 126 3451.51 0.58 0.19 102 3403.24 0.49 0.16 0.095280

ran13x13 120 3024.25 0.59 0.16 84 2977.83 0.51 0.11 0.082805

dano3 5 82 576.29 0.08 11.28 1 576.23 0.00 0.77 0.079197

timtab2 348 313976.30 0.22 0.62 346 232193.65 0.14 0.19 0.077986

timtab1 215 245864.72 0.30 0.28 187 196413.90 0.23 0.05 0.067182

vpm2 133 12.94 0.79 0.17 108 12.69 0.73 0.09 0.064383

fixnet6 82 3662.77 0.88 0.30 101 3484.29 0.82 0.20 0.064150

rentacar 21 29274325.20 0.24 0.41 22 29194392.10 0.19 0.28 0.055961

lseu 29 1030.00 0.68 0.05 16 1015.00 0.63 0.02 0.052573

dano3 3 23 576.24 0.04 5.30 1 576.23 0.00 0.66 0.042647

seymour1 7 404.13 0.04 1.78 0 403.85 0.00 0.08 0.040336

qnet1 o 83 15607.95 0.89 0.24 84 15475.39 0.86 0.17 0.033696

m20-75-1 371 -51261.82 0.89 20.38 342 -51526.09 0.86 3.02 0.029912

a1c1s1 686 5398.31 0.42 2.75 706 5100.00 0.39 1.28 0.028395

bell5 31 8928247.67 0.89 0.09 23 8918901.75 0.87 0.01 0.026107

multiC 39 1497.49 0.09 0.22 36 1483.47 0.07 0.22 0.021706

pp08aCUTS 123 7157.97 0.90 0.24 110 7117.45 0.88 0.09 0.021671

momentum2 1200 10804.25 0.70 106.23 334 10696.26 0.68 53.48 0.021221

multiF 129 2050.53 0.44 0.17 113 2036.40 0.42 0.11 0.021024

neos3 106 -5998.04 0.08 9.53 3 -6111.38 0.07 1.30 0.016331

tr12-30 823 129106.22 0.99 1.31 863 127289.79 0.97 0.72 0.016150

mitre 1125 115026.00 0.69 5.84 642 115020.00 0.67 3.55 0.014476

tr6-30 345 60742.59 0.98 0.53 369 60080.33 0.97 0.25 0.013287

ches5 43 -7370.94 0.74 0.14 32 -7372.29 0.73 0.05 0.012477

mas76 13 38998.28 0.09 0.51 14 38984.44 0.08 0.11 0.012456

ches2 44 -2891.65 0.11 0.11 20 -2891.67 0.10 0.03 0.010410

net12 99 72.00 0.28 9.49 99 70.00 0.27 7.75 0.010165

m20-75-5 436 -53165.14 0.80 34.99 366 -53255.39 0.79 3.17 0.009833

m20-75-4 355 -54734.14 0.78 24.20 369 -54819.33 0.77 3.36 0.009573

neos2 87 -4311.53 0.08 6.42 1 -4360.27 0.07 0.88 0.009423

multiE 79 2279.49 0.25 0.17 64 2274.41 0.24 0.09 0.008799

bc1 63 2.61 0.72 117.22 34 2.59 0.71 43.62 0.008175

mas74 14 10568.56 0.07 0.50 13 10558.81 0.06 0.12 0.007396

momentum3 2694 93079.94 0.01 3270.88 1865 91960.54 0.00 236.81 0.006470

multiB 54 3627.88 0.08 0.27 30 3625.68 0.07 0.23 0.005999

tr12-15 377 73297.66 0.98 0.52 389 72964.10 0.97 0.28 0.005763

p0282 56 254264.00 0.95 0.11 50 253955.00 0.95 0.08 0.003789

m20-75-2 404 -52198.38 0.81 26.84 397 -52232.84 0.80 3.30 0.003565

BASF6-10 153 20920.55 0.20 1.89 185 20919.14 0.20 1.58 0.003260

prod1 129 -81.38 0.42 0.41 26 -81.50 0.42 0.11 0.002833

multiD 76 3884.64 0.09 0.38 81 3878.76 0.09 0.30 0.002437

dano3mip 509 576.56 0.00 25.53 20 576.29 0.00 13.86 0.002397

prod2 128 -85.22 0.39 1.81 45 -85.28 0.39 0.41 0.001422

continued on the next page

174

new old

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

neos22 51 777686.43 0.99 0.47 12 777191.43 0.99 0.19 0.001352

BASF6-5 166 11800.92 0.19 1.12 159 11800.48 0.19 0.99 0.001310

bienst1 89 14.07 0.07 0.53 89 14.07 0.07 0.20 0.000073

. . .

bienst2 119 14.94 0.07 0.56 106 14.94 0.08 0.28 -0.000158

neos4 0 -49463016984.65 0.55 2.05 2 -49461919046.45 0.55 1.67 -0.000577

atlanta-ip 133 81.25 0.00 12.23 116 81.26 0.00 16.01 -0.000660

tr6-15 197 36817.15 0.97 0.25 204 36859.69 0.97 0.11 -0.001411

danoint 108 62.69 0.02 0.47 88 62.70 0.02 0.30 -0.002292

swath2 24 334.50 0.00 1.47 22 334.64 0.00 2.91 -0.002763

nsrand-ipx 85 49980.00 0.47 2.01 153 49987.00 0.48 2.84 -0.003017

sp97ar 16 652734973.16 0.02 4.41 36 652769660.25 0.02 4.97 -0.003681

pp08a 154 7143.27 0.96 0.17 155 7163.52 0.96 0.08 -0.004400

tr24-15 716 135396.11 0.99 1.19 690 136007.29 1.00 0.66 -0.005060

tr24-30 984 238004.34 0.81 0.83 984 240036.19 0.82 0.45 -0.007703

m20-75-3 418 -53688.55 0.73 17.34 424 -53605.48 0.74 3.09 -0.008734

set1ch 413 54240.68 0.99 0.39 327 54517.88 1.00 0.16 -0.012304

opt1217 10 -20.02 0.00 0.02 13 -19.94 0.02 0.03 -0.021277

clorox 152 13783.99 0.64 0.72 121 14479.89 0.67 0.23 -0.033852

blend2 7 7.04 0.19 0.08 16 7.10 0.26 0.12 -0.074834

qnet1 71 15333.09 0.60 0.27 72 15500.76 0.70 0.20 -0.095509

p0033 8 2890.00 0.65 0.00 26 2958.00 0.77 0.01 -0.119628

mod008 17 296.00 0.32 0.28 20 298.00 0.44 0.09 -0.124464

mod011 289 -59384558.73 0.36 1.77 236 -58347923.42 0.50 1.11 -0.137059

bell3a 17 870990.98 0.39 0.06 12 873351.52 0.59 0.02 -0.192562

harp2 0 -74325169.00 0.00 0.12 121 -74084955.00 0.56 1.28 -0.564716

khb05250 25 96428245.44 0.05 0.16 59 103966809.04 0.73 0.39 -0.684033

Table D.14.: Comparison between the new and the old cMIR cut generator of MOPS .

cMIR flow cover

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

rgn 76 81.80 0.99 0.16 20 48.80 0.00 0.02 0.988022

gt2 30 20726.00 0.94 0.01 0 13461.00 0.00 0.00 0.942800

qnet1 o 83 15607.95 0.89 0.24 0 12095.57 0.00 0.03 0.892799

gesa3 116 27963866.98 0.83 0.50 15 27851274.98 0.11 0.08 0.715278

gesa3 o 170 27954866.51 0.77 0.55 35 27851274.98 0.11 0.11 0.658099

gesa2 o 230 25774034.47 0.98 0.53 74 25588610.23 0.37 0.12 0.611221

gesa2 145 25775745.36 0.99 0.42 58 25591166.32 0.38 0.16 0.608435

qnet1 71 15333.09 0.60 0.27 0 14274.10 0.00 0.03 0.603209

roll3000 161 12120.94 0.57 3.50 85 11099.34 0.00 1.62 0.569810

vpm5 107 3002.68 0.58 0.59 21 3002.02 0.06 0.17 0.522720

vpm2a 114 13.04 0.76 0.17 57 11.68 0.30 0.06 0.461025

vpm1 40 20.00 1.00 0.00 22 18.00 0.56 0.03 0.436364

binkar10 1 62 6702.62 0.62 0.41 55 6656.92 0.19 0.31 0.435259

bell3a 17 870990.98 0.39 0.06 0 866171.73 0.00 0.02 0.393132

vpm2 133 12.94 0.79 0.17 106 11.68 0.46 0.09 0.327762

b4-10b 92 13936.59 0.68 2.03 45 13826.25 0.37 1.48 0.308932

ches1 39 71.03 0.48 0.09 2 69.12 0.18 0.02 0.300790

swath 45 373.88 0.30 45.83 20 334.50 0.00 15.41 0.296334

neos7 269 668555.02 0.86 1.11 0 562977.43 0.57 0.12 0.285673

timtab1 215 245864.72 0.30 0.28 30 49751.13 0.03 0.06 0.266430

multiE 79 2279.49 0.25 0.17 0 2133.08 0.00 0.02 0.253515

m20-75-2 404 -52198.38 0.81 26.84 75 -54436.00 0.57 0.41 0.231513

m20-75-1 371 -51261.82 0.89 20.38 74 -53226.01 0.67 0.39 0.222324

m20-75-3 418 -53688.55 0.73 17.34 73 -55795.88 0.51 0.41 0.221535

m20-75-4 355 -54734.14 0.78 24.20 75 -56669.00 0.56 0.42 0.217419

aflow30a 236 1075.00 0.53 1.61 148 1038.00 0.31 0.64 0.211631

arki001 232 7579847.42 0.20 6.52 0 7579599.81 0.00 0.20 0.204091

m20-75-5 436 -53165.14 0.80 34.99 72 -55037.62 0.60 0.39 0.204008

timtab2 348 313976.30 0.22 0.62 93 106236.65 0.02 0.19 0.198097

a1c1s1 686 5398.31 0.42 2.75 497 3475.07 0.24 1.64 0.183062

b4-10 157 13294.83 0.35 0.78 127 13088.64 0.17 0.61 0.178435

ran12x21 126 3451.51 0.58 0.19 120 3361.72 0.40 0.11 0.177233

dcmulti 94 186330.79 0.56 0.26 89 185634.93 0.39 0.26 0.165428

bc1 63 2.61 0.72 117.22 1 2.19 0.55 7.95 0.165217

mitre 1125 115026.00 0.69 5.84 850 114963.00 0.54 4.09 0.151997

continued on the next page

175

D. Test Results

cMIR flow cover

name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆

ran13x13 120 3024.25 0.59 0.16 104 2945.17 0.45 0.09 0.141071

momentum1 348 84003.68 0.31 48.66 29 79203.04 0.18 12.36 0.132067

ran10x26 106 4078.28 0.54 0.14 108 4023.88 0.40 0.11 0.131714

b4-20b 263 22466.70 0.32 18.56 146 22313.58 0.20 13.26 0.117269

ches2 44 -2891.65 0.11 0.11 0 -2891.88 0.00 0.01 0.113324

b4-12b 159 15839.55 0.54 4.12 77 15781.85 0.44 2.97 0.100527

rentacar 21 29274325.20 0.24 0.41 15 29151329.73 0.16 0.47 0.086108

lseu 29 1030.00 0.68 0.05 29 1006.00 0.60 0.03 0.084117

dano3 4 60 576.25 0.11 9.41 17 576.24 0.03 40.62 0.077898

bienst2 119 14.94 0.07 0.56 4 11.72 0.00 0.05 0.074897

set1ch 413 54240.68 0.99 0.39 469 52560.13 0.91 0.31 0.074592

con-24 266 17959.84 0.48 0.81 170 16845.27 0.40 0.53 0.074195

dano3 5 82 576.29 0.08 11.28 12 576.24 0.01 32.72 0.071394

bienst1 89 14.07 0.07 0.53 3 11.72 0.00 0.12 0.067022

multiD 76 3884.64 0.09 0.38 20 3727.38 0.02 0.09 0.065094

nsrand-ipx 85 49980.00 0.47 2.01 83 49832.00 0.41 1.94 0.063793

mod008 17 296.00 0.32 0.28 24 295.00 0.25 0.11 0.062232

mod011 289 -59384558.73 0.36 1.77 345 -59836429.49 0.30 1.86 0.059744

mas76 13 38998.28 0.09 0.51 12 38936.52 0.04 0.08 0.055580

bell5 31 8928247.67 0.89 0.09 0 8908552.45 0.84 0.02 0.055016

b4-12 213 14587.80 0.21 1.03 199 14503.76 0.17 0.86 0.043624

aflow40b 406 1082.00 0.47 16.73 310 1075.00 0.43 7.53 0.043121

seymour1 7 404.13 0.04 1.78 1 403.85 0.00 0.45 0.040336

msc98-ip 411 19564697.17 0.14 23.41 384 19553706.29 0.10 12.67 0.034505

Con-12 168 4577.84 0.51 0.38 104 4378.27 0.48 0.24 0.032246

p0548 142 8232.00 0.94 0.20 162 7967.00 0.91 0.16 0.032077

mas74 14 10568.56 0.07 0.50 13 10526.33 0.03 0.09 0.032030

fixnet6 82 3662.77 0.88 0.30 74 3601.85 0.86 0.16 0.021896

momentum2 1200 10804.25 0.70 106.23 179 10696.59 0.68 101.03 0.021155

sp97ar 16 652734973.16 0.02 4.41 4 652568542.94 0.00 3.20 0.017661

multiC 39 1497.49 0.09 0.22 47 1487.38 0.08 1.30 0.015654

danoint 108 62.69 0.02 0.47 11 62.65 0.01 0.22 0.013192

neos3 106 -5998.04 0.08 9.53 14 -6082.65 0.07 4.91 0.012191

fiber 70 385611.78 0.92 0.24 93 382638.99 0.91 0.23 0.011898

BASF6-10 153 20920.55 0.20 1.89 172 20915.93 0.19 1.88 0.010636

multiF 129 2050.53 0.44 0.17 109 2043.54 0.43 0.12 0.010409

ches5 43 -7370.94 0.74 0.14 37 -7372.00 0.73 0.08 0.009763

multiA 31 3562.04 0.22 0.31 51 3559.78 0.21 1.34 0.008253

neos2 87 -4311.53 0.08 6.42 13 -4336.13 0.07 3.89 0.004757

momentum3 2694 93079.94 0.01 3270.88 978 92326.39 0.00 570.41 0.004356

BASF6-5 166 11800.92 0.19 1.12 157 11799.69 0.19 1.09 0.003681

dano3mip 509 576.56 0.00 25.53 32 576.24 0.00 59.53 0.002803

prod2 128 -85.22 0.39 1.81 86 -85.31 0.39 0.59 0.002216

prod1 129 -81.38 0.42 0.41 63 -81.47 0.42 0.24 0.002134

neos22 51 777686.43 0.99 0.47 6 777191.43 0.99 4.50 0.001352

tr24-30 984 238004.34 0.81 0.83 984 237735.59 0.81 0.77 0.001019

lrn 367 44307469.65 0.88 9.83 342 44306047.77 0.88 8.62 0.000978

multiB 54 3627.88 0.08 0.27 19 3627.72 0.08 0.49 0.000426

. . .

atlanta-ip 133 81.25 0.00 12.23 394 81.28 0.00 20.64 -0.002497

p0282 56 254264.00 0.95 0.11 49 254545.00 0.95 0.09 -0.003446

dano3 3 23 576.24 0.04 5.30 18 576.24 0.05 45.92 -0.004067

tr6-30 345 60742.59 0.98 0.53 369 60973.69 0.98 0.47 -0.004636

p2756 268 3063.00 0.86 1.31 260 3065.00 0.86 1.06 -0.004705

tr24-15 716 135396.11 0.99 1.19 787 136111.83 1.00 0.98 -0.005926

tr12-30 823 129106.22 0.99 1.31 897 129852.81 0.99 1.12 -0.006638

tr12-15 377 73297.66 0.98 0.52 423 73789.76 0.99 0.42 -0.008502

pp08a 154 7143.27 0.96 0.17 179 7189.99 0.97 0.14 -0.010152

tr6-15 197 36817.15 0.97 0.25 222 37237.48 0.98 0.22 -0.013939

pp08aCUTS 123 7157.97 0.90 0.24 129 7188.53 0.91 0.19 -0.016348

modglob 112 20684799.25 0.82 0.12 112 20706399.26 0.89 0.11 -0.069776

clorox 152 13783.99 0.64 0.72 191 17360.22 0.81 0.52 -0.173966

khb05250 25 96428245.44 0.05 0.16 88 106724316.42 0.98 0.48 -0.934243

Table D.15.: Comparison between the cMIR and the aggregated flow cover cut generator.

176

whith path-based tightest row aggregation with traditional aggregation
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
b4-10b 92 13936.59 0.68 2.03 32 13757.01 0.18 0.80 0.502796
b4-12b 159 15839.55 0.54 4.12 42 15609.45 0.14 2.74 0.400872
gesa2 o 230 25774034.47 0.98 0.53 156 25681053.15 0.67 0.41 0.306498
swath 45 373.88 0.30 45.83 36 334.50 0.00 15.22 0.296334
b4-20b 263 22466.70 0.32 18.56 72 22137.60 0.07 8.09 0.252042
rgn 76 81.80 0.99 0.16 78 75.30 0.79 0.14 0.194524
multiA 31 3562.04 0.22 0.31 5 3512.78 0.04 0.12 0.180017
b4-10 157 13294.83 0.35 0.78 118 13113.80 0.19 0.72 0.156664
momentum1 348 84003.68 0.31 48.66 344 79682.72 0.19 39.55 0.118871
b4-12 213 14587.80 0.21 1.03 114 14384.72 0.11 0.78 0.105416
gesa3 o 170 27954866.51 0.77 0.55 123 27940138.60 0.68 0.36 0.093564
arki001 232 7579847.42 0.20 6.52 168 7579764.21 0.14 5.36 0.068586
vpm5 107 3002.68 0.58 0.59 80 3002.60 0.52 0.56 0.061708
dcmulti 94 186330.79 0.56 0.26 70 186077.56 0.50 0.25 0.060200
a1c1s1 686 5398.31 0.42 2.75 613 4867.42 0.37 2.86 0.050533
rentacar 21 29274325.20 0.24 0.41 20 29213967.24 0.20 0.66 0.042256
mod011 289 -59384558.73 0.36 1.77 268 -59694755.74 0.32 1.78 0.041013
bell3a 17 870990.98 0.39 0.06 11 870587.05 0.36 0.06 0.032950
seymour1 7 404.13 0.04 1.78 2 403.93 0.01 1.08 0.028544
bell5 31 8928247.67 0.89 0.09 24 8918498.30 0.87 0.08 0.027234
multiD 76 3884.64 0.09 0.38 60 3825.32 0.06 0.55 0.024555
neos7 269 668555.02 0.86 1.11 227 660149.10 0.83 0.95 0.022745
momentum2 1200 10804.25 0.70 106.23 515 10702.37 0.68 75.33 0.020021
vpm2a 114 13.04 0.76 0.17 91 12.99 0.74 0.16 0.018230
gesa2 145 25775745.36 0.99 0.42 155 25770446.16 0.97 0.45 0.017468
gesa3 116 27963866.98 0.83 0.50 119 27961143.18 0.81 0.48 0.017304
clorox 152 13783.99 0.64 0.72 148 13430.00 0.62 0.74 0.017220
aflow30a 236 1075.00 0.53 1.61 201 1072.00 0.51 1.58 0.017159
multiC 39 1497.49 0.09 0.22 38 1487.53 0.08 0.23 0.015422
bc1 63 2.61 0.72 117.22 60 2.58 0.70 136.70 0.010943
multiF 129 2050.53 0.44 0.17 119 2045.25 0.43 0.17 0.007861
vpm2 133 12.94 0.79 0.17 124 12.91 0.78 0.14 0.007857
pp08a 154 7143.27 0.96 0.17 161 7109.31 0.95 0.19 0.007382
aflow40b 406 1082.00 0.47 16.73 313 1081.00 0.46 14.12 0.006160
msc98-ip 411 19564697.17 0.14 23.41 315 19562735.61 0.13 12.39 0.006158
ches1 39 71.03 0.48 0.09 31 70.99 0.47 0.09 0.006148
neos3 106 -5998.04 0.08 9.53 88 -6039.37 0.08 7.39 0.005956
multiB 54 3627.88 0.08 0.27 31 3625.81 0.07 0.30 0.005655
m20-75-3 418 -53688.55 0.73 17.34 436 -53741.39 0.73 16.39 0.005554
pp08aCUTS 123 7157.97 0.90 0.24 109 7148.40 0.89 0.24 0.005117
ches5 43 -7370.94 0.74 0.14 41 -7371.47 0.74 0.17 0.004912
tr24-15 716 135396.11 0.99 1.19 686 134837.02 0.99 1.42 0.004629
m20-75-2 404 -52198.38 0.81 26.84 401 -52242.91 0.80 19.17 0.004607
modglob 112 20684799.25 0.82 0.12 107 20683613.38 0.82 0.11 0.003831
timtab2 348 313976.30 0.22 0.62 345 310289.76 0.22 0.62 0.003515
set1ch 413 54240.68 0.99 0.39 409 54173.11 0.98 0.41 0.002999
m20-75-4 355 -54734.14 0.78 24.20 358 -54754.30 0.78 18.34 0.002265
egout 16 568.10 1.00 0.02 23 567.75 1.00 0.03 0.001743
tr6-15 197 36817.15 0.97 0.25 186 36764.86 0.97 0.25 0.001734
con-24 266 17959.84 0.48 0.81 257 17935.87 0.48 0.80 0.001595
ran12x21 126 3451.51 0.58 0.19 121 3450.71 0.58 0.23 0.001572
ran13x13 120 3024.25 0.59 0.16 110 3023.70 0.59 0.14 0.000975
timtab1 215 245864.72 0.30 0.28 240 245606.81 0.29 0.30 0.000350
BASF6-10 153 20920.55 0.20 1.89 166 20920.45 0.20 1.94 0.000229
bienst2 119 14.94 0.07 0.56 107 14.93 0.07 0.51 0.000181
roll3000 161 12120.94 0.57 3.50 161 12120.82 0.57 3.64 0.000070
tr6-30 345 60742.59 0.98 0.53 343 60740.52 0.98 0.58 0.000042
bienst1 89 14.07 0.07 0.53 85 14.07 0.07 0.53 0.000034
atlanta-ip 133 81.25 0.00 12.23 80 81.25 0.00 10.23 0.000025
. . .

dano3mip 509 576.56 0.00 25.53 457 576.56 0.00 22.34 -0.000027
tr24-30 984 238004.34 0.81 0.83 984 238058.93 0.81 0.92 -0.000207
ran10x26 106 4078.28 0.54 0.14 99 4078.37 0.54 0.16 -0.000234
tr12-30 823 129106.22 0.99 1.31 829 129152.91 0.99 1.44 -0.000415
BASF6-5 166 11800.92 0.19 1.12 155 11801.20 0.19 1.17 -0.000848
khb05250 25 96428245.44 0.05 0.16 22 96439441.74 0.05 0.16 -0.001016
danoint 108 62.69 0.02 0.47 91 62.70 0.02 0.45 -0.001836
m20-75-5 436 -53165.14 0.80 34.99 537 -53147.81 0.80 20.89 -0.001888
tr12-15 377 73297.66 0.98 0.52 368 73424.20 0.98 0.55 -0.002186
m20-75-1 371 -51261.82 0.89 20.38 387 -51240.89 0.90 17.30 -0.002370
dano3 4 60 576.25 0.11 9.41 56 576.25 0.11 8.28 -0.002947
neos2 87 -4311.53 0.08 6.42 61 -4287.63 0.08 5.78 -0.004619
dano3 3 23 576.24 0.04 5.30 22 576.24 0.05 6.36 -0.004756
dano3 5 82 576.29 0.08 11.28 88 576.29 0.09 10.70 -0.007377
multiE 79 2279.49 0.25 0.17 68 2283.79 0.26 0.17 -0.007453
momentum3 2694 93079.94 0.01 3270.88 2749 94431.73 0.01 2133.30 -0.007814
fixnet6 82 3662.77 0.88 0.30 91 3690.11 0.89 0.33 -0.009830
Con-12 168 4577.84 0.51 0.38 165 4651.69 0.52 0.38 -0.011933
lrn 367 44307469.65 0.88 9.83 345 44353913.61 0.91 10.11 -0.031940

Table D.11.: Comparison between a version of the cMIR cut generator that uses path
based-tightest row aggregation and one that uses the aggregation strategy
from literature.

177

D. Test Results

with improved bound substitution with traditional bound substitution
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
swath 45 373.88 0.30 45.83 39 334.50 0.00 15.22 0.296334
neos671048 3 2999.00 0.50 2.25 0 2001.00 0.25 2.06 0.249750
aflow30a 236 1075.00 0.53 1.61 232 1050.00 0.38 3.27 0.142994
momentum1 348 84003.68 0.31 48.66 198 79204.42 0.18 48.59 0.132029
modglob 112 20684799.25 0.82 0.12 138 20648174.35 0.70 0.12 0.118313
aflow40b 406 1082.00 0.47 16.73 299 1063.00 0.35 21.67 0.117042
gesa2 o 230 25774034.47 0.98 0.53 223 25738989.25 0.87 0.47 0.115521
neos7 269 668555.02 0.86 1.11 258 627807.81 0.75 1.00 0.110254
gesa2 145 25775745.36 0.99 0.42 161 25743804.84 0.88 0.41 0.105287
b4-10b 92 13936.59 0.68 2.03 81 13910.49 0.61 1.50 0.073088
ran10x26 106 4078.28 0.54 0.14 75 4050.74 0.47 0.14 0.066684
fixnet6 82 3662.77 0.88 0.30 83 3503.66 0.83 0.36 0.057188
roll3000 161 12120.94 0.57 3.50 163 12035.13 0.52 3.38 0.047864
khb05250 25 96428245.44 0.05 0.16 3 95919464.00 0.00 0.02 0.046166
b4-12b 159 15839.55 0.54 4.12 140 15814.64 0.50 3.44 0.043400
bell3a 17 870990.98 0.39 0.06 14 870493.10 0.35 0.05 0.040614
ran13x13 120 3024.25 0.59 0.16 95 3002.95 0.56 0.14 0.037987
gesa3 116 27963866.98 0.83 0.50 136 27958196.38 0.79 0.50 0.036024
gesa3 o 170 27954866.51 0.77 0.55 159 27950431.83 0.74 0.50 0.028173
vpm2 133 12.94 0.79 0.17 159 12.84 0.76 0.17 0.026973
b4-12 213 14587.80 0.21 1.03 188 14545.39 0.19 0.95 0.022017
momentum2 1200 10804.25 0.70 106.23 638 10697.51 0.68 130.64 0.020975
BASF6-10 153 20920.55 0.20 1.89 209 20912.31 0.18 2.52 0.018979
multiC 39 1497.49 0.09 0.22 41 1488.05 0.08 0.24 0.014610
ran12x21 126 3451.51 0.58 0.19 113 3444.20 0.57 0.20 0.014435
dano3 5 82 576.29 0.08 11.28 79 576.28 0.07 11.23 0.014133
bell5 31 8928247.67 0.89 0.09 22 8923210.45 0.88 0.06 0.014071
neos3 106 -5998.04 0.08 9.53 32 -6092.02 0.07 3.30 0.013541
multiF 129 2050.53 0.44 0.17 103 2042.17 0.42 0.17 0.012450
b4-10 157 13294.83 0.35 0.78 160 13280.56 0.33 0.76 0.012349
multiD 76 3884.64 0.09 0.38 59 3858.12 0.08 0.36 0.010978
arki001 232 7579847.42 0.20 6.52 102 7579834.50 0.19 7.42 0.010647
bc1 63 2.61 0.72 117.22 31 2.59 0.71 115.01 0.010169
dano3 4 60 576.25 0.11 9.41 60 576.25 0.10 9.80 0.009727
msc98-ip 411 19564697.17 0.14 23.41 256 19561947.01 0.13 9.03 0.008634
neos2 87 -4311.53 0.08 6.42 12 -4355.28 0.07 1.00 0.008460
momentum3 2694 93079.94 0.01 3270.88 1721 91952.39 0.00 1813.33 0.006518
ches2 44 -2891.65 0.11 0.11 33 -2891.67 0.11 0.05 0.006419
b4-20b 263 22466.70 0.32 18.56 203 22458.33 0.31 14.70 0.006408
vpm2a 114 13.04 0.76 0.17 117 13.03 0.76 0.20 0.004629
BASF6-5 166 11800.92 0.19 1.12 206 11799.65 0.19 1.61 0.003799
timtab2 348 313976.30 0.22 0.62 354 310797.26 0.22 0.69 0.003031
dano3mip 509 576.56 0.00 25.53 418 576.34 0.00 51.61 0.001930
neos22 51 777686.43 0.99 0.47 18 777291.43 0.99 0.50 0.001079
dcmulti 94 186330.79 0.56 0.26 94 186330.02 0.56 0.26 0.000183
. . .

multiB 54 3627.88 0.08 0.27 49 3627.89 0.08 0.26 -0.000033
danoint 108 62.69 0.02 0.47 113 62.70 0.02 0.45 -0.000377
tr6-30 345 60742.59 0.98 0.53 348 60763.12 0.98 0.55 -0.000412
atlanta-ip 133 81.25 0.00 12.23 128 81.26 0.00 14.30 -0.000534
Con-12 168 4577.84 0.51 0.38 144 4590.36 0.51 0.36 -0.002024
con-24 266 17959.84 0.48 0.81 253 17999.78 0.48 0.80 -0.002659
tr12-30 823 129106.22 0.99 1.31 803 129594.20 0.99 1.27 -0.004339
tr24-15 716 135396.11 0.99 1.19 656 136078.83 1.00 1.14 -0.005652
tr12-15 377 73297.66 0.98 0.52 361 73651.68 0.98 0.48 -0.006116
lrn 367 44307469.65 0.88 9.83 353 44318584.76 0.89 9.16 -0.007644
tr24-30 984 238004.34 0.81 0.83 984 240217.12 0.82 0.84 -0.008389
dano3 3 23 576.24 0.04 5.30 32 576.24 0.05 5.72 -0.009131
multiE 79 2279.49 0.25 0.17 61 2285.05 0.26 0.16 -0.009623
pp08a 154 7143.27 0.96 0.17 160 7188.90 0.96 0.17 -0.009915
tr6-15 197 36817.15 0.97 0.25 197 37125.29 0.98 0.25 -0.010219
vpm5 107 3002.68 0.58 0.59 84 3002.69 0.59 0.59 -0.011532
set1ch 413 54240.68 0.99 0.39 336 54521.10 1.00 0.36 -0.012447
pp08aCUTS 123 7157.97 0.90 0.24 101 7192.50 0.92 0.25 -0.018471
qnet1 71 15333.09 0.60 0.27 68 15368.94 0.62 0.25 -0.020421
ches5 43 -7370.94 0.74 0.14 34 -7368.68 0.76 0.14 -0.020734
opt1217 10 -20.02 0.00 0.02 10 -19.94 0.02 0.03 -0.021277
multiA 31 3562.04 0.22 0.31 32 3569.06 0.25 0.25 -0.025675
ches1 39 71.03 0.48 0.09 30 71.39 0.54 0.09 -0.056528
clorox 152 13783.99 0.64 0.72 147 15257.49 0.71 0.72 -0.071678

Table D.12.: Comparison between a version of the cMIR cut generator that uses the
improved bound substitution and one that uses the traditional one.

178

with variable bound on integer without variable bounds on integers
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
neos671048 3 2999.00 0.50 2.25 0 2001.00 0.25 2.06 0.249750
roll3000 161 12120.94 0.57 3.50 163 12035.13 0.52 3.45 0.047864
neos7 269 668555.02 0.86 1.11 288 664102.96 0.84 1.17 0.012046
. . .

ches1 39 71.03 0.48 0.09 36 71.04 0.48 0.11 -0.000845
qnet1 71 15333.09 0.60 0.27 68 15368.94 0.62 0.27 -0.020421
ches5 43 -7370.94 0.74 0.14 36 -7367.67 0.77 0.24 -0.029997

Table D.13.: Comparison between a version of the cMIR cut generator that uses variable
bounds on integer variables and one that does not.

179

D. Test Results

path-based tightest row aggregation traditional cMIR aggregation
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
b4-10b 91 13936.59 0.68 2.39 33 13757.01 0.18 0.88 0.502796
b4-12b 147 15850.98 0.56 4.80 41 15609.45 0.14 3.02 0.420779
gesa2 o 230 25774034.47 0.98 0.55 156 25681053.15 0.67 0.39 0.306498
swath 66 373.88 0.30 45.89 36 334.50 0.00 15.22 0.296334
b4-20b 255 22482.45 0.33 22.08 74 22137.60 0.07 9.30 0.264100
rgn 76 81.80 0.99 0.17 78 75.30 0.79 0.17 0.194524
multiA 38 3564.64 0.23 0.30 7 3512.78 0.04 0.09 0.189548
clorox 153 17312.83 0.81 0.88 163 13571.66 0.63 0.91 0.181990
b4-10 153 13256.06 0.31 0.86 119 13114.41 0.19 0.80 0.122587
momentum1 346 84003.68 0.31 52.14 344 79682.72 0.19 42.61 0.118871
dano3 3 76 576.25 0.15 10.67 34 576.24 0.05 5.11 0.105711
b4-12 200 14567.51 0.20 1.11 119 14384.72 0.11 0.86 0.094882
gesa3 o 170 27954866.51 0.77 0.56 123 27940138.60 0.68 0.34 0.093564
arki001 233 7579847.42 0.20 7.12 168 7579764.21 0.14 5.83 0.068586
dano3 4 119 576.27 0.17 11.97 74 576.25 0.11 9.36 0.065622
a1c1s1 698 5378.64 0.42 3.09 612 4717.40 0.35 3.44 0.062940
vpm5 107 3002.68 0.58 0.64 80 3002.60 0.52 0.55 0.061708
dcmulti 104 186280.87 0.55 0.33 85 186068.45 0.50 0.33 0.050497
rentacar 21 29274325.20 0.24 0.53 21 29213967.24 0.20 0.84 0.042256
mod011 289 -59384558.73 0.36 1.98 268 -59694755.74 0.32 2.05 0.041013
bell3a 17 870990.98 0.39 0.08 11 870587.05 0.36 0.06 0.032950
dano3 5 175 576.31 0.11 15.17 104 576.29 0.08 11.78 0.030867
seymour1 7 404.13 0.04 2.39 2 403.93 0.01 1.44 0.028544
bell5 31 8928247.67 0.89 0.09 24 8918498.30 0.87 0.08 0.027234
momentum2 1138 10804.76 0.70 125.58 471 10701.10 0.68 105.50 0.020369
vpm2a 114 13.04 0.76 0.20 91 12.99 0.74 0.19 0.018230
pp08a 165 7153.35 0.96 0.20 158 7072.93 0.94 0.20 0.017476
gesa2 145 25775745.36 0.99 0.45 155 25770446.16 0.97 0.47 0.017468
gesa3 116 27963866.98 0.83 0.53 119 27961143.18 0.81 0.52 0.017304
neos7 257 672282.07 0.87 1.23 233 666986.63 0.85 1.06 0.014328
multiF 127 2061.29 0.45 0.20 121 2052.09 0.44 0.20 0.013692
bc1 63 2.61 0.72 118.50 60 2.58 0.70 138.52 0.010943
multiE 87 2289.01 0.27 0.22 77 2283.79 0.26 0.20 0.009039
vpm2 133 12.94 0.79 0.20 124 12.91 0.78 0.16 0.007857
msc98-ip 411 19564697.17 0.14 23.80 338 19562230.43 0.13 11.78 0.007744
ches1 39 71.03 0.48 0.09 31 70.99 0.47 0.08 0.006148
neos3 106 -5998.04 0.08 9.67 88 -6039.37 0.08 7.44 0.005956
m20-75-3 418 -53688.55 0.73 18.14 436 -53741.39 0.73 16.95 0.005554
ches5 43 -7370.94 0.74 0.16 42 -7371.47 0.74 0.17 0.004912
m20-75-2 404 -52198.38 0.81 27.59 402 -52242.91 0.80 20.03 0.004607
tr24-15 765 136359.52 1.00 1.38 729 135878.48 0.99 1.38 0.003983
modglob 112 20684799.25 0.82 0.12 107 20683613.38 0.82 0.12 0.003831
con-24 277 17998.19 0.48 0.92 271 17940.73 0.48 0.97 0.003825
timtab2 348 313976.30 0.22 0.75 345 310289.76 0.22 0.73 0.003515
m20-75-4 353 -54733.76 0.78 21.64 358 -54754.30 0.78 18.77 0.002309
egout 17 568.10 1.00 0.00 23 567.75 1.00 0.03 0.001743
ran12x21 126 3451.51 0.58 0.19 121 3450.71 0.58 0.20 0.001572
tr24-30 984 238400.65 0.81 0.92 984 238058.93 0.81 0.98 0.001296
tr12-15 391 73847.99 0.99 0.62 369 73775.51 0.99 0.64 0.001252
tr12-30 844 130176.42 1.00 1.53 829 130040.16 1.00 1.72 0.001211
tr6-15 206 37255.36 0.98 0.30 201 37222.62 0.98 0.33 0.001086
tr6-30 337 60964.39 0.98 0.53 338 60913.42 0.98 0.67 0.001023
ran13x13 120 3024.25 0.59 0.19 110 3023.70 0.59 0.14 0.000975
multiB 54 3627.87 0.08 0.28 34 3627.54 0.08 0.30 0.000895
timtab1 215 245864.72 0.30 0.34 240 245606.81 0.29 0.41 0.000350
dano3mip 595 576.65 0.00 32.55 537 576.64 0.00 28.26 0.000090
roll3000 161 12120.94 0.57 3.86 161 12120.82 0.57 3.91 0.000070
atlanta-ip 133 81.25 0.00 12.45 80 81.25 0.00 10.41 0.000025
. . .

ran10x26 106 4078.28 0.54 0.16 99 4078.37 0.54 0.14 -0.000234
bienst2 130 14.94 0.07 0.62 138 14.96 0.08 0.67 -0.000451
bienst1 103 14.09 0.07 0.66 106 14.11 0.07 0.67 -0.000612
BASF6-10 154 20920.75 0.20 2.05 163 20921.04 0.20 2.08 -0.000661
danoint 148 62.71 0.03 0.64 129 62.72 0.03 0.64 -0.000860
khb05250 25 96428245.44 0.05 0.17 22 96439441.74 0.05 0.16 -0.001016
BASF6-5 162 11801.25 0.19 1.20 163 11802.02 0.19 1.17 -0.002288
m20-75-1 373 -51261.82 0.89 21.09 390 -51240.89 0.90 17.94 -0.002370
m20-75-5 442 -53167.89 0.80 31.03 460 -53145.20 0.80 29.27 -0.002472
set1ch 410 54348.26 0.99 0.45 408 54435.31 1.00 0.45 -0.003864
neos2 87 -4311.53 0.08 6.45 61 -4287.63 0.08 5.92 -0.004619
aflow40b 392 1082.00 0.47 18.56 344 1083.00 0.48 14.44 -0.006160
multiC 46 1490.53 0.08 0.24 47 1495.81 0.09 0.25 -0.008163
multiD 60 3821.19 0.06 0.39 47 3842.88 0.07 0.62 -0.008978
Con-12 181 4580.79 0.51 0.45 149 4636.91 0.52 0.39 -0.009066
pp08aCUTS 123 7159.63 0.90 0.25 113 7177.39 0.91 0.25 -0.009503
fixnet6 82 3662.77 0.88 0.33 91 3690.11 0.89 0.33 -0.009830
momentum3 1203 91952.39 0.00 1844.53 2744 94431.74 0.01 2452.23 -0.014331
aflow30a 226 1074.00 0.52 2.45 197 1077.00 0.54 2.06 -0.017159
lrn 357 44307174.57 0.88 10.86 347 44353913.61 0.91 10.95 -0.032143

Table D.16.: Comparison between the two aggregation strategies for the flow path cut
generator.

180

extended network inequalities simple network inequalities
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
clorox 153 17312.83 0.81 0.88 161 13759.84 0.64 0.89 0.172836
pp08aCUTS 123 7159.63 0.90 0.25 119 7093.05 0.86 0.27 0.035616
b4-20b 255 22482.45 0.33 22.08 254 22465.63 0.32 22.41 0.012878
multiF 127 2061.29 0.45 0.20 125 2056.00 0.45 0.20 0.007872
b4-12 200 14567.51 0.20 1.11 196 14558.36 0.20 1.08 0.004748
dano3 5 175 576.31 0.11 15.17 163 576.31 0.11 15.05 0.002765
set1ch 410 54348.26 0.99 0.45 414 54300.28 0.99 0.45 0.002130
tr24-30 984 238400.65 0.81 0.92 984 238004.34 0.81 0.92 0.001503
BASF6-10 154 20920.75 0.20 2.05 150 20920.28 0.20 2.02 0.001078
tr6-15 206 37255.36 0.98 0.30 208 37223.75 0.98 0.30 0.001048
multiE 87 2289.01 0.27 0.22 77 2288.79 0.27 0.17 0.000395
tr24-15 765 136359.52 1.00 1.38 725 136325.95 1.00 1.22 0.000278
danoint 148 62.71 0.03 0.64 140 62.71 0.03 0.67 0.000262
tr12-30 844 130176.42 1.00 1.53 840 130156.08 1.00 1.47 0.000181
dano3mip 595 576.65 0.00 32.55 579 576.63 0.00 30.86 0.000162
tr12-15 391 73847.99 0.99 0.62 375 73844.23 0.99 0.56 0.000065
neos7 257 672282.07 0.87 1.23 255 672276.71 0.87 1.20 0.000015
multiB 54 3627.87 0.08 0.28 53 3627.87 0.08 0.30 0.000003
. . .

bienst2 130 14.94 0.07 0.62 123 14.94 0.07 0.67 -0.000012
tr6-30 337 60964.39 0.98 0.53 344 60971.80 0.98 0.61 -0.000149
lrn 357 44307174.57 0.88 10.86 369 44307469.73 0.88 10.73 -0.000203
bienst1 103 14.09 0.07 0.66 103 14.11 0.07 0.66 -0.000484
Con-12 181 4580.79 0.51 0.45 175 4588.44 0.51 0.44 -0.001236
con-24 277 17998.19 0.48 0.92 277 18017.06 0.48 0.92 -0.001256
pp08a 165 7153.35 0.96 0.20 165 7169.55 0.96 0.20 -0.003521
multiD 60 3821.19 0.06 0.39 61 3831.49 0.07 0.42 -0.004264
momentum3 1203 91952.39 0.00 1844.53 3699 93005.09 0.01 2231.22 -0.006085
a1c1s1 698 5378.64 0.42 3.09 720 5467.90 0.43 3.11 -0.008496
dano3 3 76 576.25 0.15 10.67 59 576.25 0.17 10.64 -0.012031
multiC 46 1490.53 0.08 0.24 55 1499.43 0.10 0.25 -0.013767
aflow30a 226 1074.00 0.52 2.45 234 1077.00 0.54 2.31 -0.017159
dano3 4 119 576.27 0.17 11.97 120 576.27 0.19 12.39 -0.017415
b4-10 153 13256.06 0.31 0.86 164 13296.58 0.35 0.86 -0.035060

Table D.17.: Comparison between the simple and the extended network inequalities.

181

D. Test Results

flow path cuts cMIR cuts
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
tr12-30 811 130174.22 1.00 0.98 768 114684.92 0.86 0.76 0.137717
tr6-30 369 60895.17 0.98 0.39 318 54863.91 0.86 0.31 0.121002
tr12-15 384 73846.20 0.99 0.42 366 67220.49 0.87 0.33 0.114467
tr24-15 752 136326.74 1.00 1.03 667 123906.69 0.90 0.78 0.102829
set1ch 412 54036.97 0.98 0.26 402 51762.61 0.88 0.31 0.100948
dano3 3 72 576.25 0.13 10.05 16 576.24 0.04 4.00 0.095630
tr6-15 223 37218.74 0.98 0.17 200 34865.27 0.91 0.14 0.078047
dano3 4 118 576.27 0.16 11.77 64 576.25 0.11 9.34 0.057193
multiF 129 2061.33 0.45 0.12 125 2036.01 0.42 0.12 0.037675
tr24-30 984 237715.88 0.81 0.72 984 227902.75 0.77 0.66 0.037205
con-24 247 17843.81 0.47 0.59 233 17428.04 0.44 0.53 0.027677
aflow30a 210 1074.00 0.52 0.78 174 1070.00 0.50 0.67 0.022879
b4-20b 274 22415.89 0.28 22.08 247 22398.81 0.27 17.67 0.013081
aflow40b 295 1080.00 0.46 6.41 269 1078.00 0.45 5.59 0.012320
momentum3 3426 96744.88 0.03 4070.80 3219 94616.58 0.02 3832.94 0.012302
dano3 5 158 576.30 0.10 14.70 89 576.30 0.09 12.05 0.012023
multiE 83 2290.30 0.27 0.14 78 2284.15 0.26 0.14 0.010656
clorox 167 20912.45 0.99 0.77 165 20708.61 0.98 0.61 0.009916
multiB 36 3627.81 0.08 0.24 33 3624.47 0.07 0.20 0.009125
BASF6-10 160 20919.91 0.20 1.89 150 20916.67 0.19 1.75 0.007476
danoint 152 62.72 0.03 0.55 105 62.69 0.02 0.39 0.007366
egout 21 568.10 1.00 0.00 14 566.94 0.99 0.01 0.005754
dcmulti 97 186287.49 0.55 0.25 96 186264.76 0.54 0.22 0.005404
Con-12 160 4581.22 0.51 0.28 157 4549.96 0.51 0.25 0.005051
dano3mip 595 576.66 0.00 30.02 452 576.55 0.00 22.70 0.001001
multiA 35 3562.62 0.22 0.27 34 3562.43 0.22 0.26 0.000681
bienst2 122 14.93 0.07 0.55 98 14.91 0.07 0.45 0.000487
momentum2 955 10752.84 0.69 123.83 1266 10750.92 0.69 114.74 0.000377
b4-10 154 13266.53 0.32 0.74 161 13266.11 0.32 0.74 0.000362
bienst1 103 14.05 0.07 0.58 75 14.05 0.07 0.47 0.000085
. . .

multiC 50 1488.77 0.08 0.22 48 1489.21 0.08 0.22 -0.000681
BASF6-5 151 11800.56 0.19 1.08 147 11801.17 0.19 0.98 -0.001819
pp08a 169 7147.45 0.96 0.12 164 7161.51 0.96 0.11 -0.003054
b4-12 222 14633.60 0.24 0.97 212 14639.68 0.24 0.86 -0.003156
multiD 75 3827.76 0.06 0.36 31 3836.45 0.07 0.25 -0.003599
b4-12b 148 15812.24 0.49 4.53 143 15816.09 0.50 3.78 -0.006712
modglob 105 20677297.96 0.80 0.09 106 20679686.42 0.80 0.09 -0.007716
pp08aCUTS 125 7151.91 0.89 0.19 117 7189.71 0.91 0.17 -0.020217

Table D.18.: Comparison between the flow path cut generator and the cMIR cut genera-
tor, both without cuts out of cuts.

182

uPMC cMIR cuts
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
liu 567 560.00 0.28 0.61 421 346.00 0.00 0.17 0.282322
tr12-30 799 129173.26 0.99 0.97 768 114684.92 0.86 0.76 0.128817
tr12-15 385 73493.88 0.98 0.42 366 67220.49 0.87 0.33 0.108380
tr6-30 351 60139.65 0.97 0.38 318 54863.91 0.86 0.31 0.105844
set1ch 419 54081.80 0.98 0.28 402 51762.61 0.88 0.31 0.102937
tr24-15 715 134189.83 0.98 0.97 667 123906.69 0.90 0.78 0.085137
ches1 28 71.08 0.49 0.09 31 70.57 0.41 0.08 0.080390
tr6-15 195 36642.48 0.96 0.17 200 34865.27 0.91 0.14 0.058937
tr24-30 984 237723.44 0.81 0.73 984 227902.75 0.77 0.66 0.037234
multiF 126 2060.16 0.45 0.14 125 2036.01 0.42 0.12 0.035930
con-24 244 17841.49 0.47 0.61 233 17428.04 0.44 0.53 0.027522
momentum3 3227 99323.51 0.04 4093.14 3219 94616.58 0.02 3832.94 0.027207
dano3 4 70 576.26 0.13 10.48 64 576.25 0.11 9.34 0.020890
mod011 318 -59411387.70 0.36 2.02 317 -59493500.53 0.35 1.77 0.010857
neos2 119 -4177.08 0.10 5.73 121 -4223.46 0.10 5.72 0.008966
msc98-ip 360 19564147.14 0.14 19.17 349 19561947.01 0.13 18.67 0.006907
Con-12 158 4577.42 0.51 0.30 157 4549.96 0.51 0.25 0.004437
multiB 39 3626.04 0.07 0.23 33 3624.47 0.07 0.20 0.004298
ran13x13 117 3011.97 0.57 0.12 112 3009.58 0.57 0.11 0.004256
multiD 74 3846.51 0.07 0.38 31 3836.45 0.07 0.25 0.004164
multiE 80 2286.47 0.27 0.16 78 2284.15 0.26 0.14 0.004010
dano3 5 92 576.30 0.09 11.89 89 576.30 0.09 12.05 0.002572
pp08a 161 7167.00 0.96 0.11 164 7161.51 0.96 0.11 0.001193
dano3 3 15 576.24 0.04 4.27 16 576.24 0.04 4.00 0.000802
b4-20b 246 22399.73 0.27 19.64 247 22398.81 0.27 17.67 0.000710
BASF6-10 156 20916.91 0.19 1.95 150 20916.67 0.19 1.75 0.000557
danoint 108 62.70 0.02 0.44 105 62.69 0.02 0.39 0.000432
dano3mip 497 576.57 0.00 25.30 452 576.55 0.00 22.70 0.000165
multiC 49 1489.29 0.08 0.24 48 1489.21 0.08 0.22 0.000113
bienst2 101 14.91 0.07 0.52 98 14.91 0.07 0.45 0.000096
. . .

atlanta-ip 121 81.25 0.00 12.88 116 81.25 0.00 12.27 -0.000027
momentum2 1176 10750.40 0.69 116.03 1266 10750.92 0.69 114.74 -0.000103
bienst1 76 14.04 0.07 0.53 75 14.05 0.07 0.47 -0.000155
vpm2 131 12.93 0.79 0.11 129 12.93 0.79 0.09 -0.000636
b4-12 228 14637.91 0.24 0.97 212 14639.68 0.24 0.86 -0.000921
modglob 117 20679225.61 0.80 0.09 106 20679686.42 0.80 0.09 -0.001489
a1c1s1 561 4766.83 0.36 2.42 557 4783.40 0.36 2.09 -0.001577
ches5 44 -7371.12 0.74 0.16 49 -7370.80 0.74 0.22 -0.002927
neos3 113 -5952.88 0.09 7.02 140 -5929.39 0.09 7.55 -0.003386
b4-10 147 13261.56 0.32 0.75 161 13266.11 0.32 0.74 -0.003943
aflow30a 164 1069.00 0.49 0.69 174 1070.00 0.50 0.67 -0.005720
arki001 155 7579802.85 0.17 6.84 155 7579814.00 0.18 6.30 -0.009195
b4-12b 147 15810.19 0.49 4.23 143 15816.09 0.50 3.78 -0.010277
vpm5 90 3002.64 0.55 0.53 99 3002.66 0.57 0.50 -0.013113
pp08aCUTS 110 7144.69 0.89 0.20 117 7189.71 0.91 0.17 -0.024083
clorox 158 16700.85 0.78 0.78 165 20708.61 0.98 0.61 -0.194959

Table D.19.: Comparison between the uPMC generator and the cMIR cut generator, both
without cuts out of cuts.

183

D. Test Results

cPMC cMIR
name cuts xLP gap closed time (s) cuts xLP gap closed time (s) ∆
tr12-30 799 129395.30 0.99 1.00 768 114684.92 0.86 0.76 0.130792
tr6-30 356 60748.41 0.98 0.39 318 54863.91 0.86 0.31 0.118057
set1ch 400 54341.00 0.99 0.28 402 51762.61 0.88 0.31 0.114442
tr12-15 368 73405.00 0.98 0.44 366 67220.49 0.87 0.33 0.106844
tr24-15 697 135301.35 0.99 1.05 667 123906.69 0.90 0.78 0.094340
tr6-15 201 36819.35 0.97 0.17 200 34865.27 0.91 0.14 0.064803
tr24-30 984 238023.94 0.81 0.75 984 227902.75 0.77 0.66 0.038373
multiF 129 2059.52 0.45 0.14 125 2036.01 0.42 0.12 0.034983
con-24 245 17879.98 0.47 0.64 233 17428.04 0.44 0.53 0.030085
b4-20b 248 22421.05 0.28 22.00 247 22398.81 0.27 17.67 0.017034
multiD 75 3874.12 0.08 0.36 31 3836.45 0.07 0.25 0.015591
mod011 310 -59415895.75 0.36 2.05 317 -59493500.53 0.35 1.77 0.010261
BASF6-10 135 20920.99 0.20 1.95 150 20916.67 0.19 1.75 0.009962
clorox 158 20910.49 0.99 0.78 165 20708.61 0.98 0.61 0.009820
multiB 42 3627.84 0.08 0.27 33 3624.47 0.07 0.20 0.009211
neos7 237 667722.35 0.85 1.19 248 664469.73 0.84 0.99 0.008801
b4-12b 152 15820.64 0.51 4.73 143 15816.09 0.50 3.78 0.007934
dano3 5 99 576.30 0.10 13.30 89 576.30 0.09 12.05 0.006702
Con-12 149 4589.83 0.51 0.31 157 4549.96 0.51 0.25 0.006442
aflow40b 276 1079.00 0.45 5.67 269 1078.00 0.45 5.59 0.006160
pp08a 168 7187.99 0.96 0.11 164 7161.51 0.96 0.11 0.005756
aflow30a 180 1071.00 0.50 0.66 174 1070.00 0.50 0.67 0.005720
vpm5 99 3002.66 0.57 0.58 99 3002.66 0.57 0.50 0.005672
khb05250 17 96112735.68 0.02 0.12 16 96070104.35 0.01 0.12 0.003868
b4-10 173 13269.89 0.32 0.81 161 13266.11 0.32 0.74 0.003271
multiC 50 1491.01 0.08 0.25 48 1489.21 0.08 0.22 0.002787
timtab2 340 312451.59 0.22 0.53 325 309603.97 0.22 0.39 0.002715
vpm2a 102 13.03 0.76 0.11 102 13.02 0.75 0.09 0.002610
momentum2 1178 10763.72 0.70 120.94 1266 10750.92 0.69 114.74 0.002515
neos3 140 -5916.41 0.09 7.64 140 -5929.39 0.09 7.55 0.001869
a1c1s1 563 4798.96 0.36 2.42 557 4783.40 0.36 2.09 0.001481
dano3 3 20 576.24 0.04 5.72 16 576.24 0.04 4.00 0.001459
ran13x13 115 3010.36 0.57 0.11 112 3009.58 0.57 0.11 0.001385
lrn 280 44296388.06 0.87 10.03 264 44295040.60 0.87 9.17 0.000927
vpm2 121 12.93 0.79 0.11 129 12.93 0.79 0.09 0.000382
ran12x21 123 3448.69 0.58 0.16 123 3448.51 0.57 0.14 0.000365
atlanta-ip 125 81.26 0.00 15.52 116 81.25 0.00 12.27 0.000347
danoint 109 62.69 0.02 0.47 105 62.69 0.02 0.39 0.000322
bienst2 107 14.92 0.07 0.53 98 14.91 0.07 0.45 0.000299
dano3mip 470 576.58 0.00 26.39 452 576.55 0.00 22.70 0.000290
bell5 21 8926098.24 0.89 0.05 20 8926029.48 0.89 0.05 0.000192
fixnet6 67 3646.91 0.88 0.19 66 3646.79 0.88 0.17 0.000040
. . .

bienst1 77 14.05 0.07 0.55 75 14.05 0.07 0.47 -0.000025
dano3 4 47 576.25 0.11 8.52 64 576.25 0.11 9.34 -0.000179
neos2 116 -4227.31 0.09 5.62 121 -4223.46 0.10 5.72 -0.000744
BASF6-5 144 11800.86 0.19 1.09 147 11801.17 0.19 0.98 -0.000920
multiE 74 2283.39 0.26 0.14 78 2284.15 0.26 0.14 -0.001324
ran10x26 108 4069.62 0.51 0.12 104 4070.56 0.52 0.12 -0.002267
ches2 45 -2891.66 0.11 0.11 41 -2891.65 0.11 0.08 -0.002455
ches5 46 -7371.11 0.74 0.17 49 -7370.80 0.74 0.22 -0.002841
modglob 115 20678787.37 0.80 0.11 106 20679686.42 0.80 0.09 -0.002904
b4-10b 66 13891.12 0.55 2.30 71 13892.29 0.56 1.88 -0.003279
timtab1 199 242168.97 0.29 0.17 200 245218.44 0.29 0.19 -0.004143
ches1 29 70.47 0.39 0.09 31 70.57 0.41 0.08 -0.015329
momentum3 1432 91952.39 0.00 2229.78 3219 94616.58 0.02 3832.94 -0.015400
bell3a 14 870493.10 0.35 0.06 15 870793.00 0.38 0.05 -0.024464
pp08aCUTS 115 7125.63 0.88 0.20 117 7189.71 0.91 0.17 -0.034275
b4-12 217 14561.98 0.20 1.01 212 14639.68 0.24 0.86 -0.040333

Table D.20.: Comparison between the cPMC generator and the cMIR cut generator, both
without cuts out of cuts.

184

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.25 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.95 14.0000 180729 35.71% N

30 95 100 1 3.0000 16.94 3.0000 3897 7.36 Y

30 95 98 0 12.0000 12.20 13.0000 85474 7.69% N

a1c1s1 776 6135.4291 3.61 11837.6401 609070 41.29% N

acc0 7 0.0000 0.41 0.0000 236 0.06 Y

acc1 14 0.0000 0.97 0.0000 1076 0.33 Y

acc2 9 0.0000 0.70 0.0000 4454 1.97 Y

acc3 0 0.0000 0.31 0.0000 4630 7.36 Y

acc4 0 0.0000 0.33 - 22261 - N

acc5 0 0.0000 1.25 0.0000 3664 24.96 Y

aflow30a 228 1079.0000 1.63 1158.0000 11194 0.60 Y

aflow40b 424 1087.0000 26.30 1181.0000 128074 4.74% N

air03 2 338864.2500 0.12 340160.0000 0 0.01 Y

air04 0 55536.0000 2.39 56138.0000 5473 2.45 Y

air05 0 25878.0000 0.86 26374.0000 16466 3.58 Y

arki001 140 7579880.1818 15.25 - 1189 - N

atlanta-ip 969 81.3034 61.40 - 372 - N

b4-10 189 13377.1466 2.20 14050.8397 34951 1.24 Y

b4-10b 132 13979.7652 4.33 14050.8397 107 0.08 Y

b4-12 290 14724.9099 1.89 - 1214778 - N

b4-12b 205 15834.7578 9.17 16103.8837 2749 0.70 Y

b4-20b 334 22516.3558 34.30 23388.6517 57674 1.45% N

BASF6-10 219 20962.9041 2.69 21267.5689 77325 11.33 Y

BASF6-5 210 11898.6277 1.56 12071.5772 25854 3.12 Y

bc1 67 2.5955 115.04 3.3663 10412 3.31% N

bell3a 16 873196.5787 0.06 878430.3160 45716 0.13 Y

bell5 29 8922311.1807 0.06 8966406.4915 2145218 6.36 Y

bienst1 119 14.0998 0.75 46.7500 32544 2.15 Y

bienst2 130 14.9447 0.75 54.6000 272008 14.69 Y

binkar10 1 95 6702.1432 0.67 6742.2000 318139 9.20 Y

blend2 37 7.0952 0.59 7.5990 2997 0.04 Y

cap6000 7 -2451535.0000 0.16 -2451377.0000 37770 4.39 Y

ches1 102 73.8056 0.58 74.3405 20 0.02 Y

ches2 66 -2891.6536 0.19 -2889.5569 2758190 32.47 Y

ches3 30 -1303896.9248 0.14 -1303896.9248 20 0.00 Y

ches4 32 -647403.5167 0.03 -647403.5167 13 0.00 Y

ches5 78 -7370.5310 0.09 -7342.8188 7948 0.14 Y

clorox 190 17326.7046 1.31 21217.8144 114 0.04 Y

Con-12 248 4618.4475 0.78 7593.3400 177576 4.03 Y

con-24 289 18181.3246 0.59 25804.9600 1871007 1.55% N

dano3mip 628 576.6893 39.96 738.5385 4060 21.9% N

dano3 3 103 576.2571 12.86 576.3964 12 1.68 Y

dano3 4 173 576.2714 10.36 576.4352 16 2.45 Y

dano3 5 306 576.3352 15.89 576.9249 216 5.74 Y

danoint 153 62.7198 0.81 65.6667 419940 4.23% N

dcmulti 172 187529.5533 0.51 188182.0000 142 0.01 Y

disktom 0 -5000.0000 0.50 - 136336 - N

dlsp 31 375.3100 0.45 613.0000 103209 2.18 Y

ds 0 57.2346 5.41 - 2222 - N

dsbmip 102 -305.1982 0.12 -305.1982 59 0.02 Y

egout 22 567.9932 0.03 568.1007 0 0.00 Y

enigma 2 0.0000 0.00 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.52 176.0000 12494 1.7% N

fiber 84 388306.7843 0.70 405935.1800 164 0.02 Y

fixnet6 206 3807.4818 1.94 3983.0000 128 0.05 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0.00 Y

gen 44 112312.9529 0.09 112313.3627 0 0.00 Y

gesa2 166 25771293.5544 0.64 25779856.3717 340 0.02 Y

gesa2 o 209 25775432.4183 0.73 25779856.3717 230 0.02 Y

gesa3 192 27973351.6108 1.02 27991042.6484 48 0.03 Y

gesa3 o 234 27963406.7044 1.02 27991042.6484 93 0.03 Y

glass4 63 800002400.0000 0.11 1675016325.0000 4988390 52.24% N

gt2 31 20726.0000 0.03 21166.0000 193 0.00 Y

harp2 103 -74231352.0000 2.33 -73899798.0000 1967668 31.49 Y

khb05250 124 106915722.2610 0.62 106940226.0000 22 0.02 Y

l152lav 0 4657.0000 0.16 4722.0000 10637 0.22 Y

liu 691 560.0000 0.69 1412.0000 1537631 60.34% N

lrn 900 44546780.6458 12.61 44705245.0050 287094 0.1% N

continued on the next page

185

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

lseu 34 1034.0000 0.14 1120.0000 785 0.01 Y

m20-75-1 389 -51161.8537 6.38 -49113.0000 300886 3.35% N

m20-75-2 605 -52005.4722 64.41 -50322.0000 68392 16.78 Y

m20-75-3 653 -53238.0531 121.61 -51158.0000 262374 2.79% N

m20-75-4 419 -54693.4443 99.17 -52752.0000 230556 49.40 Y

m20-75-5 523 -53017.6993 16.32 -51349.0000 163488 33.92 Y

manna81 0 -13297.0000 0.41 -13163.0000 873785 1.02% N

markshare1 3 0.0000 0.03 8.0000 9999999 100% N

markshare1 1 7 0.0000 0.02 0.0000 823388 1.70 Y

markshare2 6 0.0000 0.00 17.0000 9999999 100% N

markshare2 1 11 0.0000 0.02 0.0000 7287843 19.98 Y

mas74 25 10583.2346 0.91 11801.1857 6718997 3.51% N

mas76 23 39010.8237 0.83 40005.0541 1159854 8.10 Y

misc03 0 1910.0000 0.01 3360.0000 603 0.00 Y

misc06 29 12846.2683 0.12 12851.0763 19 0.02 Y

misc07 0 1415.0000 0.03 2810.0000 37474 0.56 Y

mitre 970 115107.0000 5.81 115155.0000 2488 0.35 Y

mkc 346 -605.9688 8.36 -511.7520 599537 18.2% N

mod008 48 304.0000 0.69 307.0000 3398 0.07 Y

mod010 5 6535.0000 0.59 6548.0000 18 0.01 Y

mod011 823 -56654368.7838 4.67 -54558535.0142 4280 1.44 Y

modglob 163 20727876.2786 0.31 20740508.0863 62 0.01 Y

momentum1 690 96249.1959 50.50 - 95 - N

momentum2 1479 11697.6124 143.92 - 59 - N

momentum3 2667 91975.3222 1186.44 - 0 - N

msc98-ip 624 19702877.0058 25.50 21287346.0059 4727 7.44% N

multiA 97 3569.8677 0.50 3774.7600 48614 1.23 Y

multiB 108 3628.6516 1.22 3995.5200 1942745 8.79% N

multiC 101 1501.6364 0.62 2088.4200 1986760 24.42% N

multiD 83 3808.4903 0.08 6021.6167 1694764 36.15% N

multiE 247 2299.8939 0.59 2710.5925 2408830 13.92% N

multiF 219 2070.2834 0.56 2428.9300 2506812 13.39% N

mzzv11 103 -22689.0000 55.34 -19040.0000 45645 17.66% N

mzzv42z 75 -21450.0000 56.30 -19308.0000 8833 9.03% N

neos1 125 7.0000 0.45 19.0000 1890822 57.89% N

neos10 81 -1182.0000 214.25 -1135.0000 40 3.68 Y

neos11 10 6.0000 0.75 9.0000 30044 16.48 Y

neos12 6 9.4116 0.75 13.0000 11805 16.22% N

neos13 6 -126.1784 284.44 -87.0062 121172 45.02% N

neos2 110 -3986.4225 11.64 454.8647 132551 11.32 Y

neos20 357 -474.8940 0.95 -434.0000 24823 1.10 Y

neos21 0 3.0000 0.06 7.0000 30130 2.40 Y

neos22 242 779500.7143 0.36 779715.0000 32 0.04 Y

neos23 136 59.3098 1.05 137.0000 3302625 38.69% N

neos3 174 -5674.9374 15.78 368.8428 788772 304.2% N

neos4 0 -49463016984.6474 2.53 -48603440750.5898 1305 0.63 Y

neos5 0 13.0000 0.02 15.0000 7939707 3.33% N

neos6 4 83.0000 3.30 83.0000 4721 7.37 Y

neos648910 365 16.0000 0.52 32.0000 322488 7.78 Y

neos671048 4 2999.0000 2.74 5001.0000 15868 13.57 Y

neos7 290 688512.2482 1.55 721934.0000 752317 0.48% N

neos8 23 -3725.0000 178.30 -3719.0000 0 2.99 Y

neos9 35 794.0000 13.69 798.0000 13003 0.5% N

net12 467 78.0000 14.86 - 40776 - N

noswot 14 -43.0000 0.03 -40.0000 9618950 7.5% N

nsrand-ipx 305 50187.0000 0.92 51680.0000 165481 2.85% N

nug08 0 204.0000 0.22 214.0000 151 0.10 Y

nw04 0 16311.0000 1.02 16862.0000 1638 1.13 Y

opt1217 31 -19.3221 0.06 -16.0000 5050765 20.76% N

p0033 22 2942.0000 0.03 3089.0000 85 0.00 Y

p0201 8 7125.0000 0.39 7615.0000 1099 0.02 Y

p0282 109 255708.0000 0.20 258411.0000 713 0.01 Y

p0548 170 8691.0000 0.08 8691.0000 0 0.01 Y

p2756 250 3121.0000 0.95 3124.0000 422 0.06 Y

pk1 0 0.0000 0.00 11.0000 529908 1.79 Y

pp08a 230 7242.6338 0.41 7350.0000 629 0.02 Y

pp08aCUTS 143 7204.5948 0.30 7350.0000 1040 0.02 Y

prod1 137 -81.3751 0.89 -56.0000 3986086 11.27% N

prod2 130 -85.2228 2.92 -62.0000 2609602 9.84% N

continued on the next page

186

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

protfold 0 -41.0000 0.23 - 5 - N

qap10 0 333.0000 0.61 358.0000 43 6.98% N

qiu 0 -931.6389 0.06 -132.8731 15640 1.34 Y

qnet1 76 15438.7245 0.48 16029.6927 298 0.03 Y

qnet1 o 90 15624.5847 0.51 16030.9927 230 0.02 Y

ran10x26 218 4094.8122 1.06 4270.0000 40140 1.15 Y

ran12x21 264 3462.6667 1.83 3664.0000 50435 1.64 Y

ran13x13 211 3065.7297 0.81 3252.0000 34533 0.75 Y

rd-rplusc-21 208 100.0000 606.83 - 15229 - N

rentacar 24 29274325.2003 0.69 30356760.9841 25 0.03 Y

rgn 110 81.8363 0.28 82.2000 354 0.01 Y

rgna 0 48.8000 0.02 82.2000 2504 0.00 Y

roll3000 377 11512.1280 6.12 13240.0000 478878 11.44% N

rout 39 982.1729 0.58 1077.5600 824442 16.00 Y

set1ch 475 54528.4375 0.64 54537.7500 26 0.02 Y

seymour 8 406.0000 1.53 434.0000 74767 6.22% N

seymour1 16 405.4473 5.45 410.7637 25409 17.99 Y

sp97ar 253 653445845.1576 5.52 672355872.3000 68001 2.72% N

stein27 7 13.0000 0.02 18.0000 4240 0.01 Y

stein45 0 22.0000 0.01 30.0000 62605 0.34 Y

stp3d 6 481.9510 212.64 - 12 - N

swath 138 379.9005 448.08 536.5078 469496 29.19% N

swath2 19 334.4969 1.55 385.1997 421028 38.06 Y

swath3 19 334.4969 1.74 399.8501 659017 12.35% N

t1717 0 134532.0000 7.66 - 2513 - N

timtab1 270 255646.2133 0.61 792722.0000 4029935 65.78% N

timtab2 418 381352.8194 1.41 1452023.0000 2554585 73.62% N

tr12-15 395 73877.2001 0.78 74634.0000 16170 0.37 Y

tr12-30 859 130177.2010 0.66 130596.0000 999190 40.27 Y

tr24-15 807 136365.6881 1.19 136509.0000 28890 1.36 Y

tr24-30 984 237994.8573 1.12 294759.0000 1232296 18.52% N

tr6-15 227 37252.9562 0.42 37721.0000 5090 0.07 Y

tr6-30 331 60965.3867 0.09 61746.0000 2515927 36.67 Y

vpm1 41 20.0000 0.05 20.0000 0 0.00 Y

vpm2 170 12.9692 0.31 13.7500 20559 0.23 Y

vpm2a 129 13.0633 0.25 13.7500 9948 0.10 Y

vpm5 134 3002.7436 0.86 3003.3000 1165 0.09 Y

Table D.21.: Results for a 1-hour test with the improved SOTA configuration.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.28 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.88 14.0000 180726 35.71% N

30 95 100 1 3.0000 16.98 3.0000 3897 7.27 Y

30 95 98 0 12.0000 12.19 13.0000 85508 7.69% N

a1c1s1 866 6200.9933 4.83 11671.7123 606088 38.02% N

acc0 7 0.0000 0.39 0.0000 236 0.06 Y

acc1 14 0.0000 0.95 0.0000 1076 0.33 Y

acc2 9 0.0000 0.70 0.0000 4454 1.96 Y

acc3 0 0.0000 0.33 0.0000 4630 7.33 Y

acc4 0 0.0000 0.34 - 22234 - N

acc5 0 0.0000 1.25 0.0000 3664 25.01 Y

aflow30a 284 1083.0000 2.45 1158.0000 19673 1.19 Y

aflow40b 459 1088.0000 20.88 1179.0000 158615 4.58% N

air03 2 338864.2500 0.12 340160.0000 0 0.01 Y

air04 0 55536.0000 2.39 56138.0000 5473 2.45 Y

air05 0 25878.0000 0.86 26374.0000 16466 3.59 Y

arki001 140 7579880.1818 34.05 - 1189 - N

atlanta-ip 1043 0.0000 63.95 - 0 - N

b4-10 222 13378.6745 21.44 - 1681212 - N

b4-10b 136 13981.9765 19.28 14050.8397 216 0.35 Y

b4-12 306 14634.8138 2.83 16103.8837 1379857 1.73% N

b4-12b 213 15854.7515 24.28 16103.8837 4053 1.05 Y

b4-20b 363 22502.1540 40.42 23358.2110 60952 1.18% N

BASF6-10 236 20966.2195 3.20 21267.5689 168394 21.41 Y

BASF6-5 223 11899.5370 1.88 12072.3655 57571 5.68 Y

bc1 72 2.5852 121.95 3.3384 7462 44.90 Y

continued on the next page

187

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

bell3a 20 873203.1839 0.16 878430.3160 49937 0.15 Y

bell5 29 8922311.1807 0.08 8966406.4915 2145218 6.37 Y

bienst1 119 14.0998 1.03 46.7500 32544 2.17 Y

bienst2 130 14.9447 0.97 54.6000 272008 14.73 Y

binkar10 1 95 6702.1432 0.72 6742.2000 318139 9.21 Y

blend2 37 7.0952 0.59 7.5990 2997 0.04 Y

cap6000 7 -2451535.0000 0.16 -2451377.0000 37770 4.39 Y

ches1 79 73.3945 0.26 74.3405 0 0.01 Y

ches2 66 -2891.6536 0.19 -2889.5569 2758190 32.54 Y

ches3 31 -1303896.9248 0.17 -1303896.9248 6 0.01 Y

ches4 32 -647403.5167 0.03 -647403.5167 13 0.01 Y

ches5 80 -7370.4925 0.50 -7342.8188 3150 0.06 Y

clorox 209 17338.3607 1.74 21218.8920 226 0.06 Y

Con-12 211 4674.5920 0.70 7593.3400 179808 3.77 Y

con-24 295 18024.3010 0.61 25804.9600 1783643 2.63% N

dano3mip 634 576.6712 219.66 748.9510 3322 22.99% N

dano3 3 77 576.2520 22.22 576.3446 7 2.92 Y

dano3 4 206 576.2808 128.23 576.4352 13 5.96 Y

dano3 5 318 576.3284 140.45 576.9249 188 10.02 Y

danoint 251 62.7229 1.77 65.6667 355347 4.15% N

dcmulti 158 187511.0373 0.70 188182.0000 132 0.02 Y

disktom 0 -5000.0000 0.47 - 136173 - N

dlsp 34 375.3360 0.94 613.0000 60862 1.31 Y

ds 0 57.2346 5.49 - 2218 - N

dsbmip 69 -305.1982 0.16 -305.1982 37 0.02 Y

egout 20 567.8702 0.01 568.1007 0 0.01 Y

enigma 2 0.0000 0.00 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.41 176.0000 12496 1.7% N

fiber 86 388328.4284 0.72 405935.1800 138 0.01 Y

fixnet6 253 3810.5117 2.38 3983.0000 44 0.05 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0.01 Y

gen 44 112312.9529 0.09 112313.3627 0 0.01 Y

gesa2 174 25770857.4176 0.70 25779856.3717 408 0.02 Y

gesa2 o 222 25776509.7718 0.80 25779856.3717 198 0.02 Y

gesa3 173 27967044.2789 1.16 27991042.6484 108 0.04 Y

gesa3 o 224 27959820.8972 1.01 27991042.6484 112 0.04 Y

glass4 63 800002400.0000 0.11 1675016325.0000 4985307 52.24% N

gt2 31 20726.0000 0.02 21166.0000 193 0.01 Y

harp2 103 -74231352.0000 2.31 -73899798.0000 1967668 31.47 Y

khb05250 124 106915722.2610 3.81 106940226.0000 22 0.07 Y

l152lav 0 4657.0000 0.16 4722.0000 10637 0.22 Y

liu 708 560.0000 0.77 1514.0000 1462533 63.01% N

lrn 940 44576193.7519 16.64 44679584.9230 285108 0.02% N

lseu 34 1034.0000 0.12 1120.0000 785 0.01 Y

m20-75-1 389 -51161.8537 6.42 -49113.0000 300646 3.35% N

m20-75-2 605 -52005.4722 64.94 -50322.0000 68392 16.80 Y

m20-75-3 653 -53238.0531 123.30 -51158.0000 262033 2.79% N

m20-75-4 419 -54693.4443 100.44 -52752.0000 230556 49.52 Y

m20-75-5 523 -53017.6993 16.44 -51349.0000 163488 33.96 Y

manna81 0 -13297.0000 0.41 -13163.0000 878192 1.02% N

markshare1 3 0.0000 0.05 8.0000 9999999 100% N

markshare1 1 9 0.0000 0.01 0.0000 407157 0.90 Y

markshare2 6 0.0000 0.01 17.0000 9999999 100% N

markshare2 1 13 0.0000 0.05 0.0000 6353340 18.59 Y

mas74 24 10575.3466 0.92 11801.1857 6728975 2.41% N

mas76 23 39015.3883 0.84 40005.0541 1123402 7.45 Y

misc03 0 1910.0000 0.01 3360.0000 603 0.01 Y

misc06 24 12845.9373 0.23 12850.8607 83 0.02 Y

misc07 0 1415.0000 0.03 2810.0000 37474 0.56 Y

mitre 970 115107.0000 5.81 115155.0000 2488 0.35 Y

mkc 346 -605.9688 8.28 -511.7520 596132 18.2% N

mod008 48 304.0000 0.70 307.0000 3398 0.07 Y

mod010 5 6535.0000 0.52 6548.0000 18 0.01 Y

mod011 869 -56571569.2127 5.83 -54558535.0142 2558 1.09 Y

modglob 147 20728719.4371 0.16 20740508.0863 30 0.01 Y

momentum1 696 96251.4843 99.75 - 438 - N

momentum2 1430 12138.6543 254.22 - 164 - N

momentum3 1614 92981.4344 4961.42 n.a. 0 n.a. N

msc98-ip 582 19699455.1058 13.97 - 2399 - N

continued on the next page

188

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

multiA 105 3568.5128 2.98 3774.7600 44680 1.16 Y

multiB 133 3630.4493 11.03 3991.6900 1608127 8.6% N

multiC 114 1498.5951 4.05 2083.2867 2060666 24.45% N

multiD 75 3795.4978 0.11 5863.9045 1522775 34.44% N

multiE 281 2303.9884 0.95 2710.5925 2118422 11.6% N

multiF 206 2068.5267 0.66 2428.9300 3008134 11.44% N

mzzv11 103 -22689.0000 55.12 -19040.0000 45645 17.66% N

mzzv42z 75 -21450.0000 56.42 -19308.0000 8847 9.03% N

neos1 125 7.0000 0.45 19.0000 1893721 57.89% N

neos10 81 -1182.0000 215.53 -1135.0000 40 3.70 Y

neos11 10 6.0000 0.81 9.0000 30044 16.53 Y

neos12 6 9.4116 0.81 13.0000 11779 16.22% N

neos13 6 -126.1784 331.53 -95.1452 124209 25.77% N

neos2 111 -3965.4236 14.16 454.8647 59126 5.18 Y

neos20 363 -474.8940 0.97 -434.0000 43014 1.76 Y

neos21 0 3.0000 0.06 7.0000 30130 2.41 Y

neos22 242 779500.7143 1.56 779715.0000 36 0.17 Y

neos23 140 61.6402 1.64 137.0000 3431607 43.8% N

neos3 179 -5665.8976 17.59 369.4102 552862 326.37% N

neos4 0 -49463016984.6474 2.64 -48603440750.5898 1305 0.63 Y

neos5 0 13.0000 0.02 15.0000 7932201 3.33% N

neos6 4 83.0000 3.38 83.0000 4721 7.37 Y

neos648910 336 16.0000 0.64 32.0000 345539 10.49 Y

neos671048 4 2999.0000 2.73 5001.0000 15868 13.64 Y

neos7 287 686267.8857 1.70 721934.0000 744518 1.39% N

neos8 23 -3725.0000 180.89 -3719.0000 0 3.03 Y

neos9 35 794.0000 14.14 798.0000 12919 0.5% N

net12 452 78.0000 16.16 - 15501 - N

noswot 16 -43.0000 0.03 -41.0000 9999999 4.88% N

nsrand-ipx 305 50187.0000 0.92 51680.0000 165295 2.85% N

nug08 0 204.0000 0.22 214.0000 151 0.10 Y

nw04 0 16311.0000 1.01 16862.0000 1638 1.13 Y

opt1217 35 -19.3943 0.11 -16.0000 4958509 21.21% N

p0033 22 2942.0000 0.73 3089.0000 85 0.04 Y

p0201 8 7125.0000 0.47 7615.0000 1099 0.02 Y

p0282 109 255708.0000 0.31 258411.0000 713 0.02 Y

p0548 170 8691.0000 0.11 8691.0000 0 0.01 Y

p2756 250 3121.0000 0.97 3124.0000 422 0.07 Y

pk1 0 0.0000 0.02 11.0000 529908 1.80 Y

pp08a 232 7241.4280 0.61 7350.0000 642 0.03 Y

pp08aCUTS 186 7216.3844 0.84 7350.0000 796 0.04 Y

prod1 137 -81.3751 0.84 -56.0000 3984028 11.27% N

prod2 130 -85.2228 2.94 -62.0000 2609698 9.84% N

protfold 0 -41.0000 0.22 - 5 - N

qap10 0 0.0000 0.61 - 0 - N

qiu 0 -931.6389 0.08 -132.8731 15640 1.35 Y

qnet1 76 15438.7245 0.49 16029.6927 298 0.03 Y

qnet1 o 90 15624.5847 0.52 16030.9927 230 0.02 Y

ran10x26 229 4092.3948 1.23 4270.0000 25203 0.72 Y

ran12x21 276 3470.7403 1.62 3664.0000 77613 2.59 Y

ran13x13 231 3057.8648 1.41 3252.0000 52406 1.14 Y

rd-rplusc-21 346 100.0000 560.92 - 20378 - N

rentacar 27 29274325.2003 1.31 30356760.9841 31 0.04 Y

rgn 102 81.8000 0.06 82.2000 331 0.01 Y

rgna 0 48.8000 0.01 82.2000 2504 0.01 Y

roll3000 377 11512.1280 6.58 13107.0000 488551 9.51% N

rout 39 982.1729 0.62 1077.5600 824442 15.98 Y

set1ch 495 54530.4424 0.86 54537.7500 96 0.03 Y

seymour 8 406.0000 1.53 434.0000 74627 6.22% N

seymour1 16 405.4473 6.69 410.7637 25409 18.03 Y

sp97ar 253 653445845.1576 5.34 672355872.3000 67999 2.72% N

stein27 7 13.0000 0.02 18.0000 4240 0.01 Y

stein45 0 22.0000 0.02 30.0000 62605 0.34 Y

stp3d 6 481.9510 212.72 - 12 - N

swath 229 378.8363 477.08 474.9842 375831 17.74% N

swath2 19 334.4969 1.75 385.1997 461141 42.99 Y

swath3 19 334.4969 1.72 397.8494 670490 11.71% N

t1717 0 134532.0000 7.62 - 2499 - N

timtab1 286 273688.4870 1.09 794975.0000 3434444 58.08% N

continued on the next page

189

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

timtab2 423 380748.3096 2.09 1321630.0000 2403081 70.45% N

tr12-15 423 73872.0960 1.09 74634.0000 11226 0.29 Y

tr12-30 898 129785.3311 0.06 130596.0000 1350667 0.18% N

tr24-15 848 136365.6881 2.38 136509.0000 51922 2.28 Y

tr24-30 984 237512.8900 1.12 295150.0000 1171449 19.12% N

tr6-15 236 37246.0120 0.53 37721.0000 7180 0.10 Y

tr6-30 381 61018.7618 0.16 61746.0000 1407454 24.39 Y

vpm1 41 20.0000 0.03 20.0000 0 0.01 Y

vpm2 180 13.0786 0.59 13.7500 10822 0.15 Y

vpm2a 140 13.0711 0.62 13.7500 9453 0.12 Y

vpm5 145 3002.7260 1.01 3003.2000 437 0.05 Y

Table D.22.: Results for a 1-hour test with the improved SOTA configuration and ag-
gregated flow cover cuts. For the instance momentum3, MOPS returned an
invalid result.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.25 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.70 14.0000 181694 35.71% N

30 95 100 1 3.0000 16.84 3.0000 3897 7.23 Y

30 95 98 0 12.0000 12.06 13.0000 85945 7.69% N

a1c1s1 571 5312.4968 2.44 11889.8499 774124 49.39% N

acc0 7 0.0000 0.38 0.0000 236 0.05 Y

acc1 14 0.0000 0.89 0.0000 1076 0.32 Y

acc2 9 0.0000 0.69 0.0000 4454 1.96 Y

acc3 0 0.0000 0.30 0.0000 4630 7.32 Y

acc4 0 0.0000 0.31 - 22306 - N

acc5 0 0.0000 1.22 0.0000 3664 24.91 Y

aflow30a 173 1071.0000 0.67 1158.0000 26583 1.01 Y

aflow40b 319 1080.0000 10.19 1217.0000 157475 7.64% N

air03 2 338864.2500 0.14 340160.0000 0 0.01 Y

air04 0 55536.0000 2.38 56138.0000 5473 2.44 Y

air05 0 25878.0000 0.86 26374.0000 16466 3.58 Y

arki001 120 7579832.1481 4.39 7580928.3811 963540 0.01% N

atlanta-ip 459 81.2791 21.59 - 3392 - N

b4-10 220 13360.8863 0.88 - 1651588 - N

b4-10b 127 13984.5246 2.42 14050.8397 489 0.08 Y

b4-12 274 14715.7401 1.11 16103.8837 1166852 3.73% N

b4-12b 191 15819.6140 4.42 16103.8837 3778 0.64 Y

b4-20b 326 22436.6211 28.42 23588.4117 58249 4.13% N

BASF6-10 170 20958.1596 2.11 21267.8894 80161 10.50 Y

BASF6-5 169 11894.5315 1.17 12071.5772 53872 5.57 Y

bc1 45 2.5780 110.59 3.3384 8462 52.02 Y

bell3a 15 873196.5787 0.06 878430.3160 46285 0.13 Y

bell5 21 8918959.2124 0.03 8966406.4915 16722 0.04 Y

bienst1 101 14.0612 0.44 46.7500 36770 2.03 Y

bienst2 102 14.9164 0.52 54.6000 251744 12.03 Y

binkar10 1 88 6689.6924 0.55 6742.2000 690802 16.71 Y

blend2 31 7.8121 0.45 8.4056 3520 0.04 Y

cap6000 7 -2451535.0000 0.14 -2451377.0000 37770 4.38 Y

ches1 43 73.4626 0.08 74.3405 8 0.01 Y

ches2 58 -2891.6536 0.12 -2889.6909 3927534 43.42 Y

ches3 30 -1303896.9248 0.05 -1303896.6448 18 0.01 Y

ches4 37 -647403.5167 0.03 -647403.5167 0 0.01 Y

ches5 82 -7367.9934 0.06 -7342.8188 2564 0.04 Y

clorox 169 20745.6133 0.42 21217.8144 246 0.02 Y

Con-12 153 4553.1586 0.11 7593.3100 335184 5.10 Y

con-24 223 17560.0037 0.06 25804.9600 2062104 4.67% N

dano3mip 474 576.5456 50.22 778.8571 4893 25.96% N

dano3 3 18 576.2353 0.84 576.3964 9 1.69 Y

dano3 4 55 576.2526 0.83 576.4352 24 2.11 Y

dano3 5 117 576.3038 8.45 576.9249 238 5.06 Y

danoint 105 62.6937 0.50 65.6667 525515 4.29% N

dcmulti 130 187327.6650 0.30 188182.0000 234 0.01 Y

disktom 0 -5000.0000 0.45 - 136556 - N

dlsp 15 371.0682 0.11 613.0000 104701 2.03 Y

continued on the next page

190

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

ds 0 57.2346 5.41 - 2234 - N

dsbmip 65 -305.1982 0.11 -305.1982 67 0.01 Y

egout 18 567.0998 0.00 568.1007 0 0.01 Y

enigma 2 0.0000 0.02 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.39 176.0000 12510 1.7% N

fiber 65 386653.3942 0.30 405935.1800 216 0.01 Y

fixnet6 140 3765.5964 0.36 3983.0000 154 0.02 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0.01 Y

gen 40 112312.9529 0.09 112313.3627 0 0.01 Y

gesa2 148 25758040.3176 0.08 25779856.3717 82 0.01 Y

gesa2 o 181 25753330.2302 0.52 25779856.3717 176 0.01 Y

gesa3 99 27952231.5903 0.09 27991042.6484 58 0.01 Y

gesa3 o 140 27940975.1567 0.12 27991042.6484 246 0.02 Y

glass4 43 800002400.0000 0.05 1650014050.0000 5650700 51.52% N

gt2 42 20647.0000 0.03 21166.0000 691 0.01 Y

harp2 94 -74202514.0000 2.30 -73872399.4600 1853655 29.46 Y

khb05250 124 106916419.0931 0.17 106940226.0000 22 0.01 Y

l152lav 0 4657.0000 0.16 4722.0000 10637 0.22 Y

liu 527 560.0000 0.36 1362.0000 666597 58.88% N

lrn 649 44374013.5751 9.84 44491801.5478 322135 0.09% N

lseu 35 1036.0000 0.09 1120.0000 887 0.01 Y

m20-75-1 94 -52236.0477 9.92 -49113.0000 411546 5.21% N

m20-75-2 97 -53447.3278 10.55 -50314.0000 383054 5.34% N

m20-75-3 105 -54711.4710 10.36 -51102.0000 393847 6.37% N

m20-75-4 94 -55832.7524 10.63 -52612.0000 424264 5.24% N

m20-75-5 97 -54168.3999 10.74 -51349.0000 407443 3.37% N

manna81 0 -13297.0000 0.38 -13163.0000 877277 1.02% N

markshare1 4 0.0000 0.00 7.0000 9999999 100% N

markshare1 1 6 0.0000 0.00 0.0000 68417 0.13 Y

markshare2 6 0.0000 0.00 17.0000 9999999 100% N

markshare2 1 11 0.0000 0.00 0.0000 94199 0.27 Y

mas74 24 10580.6249 0.41 11801.1857 6664412 3.84% N

mas76 23 39007.8454 0.38 40005.0541 881696 6.02 Y

misc03 0 1910.0000 0.02 3360.0000 603 0.01 Y

misc06 34 12846.8491 0.06 12851.0763 44 0.01 Y

misc07 0 1415.0000 0.05 2810.0000 37474 0.56 Y

mitre 962 115105.0000 5.55 115155.0000 11328 1.23 Y

mkc 360 -604.9997 11.81 -555.1300 488660 7.68% N

mod008 56 304.0000 0.28 307.0000 117 0.02 Y

mod010 4 6535.0000 0.66 6548.0000 18 0.01 Y

mod011 774 -57246472.5262 3.30 -54558535.0142 3360 0.94 Y

modglob 146 20716487.1910 0.12 20740508.0863 782 0.01 Y

momentum1 591 96248.4612 43.22 - 434 - N

momentum2 1037 10715.7256 93.65 - 234 - N

momentum3 3665 95404.1737 3406.58 - 1 - N

msc98-ip 410 19695288.0058 9.09 - 2654 - N

multiA 67 3568.5075 0.05 3774.7600 167960 3.37 Y

multiB 49 3624.4707 0.03 3964.8800 2255565 8.16% N

multiC 47 1487.6198 0.03 2083.2867 2523158 25.33% N

multiD 115 3887.8291 0.51 5872.1231 1213884 32.81% N

multiE 232 2298.8769 0.23 2718.2050 2778919 10.63% N

multiF 148 2036.3646 0.36 2428.9300 3844994 15.74% N

mzzv11 109 -22721.0000 74.82 -21168.0000 91393 5.48% N

mzzv42z 71 -21450.0000 56.57 -17400.0000 5160 21.11% N

neos1 87 7.0000 0.28 19.0000 1888010 57.89% N

neos10 81 -1182.0000 213.50 -1135.0000 32 3.67 Y

neos11 10 6.0000 0.69 9.0000 30044 16.55 Y

neos12 6 9.4116 0.70 13.0000 11766 16.22% N

neos13 4 -126.1784 39.16 -92.5828 150276 29.07% N

neos2 137 -3979.8472 9.03 454.8697 146255 7.12 Y

neos20 321 -474.8940 0.73 -434.0000 25569 1.11 Y

neos21 0 3.0000 0.06 7.0000 30130 2.41 Y

neos22 195 778990.4286 1.09 779715.0000 0 0.02 Y

neos23 119 64.3292 0.81 137.0000 3478907 32.85% N

neos3 179 -5743.4783 12.38 368.9010 1061657 261.17% N

neos4 0 -49463016984.6474 2.41 -48603440750.5898 1305 0.62 Y

neos5 0 13.0000 0.01 15.0000 7921889 3.33% N

neos6 4 83.0000 3.30 83.0000 4721 7.38 Y

neos648910 365 16.0000 0.48 32.0000 577114 16.93 Y

continued on the next page

191

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

neos671048 3 2999.0000 2.27 5001.0000 873 0.43 Y

neos7 278 687060.1468 1.20 721934.0000 685048 53.10 Y

neos8 23 -3725.0000 178.31 -3719.0000 0 2.99 Y

neos9 35 794.0000 12.67 798.0000 12876 0.5% N

net12 438 78.0000 13.00 - 56779 - N

noswot 10 -43.0000 0.03 -41.0000 9999999 4.88% N

nsrand-ipx 301 50193.0000 1.27 52000.0000 146006 3.43% N

nug08 0 204.0000 0.22 214.0000 151 0.10 Y

nw04 0 16311.0000 1.01 16862.0000 1638 1.13 Y

opt1217 51 -19.0809 0.05 -16.0000 4090798 19.26% N

p0033 21 2942.0000 0.47 3089.0000 84 0.03 Y

p0201 8 7125.0000 0.45 7615.0000 1099 0.02 Y

p0282 102 255563.0000 0.17 258411.0000 460 0.01 Y

p0548 145 8675.0000 0.30 8691.0000 18 0.01 Y

p2756 256 3121.0000 1.19 3124.0000 968 0.08 Y

pk1 0 0.0000 0.00 11.0000 529908 1.78 Y

pp08a 191 7205.4549 0.16 7350.0000 808 0.02 Y

pp08aCUTS 144 7193.3648 0.25 7350.0000 993 0.02 Y

prod1 135 -81.3838 0.67 -56.0000 3174234 48.33 Y

prod2 126 -85.2231 2.39 -61.0000 2730856 20.27% N

protfold 0 -41.0000 0.22 - 5 - N

qap10 0 0.0000 0.58 - 0 - N

qiu 0 -931.6389 0.05 -132.8731 15640 1.35 Y

qnet1 69 15322.9755 0.42 16029.6927 177 0.03 Y

qnet1 o 82 15348.7293 0.38 16029.6927 139 0.02 Y

ran10x26 176 4086.9607 0.30 4270.0000 25925 0.63 Y

ran12x21 176 3453.2323 0.24 3664.0000 78878 1.81 Y

ran13x13 137 3016.1864 0.14 3252.0000 61448 0.97 Y

rd-rplusc-21 364 100.0000 556.89 - 19346 - N

rentacar 17 29274325.2003 0.52 30356760.9841 55 0.04 Y

rgn 72 81.8363 0.02 82.2000 0 0.01 Y

rgna 0 48.8000 0.00 82.2000 2504 0.01 Y

roll3000 375 12092.6533 4.30 13118.0000 417981 5.79% N

rout 45 982.1729 0.20 1077.5600 1008167 19.34 Y

set1ch 439 52093.5939 0.28 54537.7500 2819811 1.43% N

seymour 8 406.0000 1.36 434.0000 74264 6.22% N

seymour1 15 405.4461 3.39 410.7637 35874 24.74 Y

sp97ar 282 653445845.1576 5.50 676558691.7800 66191 3.35% N

stein27 7 13.0000 0.01 18.0000 4240 0.01 Y

stein45 0 22.0000 0.02 30.0000 62605 0.34 Y

stp3d 6 481.9510 212.39 - 12 - N

swath 65 378.0411 690.03 519.5717 339470 27.17% N

swath2 24 334.4969 1.53 385.1997 444677 41.53 Y

swath3 24 334.4969 1.69 399.6350 637116 11.39% N

t1717 0 134532.0000 7.62 - 2501 - N

timtab1 254 261727.6992 0.45 789911.0000 3860929 56.68% N

timtab2 371 366676.8464 0.80 1527027.0000 2840540 75.98% N

tr12-15 364 67712.0680 0.45 74833.0000 3181167 6.29% N

tr12-30 842 115449.2434 1.20 132021.0000 1483411 11.13% N

tr24-15 709 124783.1587 1.26 137126.0000 1608935 7.12% N

tr24-30 984 228426.7873 0.77 296731.0000 1222256 22.51% N

tr6-15 205 34977.6634 0.34 37721.0000 211284 2.07 Y

tr6-30 333 55795.2893 0.05 61806.0000 3700784 5.4% N

vpm1 45 20.0000 0.02 20.0000 3 0.01 Y

vpm2 126 13.0544 0.20 13.7500 13580 0.13 Y

vpm2a 111 13.0499 0.05 13.7500 7432 0.07 Y

vpm5 151 3002.7449 0.62 3003.2000 1073 0.07 Y

Table D.23.: Results for a 1-hour test with the improved SOTA configuration but without
generating cuts out of cuts.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.27 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.83 14.0000 181676 35.71% N

30 95 100 1 3.0000 16.83 3.0000 3897 7.24 Y

30 95 98 0 12.0000 12.08 13.0000 85812 7.69% N

a1c1s1 761 6119.3020 3.41 11749.4579 587986 40.6% N

continued on the next page

192

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

acc0 7 0.0000 0.36 0.0000 236 0.06 Y

acc1 14 0.0000 0.89 0.0000 1076 0.32 Y

acc2 9 0.0000 0.73 0.0000 4454 1.96 Y

acc3 0 0.0000 0.30 0.0000 4630 7.33 Y

acc4 0 0.0000 0.31 - 22265 - N

acc5 0 0.0000 1.24 0.0000 3664 25.03 Y

aflow30a 252 1074.0000 2.56 1158.0000 24538 1.42 Y

aflow40b 353 1082.0000 16.85 1282.0000 100730 12.17% N

air03 2 338864.2500 0.14 340160.0000 0 0.01 Y

air04 0 55536.0000 2.38 56138.0000 5473 2.45 Y

air05 0 25878.0000 0.88 26374.0000 16466 3.6 Y

arki001 140 7579880.1818 15.14 - 1211 - N

atlanta-ip 473 81.2791 22.25 - 2727 - N

b4-10 163 13323.9283 1.52 14050.8397 31726 1.18 Y

b4-10b 126 13978.4298 4.41 14050.8397 192 0.09 Y

b4-12 295 14812.9738 1.52 16103.8837 1361531 0.4% N

b4-12b 211 15844.0956 9.72 16103.8837 1903 0.49 Y

b4-20b 321 22539.2464 32.76 23360.8870 55007 1.2% N

BASF6-10 160 20960.5787 2.39 21267.8894 255018 31.96 Y

BASF6-5 183 11897.9721 1.38 12072.3655 38524 3.91 Y

bc1 63 2.6115 120.72 3.3384 8354 51.82 Y

bell3a 16 873196.5787 0.08 878430.3160 45716 0.13 Y

bell5 29 8922311.1807 0.06 8966406.4915 2145218 6.38 Y

bienst1 107 14.1023 0.70 46.7500 38926 2.39 Y

bienst2 131 14.9268 0.73 54.6000 228156 12.93 Y

binkar10 1 92 6702.8150 0.64 6742.2000 632947 15.98 Y

blend2 37 7.0952 0.58 7.5990 2997 0.04 Y

cap6000 7 -2451535.0000 0.14 -2451377.0000 37770 4.4 Y

ches1 73 73.7856 0.47 74.3405 30 0.01 Y

ches2 66 -2891.6536 0.17 -2889.5569 2758190 32.58 Y

ches3 29 -1303896.9248 0.02 -1303896.9248 0 0 Y

ches4 32 -647403.5167 0.02 -647403.5167 13 0 Y

ches5 74 -7370.5261 0.09 -7342.8188 4184 0.08 Y

clorox 217 20944.2689 1.34 21217.8144 128 0.04 Y

Con-12 239 4590.7539 0.74 7593.3400 112808 2.59 Y

con-24 287 18099.6337 0.55 25804.9600 1799528 1.68% N

dano3mip 610 576.6728 38.12 732.9667 3460 21.31% N

dano3 3 100 576.2550 10.67 576.3964 9 1.62 Y

dano3 4 188 576.2782 12.02 576.4352 25 2.61 Y

dano3 5 312 576.3266 15.16 576.9249 221 6.24 Y

danoint 147 62.7132 0.77 65.6667 421153 4.31% N

dcmulti 151 187366.6238 0.47 188182.0000 178 0.01 Y

disktom 0 -5000.0000 0.49 - 136080 - N

dlsp 31 375.3100 0.44 613.0000 103209 2.19 Y

ds 0 57.2346 5.41 - 2224 - N

dsbmip 64 -305.1982 0.17 -305.1982 50 0.02 Y

egout 18 567.0998 0.00 568.1007 0 0 Y

enigma 2 0.0000 0.02 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.48 176.0000 12504 1.7% N

fiber 73 388277.9881 0.44 405935.1800 107 0.01 Y

fixnet6 172 3813.8131 2.22 3983.0000 112 0.05 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0 Y

gen 40 112312.9529 0.08 112313.3627 0 0 Y

gesa2 196 25776436.7954 0.66 25779856.3717 138 0.02 Y

gesa2 o 260 25777105.7004 0.67 25779856.3717 22 0.02 Y

gesa3 183 27970743.0737 0.80 27991042.6484 64 0.03 Y

gesa3 o 235 27963539.9613 0.94 27991042.6484 117 0.03 Y

glass4 43 800002400.0000 0.06 1650014050.0000 5629172 51.52% N

gt2 31 20726.0000 0.02 21166.0000 193 0 Y

harp2 101 -74229925.0000 2.30 -73899798.0000 2350783 37.34 Y

khb05250 124 106915722.2610 0.34 106940226.0000 22 0.01 Y

l152lav 0 4657.0000 0.16 4722.0000 10637 0.21 Y

liu 619 560.0000 0.53 1284.0000 439413 56.39% N

lrn 797 44535469.9213 12.41 44710462.5337 262090 0.19% N

lseu 36 1030.0000 0.11 1120.0000 763 0 Y

m20-75-1 620 -51174.1673 143.89 -49213.0000 229295 2.95% N

m20-75-2 700 -51950.5450 159.36 -50322.0000 127188 36.64 Y

m20-75-3 810 -53170.6273 109.08 -51102.0000 218739 3.6% N

m20-75-4 401 -54696.7132 102.75 -52752.0000 283534 1.2% N

continued on the next page

193

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

m20-75-5 417 -53045.5947 94.81 -51349.0000 161020 40.04 Y

manna81 0 -13297.0000 0.36 -13163.0000 887449 1.02% N

markshare1 4 0.0000 0.03 7.0000 9999999 100% N

markshare1 1 7 0.0000 0.01 0.0000 207192 0.43 Y

markshare2 6 0.0000 0.01 17.0000 9999999 100% N

markshare2 1 12 0.0000 0.02 0.0000 7844144 22.06 Y

mas74 25 10583.2346 0.91 11801.1857 6719973 3.51% N

mas76 23 39010.8237 0.81 40005.0541 1159854 8.1 Y

misc03 0 1910.0000 0.02 3360.0000 603 0 Y

misc06 29 12846.2683 0.12 12851.0763 19 0.02 Y

misc07 0 1415.0000 0.05 2810.0000 37474 0.56 Y

mitre 979 115119.0000 5.59 115155.0000 1171 0.21 Y

mkc 410 -603.9839 16.03 -556.8700 432140 8.2% N

mod008 49 304.0000 0.80 307.0000 2142 0.06 Y

mod010 4 6535.0000 0.66 6548.0000 18 0.01 Y

mod011 813 -56510687.3737 4.05 -54558535.0142 2244 0.88 Y

modglob 166 20715756.4942 0.28 20740508.0863 492 0.01 Y

momentum1 687 96249.1952 48.86 - 80 - N

momentum2 1063 10699.2626 126.26 - 952 - N

momentum3 3133 94407.6540 2784.00 - 4 - N

msc98-ip 445 19695288.0058 9.42 22088602.0058 3390 10.8% N

multiA 85 3568.9318 0.36 3774.7600 488338 10.25 Y

multiB 106 3628.6488 0.41 3999.3500 1861192 8.95% N

multiC 101 1501.6364 0.45 2088.4200 1984896 24.42% N

multiD 196 3955.3376 0.81 6254.6450 1139657 35.79% N

multiE 245 2299.8939 0.53 2721.7425 2428139 13.49% N

multiF 218 2070.0352 0.52 2429.5300 2648760 13.45% N

mzzv11 179 -22643.0000 74.19 -21648.0000 47997 2.34% N

mzzv42z 75 -21450.0000 55.41 -19308.0000 8869 9.03% N

neos1 87 7.0000 0.28 19.0000 1892683 57.89% N

neos10 81 -1182.0000 214.28 -1135.0000 32 3.67 Y

neos11 10 6.0000 0.73 9.0000 30044 16.5 Y

neos12 6 9.4116 0.73 13.0000 11803 16.22% N

neos13 4 -126.1784 345.98 -84.2047 113788 49.85% N

neos2 110 -3986.4225 11.41 454.8647 132551 11.29 Y

neos20 323 -474.8940 0.80 -434.0000 42015 1.78 Y

neos21 0 3.0000 0.05 7.0000 30130 2.4 Y

neos22 199 778990.4286 1.23 779715.0000 0 0.02 Y

neos23 136 59.3098 1.12 137.0000 3341506 40.15% N

neos3 174 -5674.9374 15.66 368.8428 790009 304.2% N

neos4 0 -49463016984.6474 2.51 -48603440750.5898 1305 0.62 Y

neos5 0 13.0000 0.02 15.0000 7940043 3.33% N

neos6 4 83.0000 3.28 83.0000 4721 7.36 Y

neos648910 425 16.0000 0.61 32.0000 52670 1.42 Y

neos671048 3 2999.0000 2.28 5001.0000 873 0.43 Y

neos7 300 686493.9935 1.44 721934.0000 76992 2.98% N

neos8 23 -3725.0000 177.22 -3719.0000 0 2.97 Y

neos9 35 794.0000 12.83 798.0000 13006 0.5% N

net12 450 78.0000 13.33 - 56187 - N

noswot 10 -43.0000 0.03 -41.0000 9999999 4.88% N

nsrand-ipx 255 50185.0000 1.81 53600.0000 126441 6.32% N

nug08 0 204.0000 0.22 214.0000 151 0.1 Y

nw04 0 16311.0000 1.00 16862.0000 1638 1.12 Y

opt1217 31 -19.3221 0.08 -16.0000 5154783 20.76% N

p0033 22 2942.0000 0.53 3089.0000 75 0.03 Y

p0201 8 7125.0000 0.41 7615.0000 1099 0.02 Y

p0282 102 255636.0000 0.17 258411.0000 48 0.01 Y

p0548 147 8688.0000 0.03 8691.0000 0 0.01 Y

p2756 260 3120.0000 2.11 3124.0000 316 0.08 Y

pk1 0 0.0000 0.00 11.0000 529908 1.79 Y

pp08a 223 7236.1931 0.44 7350.0000 692 0.02 Y

pp08aCUTS 161 7204.3638 0.52 7350.0000 992 0.03 Y

prod1 129 -81.3771 0.62 -56.0000 1442337 20.27 Y

prod2 128 -85.2228 2.81 -61.0000 2722626 18.39% N

protfold 0 -41.0000 0.22 - 5 - N

qap10 0 333.0000 0.59 358.0000 43 6.98% N

qiu 0 -931.6389 0.05 -132.8731 15640 1.35 Y

qnet1 76 15438.7245 0.44 16029.6927 298 0.03 Y

qnet1 o 90 15624.5847 0.47 16030.9927 230 0.02 Y

continued on the next page

194

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

ran10x26 169 4095.7656 1.12 4270.0000 27445 0.66 Y

ran12x21 199 3460.4177 6.19 3664.0000 74456 2.18 Y

ran13x13 185 3065.7457 0.73 3252.0000 44361 0.87 Y

rd-rplusc-21 205 100.0000 535.36 - 17999 - N

rentacar 22 29274325.2003 0.66 30356760.9841 33 0.03 Y

rgn 83 82.1999 0.00 82.2000 0 0.01 Y

rgna 0 48.8000 0.00 82.2000 2504 0 Y

roll3000 341 11486.5552 4.97 13428.0000 529767 11.84% N

rout 29 982.1729 0.14 1077.5600 599083 9.56 Y

set1ch 429 54530.8609 0.31 54537.7500 84 0.02 Y

seymour 8 406.0000 1.36 434.0000 74865 6.22% N

seymour1 16 405.4473 5.22 410.7637 25409 18.01 Y

sp97ar 282 653445845.1576 5.56 673207925.0400 62596 2.87% N

stein27 7 13.0000 0.02 18.0000 4240 0.01 Y

stein45 0 22.0000 0.02 30.0000 62605 0.34 Y

stp3d 6 481.9510 210.50 - 12 - N

swath 90 380.2513 329.62 498.2925 409090 23.67% N

swath2 24 334.4969 1.53 385.1997 444677 41.47 Y

swath3 24 334.4969 1.70 399.6350 638698 11.39% N

t1717 0 134532.0000 7.72 - 2507 - N

timtab1 267 271520.7170 0.59 796863.0000 3942342 60.08% N

timtab2 404 378673.9016 1.03 - 2665902 - N

tr12-15 409 73877.4789 0.28 74634.0000 13816 0.36 Y

tr12-30 846 130177.2010 0.45 130596.0000 996224 38.92 Y

tr24-15 789 136365.6881 0.92 136509.0000 32545 1.47 Y

tr24-30 984 238660.0922 1.00 294724.0000 1204150 19.02% N

tr6-15 230 37253.8417 0.30 37721.0000 7910 0.11 Y

tr6-30 360 60975.7141 0.17 61746.0000 1383186 22.21 Y

vpm1 62 20.0000 0.05 20.0000 3 0 Y

vpm2 172 13.0586 0.36 13.7500 14666 0.19 Y

vpm2a 145 13.1231 1.94 13.7500 6273 0.1 Y

vpm5 136 3002.7327 0.80 3003.2000 254 0.03 Y

Table D.24.: Results for a 1-hour test with the improved SOTA configuration but without
flow cover cuts.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.23 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.69 14.0000 181471 35.71% N

30 95 100 1 3.0000 16.94 3.0000 3897 7.26 Y

30 95 98 0 12.0000 12.20 13.0000 85721 7.69% N

a1c1s1 743 6062.2554 3.05 11651.4325 565353 40.05% N

acc0 7 0.0000 0.38 0.0000 236 0.05 Y

acc1 14 0.0000 0.94 0.0000 1076 0.33 Y

acc2 9 0.0000 0.66 0.0000 4454 1.96 Y

acc3 0 0.0000 0.30 0.0000 4630 7.35 Y

acc4 0 0.0000 0.31 - 22242 - N

acc5 0 0.0000 1.22 0.0000 3664 24.99 Y

aflow30a 235 1077.0000 1.56 1158.0000 12293 0.66 Y

aflow40b 381 1081.0000 16.30 1179.0000 183483 5% N

air03 2 338864.2500 0.12 340160.0000 0 0.01 Y

air04 0 55536.0000 2.39 56138.0000 5473 2.44 Y

air05 0 25878.0000 0.84 26374.0000 16466 3.58 Y

arki001 140 7579880.1818 14.59 - 1211 - N

atlanta-ip 473 81.2791 21.72 - 2747 - N

b4-10 200 13334.5382 1.72 14050.8397 24759 0.82 Y

b4-10b 171 13977.7184 7.47 14050.8397 327 0.22 Y

b4-12 270 14757.9649 1.66 16103.8837 1163169 49.3 Y

b4-12b 210 15852.4941 9.88 16103.8837 6682 1.18 Y

b4-20b 324 22449.5557 27.23 23358.2110 59773 2.35% N

BASF6-10 160 20957.2823 2.17 21267.5689 129870 17.78 Y

BASF6-5 181 11895.7453 1.41 12071.5772 37122 3.67 Y

bc1 63 2.6115 118.67 3.3384 8354 51.58 Y

bell3a 16 873196.5787 0.06 878430.3160 45716 0.13 Y

bell5 29 8922311.1807 0.06 8966406.4915 2145218 6.34 Y

bienst1 94 14.0766 0.58 46.7500 40494 2.21 Y

bienst2 112 14.9297 0.56 54.6000 277749 14.4 Y

continued on the next page

195

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

binkar10 1 92 6702.8150 0.61 6742.2000 632947 15.89 Y

blend2 37 7.0952 0.58 7.5990 2997 0.04 Y

cap6000 7 -2451535.0000 0.12 -2451377.0000 37770 4.38 Y

ches1 73 73.7856 0.45 74.3405 30 0.01 Y

ches2 66 -2891.6536 0.16 -2889.5569 2758190 32.44 Y

ches3 30 -1303896.9248 0.05 -1303896.9248 6 0 Y

ches4 32 -647403.5167 0.02 -647403.5167 13 0 Y

ches5 70 -7370.9964 0.08 -7342.8188 9546 0.16 Y

clorox 162 17155.6482 0.42 21217.8144 274 0.03 Y

Con-12 184 4598.1991 0.27 7593.0700 213324 3.96 Y

con-24 290 18035.5571 0.47 25804.9600 1917221 2.47% N

dano3mip 504 576.5699 48.39 775.6500 4961 25.65% N

dano3 3 25 576.2361 0.83 576.3964 9 1.72 Y

dano3 4 72 576.2557 3.25 576.4352 22 2.16 Y

dano3 5 110 576.3003 7.28 576.9249 230 5 Y

danoint 103 62.6944 0.56 65.6667 512452 4.02% N

dcmulti 134 187333.5090 0.38 188182.0000 214 0.01 Y

disktom 0 -5000.0000 0.53 - 136206 - N

dlsp 31 375.3100 0.38 613.0000 103209 2.19 Y

ds 0 57.2346 5.53 - 2222 - N

dsbmip 64 -305.1982 0.09 -305.1982 50 0.01 Y

egout 18 567.0998 0.02 568.1007 0 0 Y

enigma 2 0.0000 0.00 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.39 176.0000 12504 1.7% N

fiber 73 388277.9881 0.44 405935.1800 107 0.01 Y

fixnet6 172 3813.8131 2.08 3983.0000 112 0.05 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0 Y

gen 40 112312.9529 0.08 112313.3627 0 0 Y

gesa2 178 25776342.8956 0.55 25779856.3717 229 0.02 Y

gesa2 o 260 25777105.7004 0.62 25779856.3717 22 0.02 Y

gesa3 183 27970743.0737 0.73 27991042.6484 64 0.03 Y

gesa3 o 235 27963539.9613 0.88 27991042.6484 117 0.03 Y

glass4 43 800002400.0000 0.05 1650014050.0000 5639756 51.52% N

gt2 31 20726.0000 0.02 21166.0000 193 0 Y

harp2 101 -74229925.0000 2.30 -73899798.0000 2350783 37.3 Y

khb05250 124 106915722.2610 0.31 106940226.0000 22 0.01 Y

l152lav 0 4657.0000 0.17 4722.0000 10637 0.22 Y

liu 542 560.0000 0.39 1332.0000 560539 57.96% N

lrn 801 44553374.5369 10.80 44656794.6587 360198 0.01% N

lseu 36 1030.0000 0.11 1120.0000 763 0 Y

m20-75-1 618 -51174.1673 138.62 -49213.0000 238112 2.8% N

m20-75-2 700 -51950.5450 152.53 -50322.0000 127188 36.45 Y

m20-75-3 799 -53184.5835 107.44 -51158.0000 218416 3.39% N

m20-75-4 435 -54662.9976 108.44 -52752.0000 296193 2.07% N

m20-75-5 363 -53108.7897 131.12 -51349.0000 116062 27.74 Y

manna81 0 -13297.0000 0.36 -13163.0000 858302 1.02% N

markshare1 4 0.0000 0.03 7.0000 9999999 100% N

markshare1 1 7 0.0000 0.02 0.0000 207192 0.44 Y

markshare2 6 0.0000 0.02 17.0000 9999999 100% N

markshare2 1 12 0.0000 0.02 0.0000 7844144 22.08 Y

mas74 25 10583.2346 0.88 11801.1857 6710044 3.51% N

mas76 23 39010.8237 0.80 40005.0541 1159854 8.12 Y

misc03 0 1910.0000 0.00 3360.0000 603 0 Y

misc06 29 12846.2683 0.11 12851.0763 19 0.01 Y

misc07 0 1415.0000 0.03 2810.0000 37474 0.56 Y

mitre 979 115119.0000 5.78 115155.0000 1171 0.21 Y

mkc 410 -603.9839 15.74 -556.8700 431285 8.2% N

mod008 49 304.0000 0.80 307.0000 2142 0.06 Y

mod010 4 6535.0000 0.66 6548.0000 18 0.01 Y

mod011 813 -56510687.3737 3.70 -54558535.0142 2244 0.87 Y

modglob 166 20715756.4942 0.24 20740508.0863 492 0.01 Y

momentum1 688 96249.1952 45.33 - 210 - N

momentum2 895 10698.4783 103.95 - 63 - N

momentum3 1388 91964.1297 1522.62 n.a. 0 n.a. N

msc98-ip 414 19695288.0058 9.09 - 2947 - N

multiA 65 3557.1627 0.05 3774.7600 76963 1.6 Y

multiB 112 3629.2792 0.41 3984.0300 1746405 8.56% N

multiC 72 1492.4464 0.38 2095.0200 2274655 25.61% N

multiD 146 3920.2823 0.73 6100.3564 1186589 35.07% N

continued on the next page

196

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

multiE 256 2297.8358 0.45 2721.7425 2376292 12.69% N

multiF 205 2059.3586 0.48 2433.4400 2846645 14.33% N

mzzv11 179 -22643.0000 74.47 -21648.0000 47729 2.34% N

mzzv42z 75 -21450.0000 55.80 -19308.0000 8831 9.03% N

neos1 87 7.0000 0.28 19.0000 1892683 57.89% N

neos10 81 -1182.0000 213.36 -1135.0000 32 3.65 Y

neos11 10 6.0000 0.69 9.0000 30044 16.49 Y

neos12 6 9.4116 0.72 13.0000 11789 16.22% N

neos13 4 -126.1784 33.70 -84.2047 132431 49.85% N

neos2 110 -3986.4225 11.27 454.8647 132551 11.28 Y

neos20 323 -474.8940 0.80 -434.0000 42015 1.78 Y

neos21 0 3.0000 0.06 7.0000 30130 2.41 Y

neos22 198 778990.4286 1.12 779715.0000 0 0.02 Y

neos23 122 59.3098 0.89 137.0000 3421614 48.43% N

neos3 174 -5674.9374 15.66 368.8428 789519 304.2% N

neos4 0 -49463016984.6474 2.39 -48603440750.5898 1305 0.62 Y

neos5 0 13.0000 0.00 15.0000 7939707 3.33% N

neos6 4 83.0000 3.34 83.0000 4721 7.4 Y

neos648910 380 16.0000 0.41 32.0000 252891 6.54 Y

neos671048 3 2999.0000 2.27 5001.0000 873 0.43 Y

neos7 380 695844.4985 1.91 721934.0000 462557 35.61 Y

neos8 23 -3725.0000 178.06 -3719.0000 0 2.99 Y

neos9 35 794.0000 12.91 798.0000 12922 0.5% N

net12 450 78.0000 13.31 - 55846 - N

noswot 10 -43.0000 0.02 -41.0000 9999999 4.88% N

nsrand-ipx 255 50185.0000 1.80 53600.0000 126251 6.32% N

nug08 0 204.0000 0.22 214.0000 151 0.1 Y

nw04 0 16311.0000 1.02 16862.0000 1638 1.12 Y

opt1217 31 -19.3221 0.08 -16.0000 5240025 20.76% N

p0033 22 2942.0000 0.23 3089.0000 75 0.01 Y

p0201 8 7125.0000 0.42 7615.0000 1099 0.02 Y

p0282 102 255636.0000 0.17 258411.0000 48 0.01 Y

p0548 147 8688.0000 0.05 8691.0000 0 0.01 Y

p2756 260 3120.0000 2.08 3124.0000 316 0.08 Y

pk1 0 0.0000 0.02 11.0000 529908 1.79 Y

pp08a 213 7212.1598 0.38 7350.0000 666 0.02 Y

pp08aCUTS 153 7210.4012 0.41 7350.0000 1000 0.03 Y

prod1 129 -81.3771 0.67 -56.0000 1442337 20.26 Y

prod2 128 -85.2228 2.81 -61.0000 2723064 18.39% N

protfold 0 -41.0000 0.20 - 5 - N

qap10 0 333.0000 0.59 358.0000 43 6.98% N

qiu 0 -931.6389 0.06 -132.8731 15640 1.34 Y

qnet1 76 15438.7245 0.45 16029.6927 298 0.03 Y

qnet1 o 90 15624.5847 0.48 16030.9927 230 0.02 Y

ran10x26 169 4095.7656 1.05 4270.0000 27445 0.66 Y

ran12x21 199 3460.4177 6.06 3664.0000 74456 2.17 Y

ran13x13 185 3065.7457 0.69 3252.0000 44361 0.86 Y

rd-rplusc-21 521 100.0000 1242.52 - 9633 - N

rentacar 22 29274325.2003 0.53 30356760.9841 30 0.03 Y

rgn 83 82.1999 0.02 82.2000 0 0 Y

rgna 0 48.8000 0.00 82.2000 2504 0 Y

roll3000 341 11486.5552 4.81 13428.0000 528272 11.84% N

rout 29 982.1729 0.14 1077.5600 599083 9.6 Y

set1ch 440 54500.9343 0.34 54537.7500 61 0.02 Y

seymour 8 406.0000 1.36 434.0000 74609 6.22% N

seymour1 16 405.4473 4.03 410.7637 25409 17.98 Y

sp97ar 282 653445845.1576 5.59 673207925.0400 62624 2.87% N

stein27 7 13.0000 0.02 18.0000 4240 0.01 Y

stein45 0 22.0000 0.02 30.0000 62605 0.34 Y

stp3d 6 481.9510 211.52 - 12 - N

swath 65 379.4261 686.05 517.0587 357218 26.55% N

swath2 24 334.4969 1.53 385.1997 444677 41.45 Y

swath3 24 334.4969 1.72 399.6350 638341 11.39% N

t1717 0 134532.0000 7.75 - 2507 - N

timtab1 267 271520.7170 0.50 796863.0000 3953486 60.08% N

timtab2 405 373167.5107 1.33 - 2542849 - N

tr12-15 373 73517.6543 0.59 74634.0000 66292 1.35 Y

tr12-30 878 129187.0391 1.64 130596.0000 1352633 0.4% N

tr24-15 754 135382.1529 1.97 136509.0000 688155 27.57 Y

continued on the next page

197

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

tr24-30 984 238241.4596 0.92 294751.0000 1214482 18.82% N

tr6-15 236 36996.8928 0.41 37721.0000 10298 0.13 Y

tr6-30 372 60705.5345 0.73 61746.0000 3751542 0.46% N

vpm1 62 20.0000 0.03 20.0000 3 0 Y

vpm2 172 13.0586 0.33 13.7500 14666 0.18 Y

vpm2a 145 13.1231 1.91 13.7500 6273 0.1 Y

vpm5 136 3002.7327 0.75 3003.2000 254 0.03 Y

Table D.25.: Results for a 1-hour test with the improved SOTA configuration but without
flow cover and flow path cuts. For the instance momentum3, MOPS returned
an invalid result.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.25 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.80 14.0000 181560 35.71% N

30 95 100 1 3.0000 16.88 3.0000 3897 7.23 Y

30 95 98 0 12.0000 12.17 13.0000 85936 7.69% N

a1c1s1 767 6213.4499 3.39 12123.4474 659079 45.08% N

acc0 7 0.0000 0.39 0.0000 236 0.06 Y

acc1 14 0.0000 0.97 0.0000 1076 0.33 Y

acc2 9 0.0000 0.67 0.0000 4454 1.96 Y

acc3 0 0.0000 0.30 0.0000 4630 7.32 Y

acc4 0 0.0000 0.31 - 22292 - N

acc5 0 0.0000 1.23 0.0000 3664 24.95 Y

aflow30a 230 1071.0000 1.86 1158.0000 19784 0.96 Y

aflow40b 376 1081.0000 16.83 1202.0000 124239 7.07% N

air03 2 338864.2500 0.14 340160.0000 0 0.01 Y

air04 0 55536.0000 2.39 56138.0000 5473 2.44 Y

air05 0 25878.0000 0.86 26374.0000 16466 3.59 Y

arki001 147 7579880.6002 17.73 7580814.5116 836338 0.01% N

atlanta-ip 478 81.2791 21.66 - 2049 - N

b4-10 198 13318.4808 2.89 14050.8397 71987 2.55 Y

b4-10b 122 13984.4225 4.36 14050.8397 201 0.09 Y

b4-12 329 14820.7416 1.25 16103.8837 606278 27.63 Y

b4-12b 221 15852.1335 8.08 16103.8837 11333 1.72 Y

b4-20b 293 22439.1537 30.48 23376.6473 62389 2.3% N

BASF6-10 159 20959.8571 2.38 21267.5689 28650 4.25 Y

BASF6-5 183 11898.6064 1.39 12072.4747 35164 3.12 Y

bc1 62 2.5908 118.09 3.3611 9886 1.55% N

bell3a 16 873196.5787 0.08 878430.3160 45716 0.13 Y

bell5 29 8922311.1807 0.08 8966406.4915 2145218 6.38 Y

bienst1 133 14.1072 0.70 46.7500 35872 2.29 Y

bienst2 114 14.9358 0.66 54.6000 264746 13.87 Y

binkar10 1 92 6702.8150 0.66 6742.2000 632947 16.21 Y

blend2 37 7.0952 0.58 7.5990 2997 0.04 Y

cap6000 7 -2451535.0000 0.14 -2451377.0000 37770 4.39 Y

ches1 40 73.0187 0.08 74.3405 33 0.01 Y

ches2 66 -2891.6536 0.17 -2889.8455 2976409 36.38 Y

ches3 30 -1303896.9248 0.05 -1303896.9248 6 0.01 Y

ches4 36 -647403.5167 0.02 -647403.5167 17 0.01 Y

ches5 67 -7371.0644 0.08 -7342.8188 8972 0.16 Y

clorox 206 13819.9124 1.38 21217.8144 374 0.05 Y

Con-12 207 4585.4797 0.66 7593.0700 196778 4.21 Y

con-24 323 18209.5900 1.00 25804.9600 1698648 1.79% N

dano3mip 517 576.5667 43.81 748.3889 5508 22.94% N

dano3 3 31 576.2371 3.42 576.3964 9 1.49 Y

dano3 4 66 576.2554 3.75 576.4352 22 1.69 Y

dano3 5 134 576.3015 11.55 576.9249 257 5.29 Y

danoint 108 62.7006 0.66 65.6667 503020 4.07% N

dcmulti 134 187333.5090 0.42 188182.0000 214 0.01 Y

disktom 0 -5000.0000 0.45 - 136016 - N

dlsp 31 375.3100 0.64 613.0000 103209 2.19 Y

ds 0 57.2346 5.41 - 2216 - N

dsbmip 84 -305.1982 0.19 -305.1982 50 0.02 Y

egout 18 567.0998 0.02 568.1007 0 0.01 Y

enigma 2 0.0000 0.00 0.0000 21176 0.04 Y

continued on the next page

198

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

fast0507 2 173.0000 5.50 176.0000 12494 1.7% N

fiber 73 388277.9881 0.45 405935.1800 107 0.01 Y

fixnet6 173 3808.3357 2.19 3983.0000 78 0.05 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0.01 Y

gen 40 112312.9529 0.09 112313.3627 0 0.01 Y

gesa2 178 25776342.8956 0.59 25779856.3717 229 0.03 Y

gesa2 o 260 25777105.7004 0.67 25779856.3717 22 0.02 Y

gesa3 183 27970743.0737 0.78 27991042.6484 64 0.03 Y

gesa3 o 235 27963539.9613 0.98 27991042.6484 117 0.03 Y

glass4 43 800002400.0000 0.05 1650014050.0000 5623973 51.52% N

gt2 31 20726.0000 0.03 21166.0000 193 0.01 Y

harp2 101 -74229925.0000 2.45 -73899798.0000 2350783 37.37 Y

khb05250 125 106915481.5201 0.27 106940226.0000 24 0.01 Y

l152lav 0 4657.0000 0.16 4722.0000 10637 0.22 Y

liu 698 560.0000 0.59 1356.0000 762646 58.7% N

lrn 790 44552129.8923 11.58 44656797.1919 364368 0.02% N

lseu 36 1030.0000 0.11 1120.0000 763 0.01 Y

m20-75-1 618 -51174.1673 139.17 -49213.0000 237584 2.8% N

m20-75-2 700 -51950.5450 153.20 -50322.0000 127188 36.49 Y

m20-75-3 799 -53184.5835 108.11 -51158.0000 218155 3.39% N

m20-75-4 435 -54662.9976 108.73 -52752.0000 295746 2.07% N

m20-75-5 363 -53108.7897 131.59 -51349.0000 116062 27.74 Y

manna81 0 -13297.0000 0.39 -13163.0000 889304 1.02% N

markshare1 4 0.0000 0.00 7.0000 9999999 100% N

markshare1 1 7 0.0000 0.02 0.0000 328541 0.66 Y

markshare2 6 0.0000 0.02 17.0000 9999999 100% N

markshare2 1 12 0.0000 0.02 0.0000 7844144 22.07 Y

mas74 25 10583.2346 0.89 11801.1857 6716952 3.51% N

mas76 23 39010.8237 0.84 40005.0541 1159854 8.13 Y

misc03 0 1910.0000 0.00 3360.0000 603 0.01 Y

misc06 28 12847.3366 0.28 12851.0763 18 0.01 Y

misc07 0 1415.0000 0.05 2810.0000 37474 0.56 Y

mitre 979 115119.0000 5.69 115155.0000 1171 0.22 Y

mkc 410 -603.9839 15.89 -556.8700 431379 8.2% N

mod008 49 304.0000 0.80 307.0000 2142 0.06 Y

mod010 4 6535.0000 0.66 6548.0000 18 0.01 Y

mod011 817 -56517956.2438 3.95 -54558535.0142 2152 0.84 Y

modglob 174 20722217.3080 0.33 20740508.0863 380 0.01 Y

momentum1 824 102663.0180 55.06 - 145 - N

momentum2 982 10698.4399 89.61 - 111 - N

momentum3 3904 94206.9284 3224.45 - 1 - N

msc98-ip 521 19702877.0058 23.23 22191032.0059 2279 11.21% N

multiA 67 3563.1030 0.05 3774.7600 424216 8.89 Y

multiB 82 3627.8627 0.06 3995.5200 2124210 8.74% N

multiC 82 1513.0697 0.41 2083.2867 1999631 22.93% N

multiD 105 3891.4576 0.36 6102.3545 1532767 35.37% N

multiE 252 2301.1218 0.58 2710.5925 2421076 11.78% N

multiF 200 2067.3049 0.44 2447.4000 3480146 14.92% N

mzzv11 179 -22643.0000 74.58 -21648.0000 47747 2.34% N

mzzv42z 75 -21450.0000 55.78 -19308.0000 8873 9.03% N

neos1 87 7.0000 0.33 19.0000 1892683 57.89% N

neos10 81 -1182.0000 212.92 -1135.0000 32 3.65 Y

neos11 10 6.0000 0.73 9.0000 30044 16.49 Y

neos12 9 9.4116 0.70 13.0000 12699 17.88% N

neos13 4 -126.1784 36.53 -84.2047 132361 49.85% N

neos2 131 -4066.6442 9.25 454.8647 175218 10.70 Y

neos20 323 -474.8940 0.83 -434.0000 42015 1.78 Y

neos21 0 3.0000 0.06 7.0000 30130 2.41 Y

neos22 198 778990.4286 1.30 779715.0000 0 0.02 Y

neos23 171 59.7439 1.47 137.0000 3119944 45.96% N

neos3 168 -5720.9576 15.28 368.9010 694822 561.92% N

neos4 0 -49463016984.6474 2.52 -48603440750.5898 1305 0.62 Y

neos5 0 13.0000 0.01 15.0000 7936160 3.33% N

neos6 4 83.0000 3.30 83.0000 4721 7.35 Y

neos648910 393 16.0000 0.62 32.0000 917702 24.84 Y

neos671048 3 2999.0000 2.41 5001.0000 873 0.44 Y

neos7 312 687129.0593 1.48 721934.0000 682106 1.05% N

neos8 23 -3725.0000 177.83 -3719.0000 0 2.98 Y

neos9 35 794.0000 13.12 798.0000 13012 0.5% N

continued on the next page

199

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

net12 450 78.0000 13.81 - 56134 - N

noswot 10 -43.0000 0.03 -41.0000 9999999 4.88% N

nsrand-ipx 255 50185.0000 1.81 53600.0000 126365 6.32% N

nug08 0 204.0000 0.22 214.0000 151 0.10 Y

nw04 0 16311.0000 1.02 16862.0000 1638 1.12 Y

opt1217 31 -19.3221 0.08 -16.0000 4994509 20.76% N

p0033 22 2942.0000 0.05 3089.0000 75 0.01 Y

p0201 8 7125.0000 0.39 7615.0000 1099 0.02 Y

p0282 102 255636.0000 0.19 258411.0000 48 0.01 Y

p0548 147 8688.0000 0.03 8691.0000 0 0.01 Y

p2756 260 3120.0000 2.11 3124.0000 316 0.08 Y

pk1 0 0.0000 0.02 11.0000 529908 1.78 Y

pp08a 213 7209.9894 0.42 7350.0000 648 0.02 Y

pp08aCUTS 153 7210.4690 0.38 7350.0000 1014 0.03 Y

prod1 129 -81.3771 0.61 -56.0000 1442337 20.30 Y

prod2 128 -85.2228 2.84 -61.0000 2721324 18.39% N

protfold 0 -41.0000 0.22 - 5 - N

qap10 0 333.0000 0.59 358.0000 43 6.98% N

qiu 0 -931.6389 0.05 -132.8731 15640 1.34 Y

qnet1 76 15438.7245 0.45 16029.6927 298 0.03 Y

qnet1 o 90 15624.5847 0.49 16030.9927 230 0.02 Y

ran10x26 174 4096.8543 0.86 4270.0000 28164 0.69 Y

ran12x21 208 3465.8956 4.78 3664.0000 90936 2.55 Y

ran13x13 179 3056.3723 0.95 3252.0000 52922 1.01 Y

rd-rplusc-21 204 100.0000 575.44 - 1480 - N

rentacar 22 29274325.2003 0.59 30356760.9841 21 0.02 Y

rgn 83 82.1999 0.00 82.2000 0 0.01 Y

rgna 0 48.8000 0.02 82.2000 2504 0.01 Y

roll3000 341 11486.5552 4.78 13428.0000 529236 11.84% N

rout 29 982.1729 0.14 1077.5600 599083 9.57 Y

set1ch 468 54528.1039 0.64 54537.7500 18 0.02 Y

seymour 8 406.0000 1.42 434.0000 74625 6.22% N

seymour1 16 405.4473 4.77 410.7637 25409 17.99 Y

sp97ar 282 653445845.1576 5.59 673207925.0400 62592 2.87% N

stein27 7 13.0000 0.02 18.0000 4240 0.01 Y

stein45 0 22.0000 0.00 30.0000 62605 0.34 Y

stp3d 6 481.9510 211.22 - 12 - N

swath 87 379.1360 493.86 515.6334 450658 26.47% N

swath2 24 334.4969 1.61 385.1997 412391 36.54 Y

swath3 24 334.4969 1.70 399.6350 638389 11.39% N

t1717 0 134532.0000 7.72 - 2513 - N

timtab1 274 273313.2972 0.67 795007.0000 3777068 54.69% N

timtab2 403 375016.1681 1.61 - 2513444 - N

tr12-15 374 73527.0120 0.75 74634.0000 127757 2.64 Y

tr12-30 881 129329.5985 2.25 130596.0000 1290423 0.54% N

tr24-15 782 135417.4306 2.28 136509.0000 690082 28.80 Y

tr24-30 984 238241.4596 1.03 294751.0000 1208954 18.82% N

tr6-15 223 36919.2776 0.36 37721.0000 8804 0.11 Y

tr6-30 360 60712.1760 0.36 61746.0000 3774611 0.52% N

vpm1 55 20.0000 0.00 20.0000 0 0.01 Y

vpm2 182 13.0862 2.94 13.7500 14324 0.23 Y

vpm2a 148 13.1236 2.22 13.7500 6005 0.10 Y

vpm5 126 3002.7392 0.75 3003.2000 459 0.05 Y

Table D.26.: Results for a 1-hour test with the cMIR cut and uPMC generator.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.27 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.92 14.0000 180794 35.71% N

30 95 100 1 3.0000 17.02 3.0000 3897 7.28 Y

30 95 98 0 12.0000 12.16 13.0000 85459 7.69% N

a1c1s1 789 6094.8687 3.59 12250.8968 672667 47.68% N

acc0 7 0.0000 0.38 0.0000 236 0.06 Y

acc1 14 0.0000 0.92 0.0000 1076 0.33 Y

acc2 9 0.0000 0.67 0.0000 4454 1.96 Y

acc3 0 0.0000 0.31 0.0000 4630 7.34 Y

acc4 0 0.0000 0.31 - 22265 - N

continued on the next page

200

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

acc5 0 0.0000 1.23 0.0000 3664 25.00 Y

aflow30a 203 1077.0000 1.62 1158.0000 17191 0.74 Y

aflow40b 377 1083.0000 22.86 1481.0000 74750 26.06% N

air03 2 338864.2500 0.14 340160.0000 0 0.01 Y

air04 0 55536.0000 2.42 56138.0000 5473 2.45 Y

air05 0 25878.0000 0.86 26374.0000 16466 3.59 Y

arki001 173 7579887.8809 21.05 - 948 - N

atlanta-ip 477 81.2791 22.41 - 490 - N

b4-10 227 13365.0305 1.84 14050.8397 24811 0.95 Y

b4-10b 116 13973.9289 3.69 14050.8397 338 0.09 Y

b4-12 268 14751.0590 1.92 16103.8837 1343170 2.35% N

b4-12b 254 15840.5603 12.38 16103.8837 6977 1.44 Y

b4-20b 310 22468.8718 30.64 23387.1591 47155 2.33% N

BASF6-10 158 20963.0789 2.45 21267.6938 236711 30.09 Y

BASF6-5 188 11896.3509 1.47 12072.3655 28570 3.10 Y

bc1 63 2.6008 140.30 3.3384 10828 1.68% N

bell3a 16 873196.5787 0.08 878430.3160 56364 0.17 Y

bell5 29 8921811.4174 0.06 8966406.4915 2008250 6.45 Y

bienst1 127 14.1063 0.72 46.7500 35788 2.28 Y

bienst2 112 14.9288 0.66 54.6000 245202 12.45 Y

binkar10 1 92 6702.8150 0.66 6742.2000 632947 15.95 Y

blend2 37 7.0952 0.58 7.5990 2997 0.04 Y

cap6000 7 -2451535.0000 0.14 -2451377.0000 37770 4.39 Y

ches1 80 74.1860 0.25 74.3405 4 0.01 Y

ches2 66 -2891.6536 0.17 -2889.5569 37558 0.47 Y

ches3 30 -1303896.9248 0.05 -1303896.9248 6 0.01 Y

ches4 32 -647403.5167 0.03 -647403.5167 21 0.01 Y

ches5 76 -7370.8392 0.09 -7342.8188 12324 0.23 Y

clorox 142 17357.9455 0.11 21217.8144 1022 0.04 Y

Con-12 176 4593.4914 0.19 7593.3400 172058 3.37 Y

con-24 273 18050.6868 0.94 25804.9600 2084356 58.80 Y

dano3mip 501 576.5796 34.50 770.3077 4884 25.13% N

dano3 3 21 576.2371 1.72 576.3964 9 1.59 Y

dano3 4 56 576.2548 6.27 576.4352 24 2.24 Y

dano3 5 120 576.3021 10.78 576.9249 286 5.53 Y

danoint 114 62.7018 0.72 65.6667 495818 4.28% N

dcmulti 139 187305.2019 0.48 188182.0000 226 0.01 Y

disktom 0 -5000.0000 0.45 - 136243 - N

dlsp 31 375.3100 0.59 613.0000 100424 2.22 Y

ds 0 57.2346 5.55 - 2218 - N

dsbmip 64 -305.1982 0.12 -305.1982 50 0.01 Y

egout 18 567.0998 0.00 568.1007 0 0.01 Y

enigma 2 0.0000 0.00 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.47 176.0000 12506 1.7% N

fiber 73 388277.9881 0.45 405935.1800 107 0.01 Y

fixnet6 202 3829.7907 2.42 3983.0000 73 0.05 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0.01 Y

gen 40 112312.9529 0.09 112313.3627 0 0.01 Y

gesa2 178 25776342.8956 0.64 25779856.3717 229 0.03 Y

gesa2 o 260 25777105.7004 0.74 25779856.3717 22 0.03 Y

gesa3 183 27970743.0737 0.88 27991042.6484 64 0.03 Y

gesa3 o 235 27963539.9613 1.03 27991042.6484 117 0.04 Y

glass4 43 800002400.0000 0.05 1650014050.0000 5638752 51.52% N

gt2 31 20726.0000 0.01 21166.0000 193 0.01 Y

harp2 101 -74229925.0000 2.28 -73899798.0000 2350783 37.27 Y

khb05250 121 106916129.9831 0.25 106940226.0000 22 0.01 Y

l152lav 0 4657.0000 0.14 4722.0000 10637 0.22 Y

liu 584 560.0000 0.51 1282.0000 533800 56.32% N

lrn 836 44538202.0856 12.12 44656794.6587 346150 0.01% N

lseu 36 1030.0000 0.11 1120.0000 763 0.01 Y

m20-75-1 618 -51174.1673 138.80 -49213.0000 237900 2.8% N

m20-75-2 700 -51950.5450 153.20 -50322.0000 127188 36.47 Y

m20-75-3 904 -53141.6722 78.94 -51158.0000 199597 2.91% N

m20-75-4 413 -54683.5128 114.77 -52752.0000 280224 1.24% N

m20-75-5 363 -53108.7897 131.67 -51349.0000 116062 27.76 Y

manna81 0 -13297.0000 0.38 -13163.0000 876680 1.02% N

markshare1 4 0.0000 0.02 7.0000 9999999 100% N

markshare1 1 7 0.0000 0.02 0.0000 158715 0.34 Y

markshare2 6 0.0000 0.00 17.0000 9999999 100% N

continued on the next page

201

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

markshare2 1 12 0.0000 0.02 0.0000 7844144 22.10 Y

mas74 25 10583.2346 0.95 11801.1857 6708307 3.51% N

mas76 23 39010.8237 0.81 40005.0541 1159854 8.12 Y

misc03 0 1910.0000 0.00 3360.0000 603 0.01 Y

misc06 29 12846.2683 0.11 12851.0763 19 0.01 Y

misc07 0 1415.0000 0.05 2810.0000 37474 0.56 Y

mitre 979 115119.0000 5.75 115155.0000 1171 0.21 Y

mkc 410 -603.9839 15.89 -556.8700 432956 8.2% N

mod008 49 304.0000 0.80 307.0000 2142 0.06 Y

mod010 4 6535.0000 0.64 6548.0000 18 0.01 Y

mod011 823 -56535258.9904 4.05 -54558535.0142 3228 1.14 Y

modglob 188 20725154.3888 0.38 20740508.0863 668 0.02 Y

momentum1 747 96249.2890 46.41 - 53 - N

momentum2 1056 10716.6411 117.70 - 276 - N

momentum3 2533 92031.1707 3117.00 n.a. 0 n.a. N

msc98-ip 523 19699455.1058 13.70 - 3664 - N

multiA 65 3557.1627 0.05 3774.7600 75797 1.58 Y

multiB 73 3627.8472 0.06 3987.8600 2064174 8.57% N

multiC 57 1490.9417 0.08 2088.4200 2444970 24.68% N

multiD 96 3893.9351 0.33 6349.6200 1558295 37.2% N

multiE 231 2294.8776 0.53 2710.5925 2519888 11.83% N

multiF 191 2065.1180 0.47 2428.9300 2999632 12.83% N

mzzv11 179 -22643.0000 74.89 -21648.0000 47937 2.34% N

mzzv42z 75 -21450.0000 56.03 -19308.0000 8861 9.03% N

neos1 87 7.0000 0.28 19.0000 1893208 57.89% N

neos10 81 -1182.0000 214.31 -1135.0000 32 3.67 Y

neos11 10 6.0000 0.75 9.0000 30044 16.48 Y

neos12 6 9.4116 0.75 13.0000 11810 16.22% N

neos13 4 -126.1784 37.56 -84.2047 132764 49.85% N

neos2 93 -3965.8024 12.67 454.8647 155362 13.68 Y

neos20 323 -474.8940 0.84 -434.0000 42015 1.78 Y

neos21 0 3.0000 0.05 7.0000 30130 2.40 Y

neos22 198 778990.4286 1.36 779715.0000 0 0.02 Y

neos23 201 62.2901 1.47 137.0000 3073022 46.5% N

neos3 174 -5694.4573 16.34 369.6544 694536 408.11% N

neos4 0 -49463016984.6474 2.50 -48603440750.5898 1305 0.62 Y

neos5 0 13.0000 0.02 15.0000 7943964 3.33% N

neos6 4 83.0000 3.42 83.0000 4721 7.35 Y

neos648910 347 16.0000 0.47 32.0000 365736 8.49 Y

neos671048 3 2999.0000 2.41 5001.0000 873 0.43 Y

neos7 307 686826.5159 1.53 721934.0000 714502 59.89 Y

neos8 23 -3725.0000 177.62 -3719.0000 0 2.98 Y

neos9 35 794.0000 13.12 798.0000 12903 0.5% N

net12 450 78.0000 14.06 - 55686 - N

noswot 10 -43.0000 0.03 -41.0000 9999999 4.88% N

nsrand-ipx 255 50185.0000 1.83 53600.0000 126193 6.32% N

nug08 0 204.0000 0.22 214.0000 151 0.10 Y

nw04 0 16311.0000 1.02 16862.0000 1638 1.12 Y

opt1217 31 -19.3221 0.08 -16.0000 5235754 20.76% N

p0033 22 2942.0000 0.11 3089.0000 75 0.01 Y

p0201 8 7125.0000 0.41 7615.0000 1099 0.02 Y

p0282 102 255636.0000 0.20 258411.0000 48 0.01 Y

p0548 147 8688.0000 0.03 8691.0000 0 0.01 Y

p2756 260 3120.0000 2.12 3124.0000 316 0.08 Y

pk1 0 0.0000 0.02 11.0000 529908 1.79 Y

pp08a 215 7210.6498 0.45 7350.0000 942 0.03 Y

pp08aCUTS 147 7205.6813 0.53 7350.0000 1028 0.03 Y

prod1 129 -81.3771 0.62 -56.0000 1442337 20.30 Y

prod2 128 -85.2228 2.86 -61.0000 2720687 18.39% N

protfold 0 -41.0000 0.22 - 5 - N

qap10 0 333.0000 0.62 358.0000 43 6.98% N

qiu 0 -931.6389 0.05 -132.8731 15640 1.34 Y

qnet1 76 15438.7245 0.45 16029.6927 298 0.03 Y

qnet1 o 90 15624.5847 0.50 16030.9927 230 0.02 Y

ran10x26 179 4095.8019 1.02 4270.0000 28218 0.69 Y

ran12x21 199 3460.4177 6.20 3664.0000 74456 2.18 Y

ran13x13 188 3062.9010 0.86 3252.0000 54276 1.05 Y

rd-rplusc-21 606 100.0000 1308.59 - 25382 - N

rentacar 30 29274325.2003 0.20 30356760.9841 25 0.03 Y

continued on the next page

202

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

rgn 101 79.9392 0.17 82.2000 1304 0.02 Y

rgna 0 48.8000 0.00 82.2000 2504 0.01 Y

roll3000 341 11486.5552 4.83 13428.0000 527802 11.84% N

rout 29 982.1729 0.14 1077.5600 599083 9.59 Y

set1ch 424 54516.2870 0.56 54537.7500 106 0.02 Y

seymour 8 406.0000 1.42 434.0000 74405 6.22% N

seymour1 16 405.4473 4.58 410.7637 25409 17.98 Y

sp97ar 282 653445845.1576 5.61 673207925.0400 62607 2.87% N

stein27 7 13.0000 0.02 18.0000 4240 0.01 Y

stein45 0 22.0000 0.00 30.0000 62605 0.34 Y

stp3d 6 481.9510 211.38 - 12 - N

swath 66 379.4261 688.06 507.0972 372678 25.11% N

swath2 24 334.4969 1.53 385.1997 444677 41.53 Y

swath3 24 334.4969 1.70 399.6350 637990 11.39% N

t1717 0 134532.0000 7.62 - 2505 - N

timtab1 264 270007.9118 0.66 780218.0000 3750603 56.77% N

timtab2 408 384296.5910 1.33 1239779.0000 2405659 65.42% N

tr12-15 376 73533.1984 0.80 74634.0000 76847 1.59 Y

tr12-30 855 129026.2631 2.39 130600.0000 1291701 0.68% N

tr24-15 745 135305.5117 2.36 136509.0000 1169048 46.59 Y

tr24-30 984 238708.3737 1.06 295201.0000 1223357 18.94% N

tr6-15 223 36966.9071 0.28 37721.0000 8118 0.10 Y

tr6-30 366 60708.9797 0.70 61746.0000 3777388 0.19% N

vpm1 62 20.0000 0.05 20.0000 3 0.01 Y

vpm2 157 13.0128 1.81 13.7500 15030 0.21 Y

vpm2a 135 13.1195 0.44 13.7500 7914 0.09 Y

vpm5 129 3002.7242 0.86 3003.3000 1491 0.11 Y

Table D.27.: Results for a 1-hour test with the cMIR cut and the cPMC generator. For
the instance momentum3, MOPS returned an invalid result.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.27 924.0000 235 0.04 Y

30 05 100 0 9.0000 13.84 14.0000 180392 35.71% N

30 95 100 1 3.0000 16.99 3.0000 3897 7.29 Y

30 95 98 0 12.0000 12.21 13.0000 85198 7.69% N

a1c1s1 738 5883.2336 4.03 11910.9242 733784 45.76% N

acc0 7 0.0000 0.41 0.0000 236 0.06 Y

acc1 14 0.0000 0.95 0.0000 1076 0.33 Y

acc2 9 0.0000 0.78 0.0000 4454 1.97 Y

acc3 0 0.0000 0.31 0.0000 4630 7.36 Y

acc4 0 0.0000 0.38 - 22201 - N

acc5 0 0.0000 1.33 0.0000 3664 25.06 Y

aflow30a 208 1070.0000 2.66 1158.0000 40885 2.39 Y

aflow40b 344 1072.0000 30.86 1398.0000 70496 22.68% N

air03 2 338864.2500 0.12 340160.0000 0 0.01 Y

air04 0 55536.0000 2.39 56138.0000 5473 2.45 Y

air05 0 25878.0000 0.89 26374.0000 16466 3.60 Y

arki001 76 7579849.3344 24.08 7581315.6319 1074265 0.02% N

atlanta-ip 924 81.3039 58.72 - 3416 - N

b4-10 176 13310.6454 1.95 14050.8397 37731 1.45 Y

b4-10b 105 13905.5206 4.28 14050.8397 510 0.12 Y

b4-12 279 14706.7246 1.97 16103.8837 691107 30.79 Y

b4-12b 108 15724.1846 9.42 16103.8837 39391 5.26 Y

b4-20b 100 22133.1330 11.38 23369.3847 90621 1.89% N

BASF6-10 241 20962.7272 3.25 21267.5689 224330 38.74 Y

BASF6-5 233 11898.3140 2.12 12071.5772 68880 8.33 Y

bc1 34 2.5983 118.42 3.3384 10877 2.62% N

bell3a 11 873172.1171 0.05 878430.3160 42135 0.12 Y

bell5 22 8918967.5473 0.06 8966406.4915 3278174 9.68 Y

bienst1 110 14.1033 0.76 46.7500 26664 1.72 Y

bienst2 127 14.9318 0.73 54.6000 257216 14.76 Y

binkar10 1 95 6702.1432 0.67 6742.2000 343205 9.84 Y

blend2 33 7.0991 0.64 7.5990 2902 0.04 Y

cap6000 7 -2451535.0000 0.16 -2451377.0000 37770 4.39 Y

ches1 60 73.7992 0.11 74.3405 0 0.01 Y

ches2 38 -2891.6578 0.11 -2889.6909 5758071 0.07% N

continued on the next page

203

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

ches3 44 -1303896.9248 0.09 -1303896.9248 9 0.01 Y

ches4 36 -647403.5167 0.03 -647403.5167 4 0.01 Y

ches5 74 -7369.1212 0.05 -7342.8188 2096 0.03 Y

clorox 197 13579.2260 1.47 21217.8144 120 0.05 Y

Con-12 141 4670.3883 0.17 7593.3400 157020 2.75 Y

con-24 243 17972.6666 0.56 25804.9600 2016655 0.89% N

dano3mip 382 576.5330 74.85 757.8400 4107 23.91% N

dano3 3 47 576.2436 7.88 576.3964 9 1.55 Y

dano3 4 65 576.2535 2.24 576.4352 26 1.78 Y

dano3 5 131 576.2953 7.48 576.9452 260 5.33 Y

danoint 129 62.7159 0.78 65.6667 472242 4.02% N

dcmulti 153 187342.6064 0.50 188182.0000 184 0.01 Y

disktom 0 -5000.0000 0.47 - 135946 - N

dlsp 25 370.7681 0.41 613.0000 107254 2.19 Y

ds 0 57.2346 5.39 - 2212 - N

dsbmip 80 -305.1982 0.16 -305.1982 36 0.02 Y

egout 23 567.6318 0.02 568.1007 0 0.01 Y

enigma 2 0.0000 0.00 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.41 176.0000 12490 1.7% N

fiber 84 388306.7843 0.69 405935.1800 164 0.01 Y

fixnet6 196 3753.1593 3.67 3983.0000 132 0.08 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0.01 Y

gen 44 112312.9529 0.09 112313.3627 0 0.01 Y

gesa2 187 25764287.6762 0.67 25779856.3717 3642 0.11 Y

gesa2 o 145 25611988.8505 0.42 25779856.3717 240493 5.16 Y

gesa3 146 27952285.0004 0.08 27991042.6484 236 0.02 Y

gesa3 o 158 27939906.2518 0.12 27991042.6484 167 0.02 Y

glass4 63 800002400.0000 0.09 1675016325.0000 4983728 52.24% N

gt2 31 20726.0000 0.01 21166.0000 193 0.01 Y

harp2 103 -74231352.0000 2.36 -73899798.0000 1967668 31.49 Y

khb05250 112 106901882.2620 0.14 106940226.0000 16 0.01 Y

l152lav 0 4657.0000 0.16 4722.0000 10637 0.22 Y

liu 851 560.0000 0.61 1256.0000 481425 55.41% N

lrn 788 44405303.0832 12.00 44479255.1273 340398 0.02% N

lseu 34 1034.0000 0.14 1120.0000 785 0.01 Y

m20-75-1 512 -51216.6831 27.49 -49213.0000 272358 3.08% N

m20-75-2 546 -52018.8768 48.21 -50322.0000 109119 24.74 Y

m20-75-3 659 -53268.2748 68.26 -51158.0000 269097 1.88% N

m20-75-4 420 -54700.0284 9.84 -52752.0000 315228 57.37 Y

m20-75-5 504 -53080.0171 29.08 -51349.0000 94176 20.59 Y

manna81 0 -13297.0000 0.41 -13163.0000 876256 1.02% N

markshare1 3 0.0000 0.22 8.0000 9999999 100% N

markshare1 1 7 0.0000 0.02 0.0000 274158 0.55 Y

markshare2 6 0.0000 0.01 17.0000 9999999 100% N

markshare2 1 13 0.0000 0.01 0.0000 6697817 19.69 Y

mas74 24 10579.8173 0.88 11801.1857 6791493 1.46% N

mas76 23 39010.8237 0.83 40005.0541 1159854 8.13 Y

misc03 0 1910.0000 0.02 3360.0000 603 0.01 Y

misc06 17 12844.1486 0.08 12850.8607 184 0.02 Y

misc07 0 1415.0000 0.05 2810.0000 37474 0.56 Y

mitre 970 115107.0000 5.81 115155.0000 2488 0.35 Y

mkc 346 -605.9688 8.16 -511.7520 596643 18.2% N

mod008 48 304.0000 0.69 307.0000 3398 0.07 Y

mod010 5 6535.0000 0.51 6548.0000 18 0.01 Y

mod011 772 -56633263.7842 4.38 -54558535.0142 2538 0.87 Y

modglob 176 20713903.3328 0.36 20740508.0863 234 0.01 Y

momentum1 507 96245.4753 52.94 - 439 - N

momentum2 762 10698.2912 112.59 - 318 - N

momentum3 3566 97254.0679 1962.64 - 22 - N

msc98-ip 516 19702877.0058 16.38 - 3636 - N

multiA 29 3512.7778 0.03 3774.7600 502086 8.38 Y

multiB 77 3627.4746 1.25 4059.7764 2172055 10.16% N

multiC 81 1504.9114 0.52 2088.4200 2213356 24.16% N

multiD 64 3813.8779 0.19 6117.4027 1715906 37.07% N

multiE 176 2287.9500 0.53 2718.2050 3107198 12.03% N

multiF 97 2054.0180 0.14 2429.4000 4373249 13.63% N

mzzv11 152 -22655.0000 47.75 -21648.0000 77894 1.98% N

mzzv42z 75 -21450.0000 56.19 -19308.0000 8812 9.03% N

neos1 125 7.0000 0.45 19.0000 1886782 57.89% N

continued on the next page

204

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

neos10 81 -1182.0000 216.14 -1135.0000 40 3.71 Y

neos11 3 6.0000 0.69 9.0000 32624 17.82 Y

neos12 7 9.4116 0.64 13.0000 13196 15.89% N

neos13 6 -126.1784 241.03 -95.0012 129381 23.59% N

neos2 74 -4093.7435 12.28 454.8647 134309 9.46 Y

neos20 357 -474.8940 1.17 -434.0000 24823 1.11 Y

neos21 0 3.0000 0.06 7.0000 30130 2.41 Y

neos22 472 777191.4286 0.47 779715.0000 25974 1.58 Y

neos23 105 58.7023 0.80 137.0000 3489035 37.23% N

neos3 75 -5781.7582 14.95 369.3519 827125 483.34% N

neos4 0 -49463016984.6474 2.52 -48603440750.5898 1305 0.62 Y

neos5 0 13.0000 0.02 15.0000 7905334 3.33% N

neos6 4 83.0000 3.33 83.0000 4721 7.38 Y

neos648910 367 16.0000 1.00 32.0000 90509 2.42 Y

neos671048 13 2999.0000 4.95 5001.0000 7246 5.47 Y

neos7 161 622879.9907 1.47 721934.0000 1054335 5.94% N

neos8 23 -3725.0000 178.83 -3719.0000 0 3.00 Y

neos9 35 794.0000 13.92 798.0000 12846 0.5% N

net12 452 78.0000 14.51 - 20860 - N

noswot 15 -43.0000 0.02 -41.0000 8411531 4.88% N

nsrand-ipx 305 50187.0000 0.91 51680.0000 165044 2.85% N

nug08 0 204.0000 0.23 214.0000 151 0.10 Y

nw04 0 16311.0000 1.02 16862.0000 1638 1.13 Y

opt1217 27 -19.4900 0.08 -16.0000 4761545 21.81% N

p0033 22 2942.0000 0.06 3089.0000 85 0.01 Y

p0201 8 7125.0000 0.42 7615.0000 1099 0.02 Y

p0282 109 255708.0000 0.22 258411.0000 713 0.01 Y

p0548 170 8691.0000 0.09 8691.0000 0 0.01 Y

p2756 250 3121.0000 0.97 3124.0000 422 0.07 Y

pk1 0 0.0000 0.00 11.0000 529908 1.79 Y

pp08a 205 7164.5789 0.47 7350.0000 1396 0.03 Y

pp08aCUTS 105 7188.4437 0.19 7350.0000 1250 0.02 Y

prod1 137 -81.3751 0.88 -56.0000 3974094 11.27% N

prod2 130 -85.2228 2.98 -62.0000 2601440 9.84% N

protfold 0 -41.0000 0.22 - 5 - N

qap10 0 333.0000 0.61 358.0000 43 6.98% N

qiu 0 -931.6389 0.06 -132.8731 15640 1.35 Y

qnet1 72 15274.7876 0.48 16029.6927 280 0.03 Y

qnet1 o 90 15624.5847 0.51 16030.9927 230 0.02 Y

ran10x26 234 4100.0864 0.91 4270.0000 26752 0.89 Y

ran12x21 244 3453.9374 1.41 3664.0000 91567 2.63 Y

ran13x13 214 3040.6160 0.95 3252.0000 41938 0.87 Y

rd-rplusc-21 219 100.0000 363.95 - 1172 - N

rentacar 47 29232562.5002 0.22 30356760.9841 25 0.06 Y

rgn 120 76.7749 0.33 82.2000 1496 0.03 Y

rgna 0 48.8000 0.00 82.2000 2504 0.01 Y

roll3000 398 12174.3206 5.41 13347.0000 497942 8.79% N

rout 36 982.1729 1.11 1077.5600 584574 9.57 Y

set1ch 362 54523.2518 0.42 54537.7500 47 0.02 Y

seymour 8 406.0000 1.52 434.0000 74178 6.22% N

seymour1 4 404.6459 1.75 410.7919 47923 33.30 Y

sp97ar 253 653445845.1576 5.52 672355872.3000 67765 2.72% N

stein27 7 13.0000 0.02 18.0000 4240 0.01 Y

stein45 0 22.0000 0.01 30.0000 62605 0.34 Y

stp3d 6 481.9510 214.52 - 12 - N

swath 33 335.1868 33.30 - 262616 - N

swath2 19 334.4969 1.53 385.1997 421028 38.14 Y

swath3 19 334.4969 1.70 399.8501 656488 12.35% N

t1717 0 134532.0000 7.73 - 2493 - N

timtab1 279 272473.6428 0.67 799106.0000 3903111 55.21% N

timtab2 468 372453.0933 2.30 - 2363791 - N

tr12-15 353 73846.0438 0.81 74634.0000 14792 0.31 Y

tr12-30 818 130150.1161 2.39 130596.0000 1337346 50.40 Y

tr24-15 673 136179.4765 2.59 136509.0000 36830 1.33 Y

tr24-30 984 238527.8255 1.19 294061.0000 1254242 18.88% N

tr6-15 195 37217.7194 0.14 37721.0000 5112 0.06 Y

tr6-30 359 60934.6510 0.97 61746.0000 2878575 44.43 Y

vpm1 36 20.0000 0.03 20.0000 0 0.01 Y

vpm2 141 12.9249 0.38 13.7500 25148 0.26 Y

continued on the next page

205

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

vpm2a 137 13.0685 0.67 13.7500 10248 0.13 Y

vpm5 113 3002.6463 6.72 3003.2000 89 0.12 Y

Table D.28.: Results for a 1-hour test with the SOTA configuration.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.26 924.0000 235 0.04 Y

30 05 100 0 9.0000 14.06 14.0000 180475 35.71% N

30 95 100 1 3.0000 16.97 3.0000 3897 7.27 Y

30 95 98 0 12.0000 12.16 13.0000 85289 7.69% N

a1c1s1 785 6143.6765 3.38 11684.7273 597048 39.86% N

acc0 7 0.0000 0.39 0.0000 236 0.06 Y

acc1 14 0.0000 0.94 0.0000 1076 0.33 Y

acc2 9 0.0000 0.70 0.0000 4454 1.97 Y

acc3 0 0.0000 0.31 0.0000 4630 7.35 Y

acc4 0 0.0000 0.33 - 22212 - N

acc5 0 0.0000 1.27 0.0000 3664 25.04 Y

aflow30a 210 1079.0000 1.31 1158.0000 25519 1.34 Y

aflow40b 387 1085.0000 14.31 1448.0000 63223 24.31% N

air03 2 338864.2500 0.12 340160.0000 0 0.01 Y

air04 0 55536.0000 2.39 56138.0000 5473 2.45 Y

air05 0 25878.0000 0.86 26374.0000 16466 3.59 Y

arki001 140 7579880.1818 14.91 - 1189 - N

atlanta-ip 969 81.3034 61.00 - 372 - N

b4-10 202 13346.1515 1.52 - 799639 - N

b4-10b 136 13979.8264 4.00 14050.8397 368 0.09 Y

b4-12 290 14756.7958 1.72 16103.8837 1383965 0.46% N

b4-12b 212 15854.5963 11.17 16103.8837 2282 0.55 Y

b4-20b 335 22466.6166 29.59 - 54547 - N

BASF6-10 217 20963.1859 2.61 21267.5689 59017 8.65 Y

BASF6-5 206 11898.2924 1.47 12071.5772 25296 3.19 Y

bc1 67 2.5955 114.36 3.3663 10393 3.31% N

bell3a 16 873196.5787 0.08 878430.3160 45716 0.13 Y

bell5 29 8922311.1807 0.06 8966406.4915 2145218 6.39 Y

bienst1 100 14.0824 0.62 46.7500 39019 2.31 Y

bienst2 122 14.9288 0.62 54.6000 251493 12.31 Y

binkar10 1 95 6702.1432 0.67 6742.2000 318139 9.21 Y

blend2 37 7.0952 0.59 7.5990 2997 0.04 Y

cap6000 7 -2451535.0000 0.16 -2451377.0000 37770 4.39 Y

ches1 102 73.8056 0.55 74.3405 20 0.01 Y

ches2 66 -2891.6536 0.17 -2889.5569 2758190 32.56 Y

ches3 28 -1303896.9248 0.03 -1303896.9248 13 0 Y

ches4 32 -647403.5167 0.02 -647403.5167 13 0 Y

ches5 78 -7370.5310 0.09 -7342.8188 7948 0.14 Y

clorox 165 17303.6051 0.30 21218.8920 212 0.02 Y

Con-12 197 4588.7899 0.53 7593.1000 184070 3.43 Y

con-24 291 18036.2928 0.42 25804.9600 1971078 1.72% N

dano3mip 540 576.5720 51.55 758.0000 5952 23.92% N

dano3 3 32 576.2384 0.88 576.3964 9 1.77 Y

dano3 4 69 576.2556 3.11 576.4352 17 2.12 Y

dano3 5 135 576.3037 10.84 576.9249 200 4.81 Y

danoint 113 62.6996 0.66 65.6667 507242 4.39% N

dcmulti 146 187470.6083 0.44 188182.0000 271 0.01 Y

disktom 0 -5000.0000 0.47 - 136143 - N

dlsp 31 375.3100 0.42 613.0000 103209 2.19 Y

ds 0 57.2346 5.56 - 2218 - N

dsbmip 101 -305.1982 0.11 -305.1982 45 0.02 Y

egout 22 567.9932 0.03 568.1007 0 0 Y

enigma 2 0.0000 0.00 0.0000 21176 0.04 Y

fast0507 2 173.0000 5.41 176.0000 12490 1.7% N

fiber 84 388306.7843 0.70 405935.1800 164 0.02 Y

fixnet6 206 3807.4818 1.78 3983.0000 128 0.05 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0 Y

gen 44 112312.9529 0.09 112313.3627 0 0 Y

gesa2 165 25771293.5544 0.62 25779856.3717 340 0.02 Y

gesa2 o 209 25775432.4183 0.69 25779856.3717 230 0.02 Y

gesa3 192 27973351.6108 0.95 27991042.6484 48 0.03 Y

continued on the next page

206

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

gesa3 o 234 27963406.7044 0.91 27991042.6484 93 0.03 Y

glass4 63 800002400.0000 0.11 1675016325.0000 4985255 52.24% N

gt2 31 20726.0000 0.02 21166.0000 193 0 Y

harp2 103 -74231352.0000 2.31 -73899798.0000 1967668 31.51 Y

khb05250 124 106915722.2610 0.58 106940226.0000 22 0.02 Y

l152lav 0 4657.0000 0.16 4722.0000 10637 0.22 Y

liu 834 560.0000 1.14 1360.0000 555019 58.82% N

lrn 918 44545173.2447 11.53 44688241.3258 297668 0.05% N

lseu 34 1034.0000 0.14 1120.0000 785 0 Y

m20-75-1 389 -51161.8537 6.31 -49113.0000 300838 3.35% N

m20-75-2 605 -52005.4722 62.11 -50322.0000 68392 16.76 Y

m20-75-3 653 -53238.0531 118.67 -51158.0000 262537 2.79% N

m20-75-4 436 -54665.1474 67.38 -52752.0000 307130 0.8% N

m20-75-5 523 -53017.6993 16.14 -51349.0000 163488 33.94 Y

manna81 0 -13297.0000 0.41 -13163.0000 883667 1.02% N

markshare1 3 0.0000 0.06 8.0000 9999999 100% N

markshare1 1 7 0.0000 0.01 0.0000 823388 1.71 Y

markshare2 6 0.0000 0.01 17.0000 9999999 100% N

markshare2 1 11 0.0000 0.06 0.0000 7287843 19.98 Y

mas74 25 10583.2346 0.91 11801.1857 6709642 3.51% N

mas76 23 39010.8237 0.83 40005.0541 1159854 8.13 Y

misc03 0 1910.0000 0.02 3360.0000 603 0 Y

misc06 29 12846.2683 0.11 12851.0763 19 0.01 Y

misc07 0 1415.0000 0.05 2810.0000 37474 0.56 Y

mitre 970 115107.0000 5.88 115155.0000 2488 0.35 Y

mkc 346 -605.9688 8.27 -511.7520 598235 18.2% N

mod008 48 304.0000 0.70 307.0000 3398 0.07 Y

mod010 5 6535.0000 0.52 6548.0000 18 0.01 Y

mod011 823 -56654368.7838 4.41 -54558535.0142 4280 1.43 Y

modglob 166 20728790.8264 0.27 20740508.0863 64 0.01 Y

momentum1 690 96249.1959 46.55 - 98 - N

momentum2 1158 10722.4703 100.28 - 76 - N

momentum3 4558 94945.1449 3442.72 - 1 - N

msc98-ip 470 19695288.0058 17.53 - 2794 - N

multiA 73 3558.1537 0.05 3774.7600 332012 6.86 Y

multiB 112 3629.2792 1.77 3995.5200 1759362 8.83% N

multiC 56 1491.5315 0.28 2088.4200 2360085 25.16% N

multiD 77 3832.1012 0.08 6161.7000 1675797 36.55% N

multiE 255 2298.9004 0.51 2710.5925 2359011 11.89% N

multiF 205 2058.5601 0.44 2428.9300 2865979 13.82% N

mzzv11 103 -22689.0000 55.28 -19040.0000 45645 17.66% N

mzzv42z 75 -21450.0000 56.30 -19308.0000 8873 9.03% N

neos1 125 7.0000 0.44 19.0000 1892071 57.89% N

neos10 81 -1182.0000 214.66 -1135.0000 40 3.69 Y

neos11 10 6.0000 0.72 9.0000 30044 16.5 Y

neos12 6 9.4116 0.73 13.0000 11801 16.22% N

neos13 6 -126.1784 42.47 -87.0062 137894 45.02% N

neos2 110 -3986.4225 11.42 454.8647 132551 11.31 Y

neos20 357 -474.8940 0.94 -434.0000 24823 1.1 Y

neos21 0 3.0000 0.06 7.0000 30130 2.41 Y

neos22 237 779485.8333 0.36 779715.0000 48 0.03 Y

neos23 136 59.3098 0.95 137.0000 3301133 38.69% N

neos3 174 -5674.9374 15.78 368.8428 788559 304.2% N

neos4 0 -49463016984.6474 2.50 -48603440750.5898 1305 0.62 Y

neos5 0 13.0000 0.02 15.0000 7936097 3.33% N

neos6 4 83.0000 3.31 83.0000 4721 7.35 Y

neos648910 364 16.0000 0.69 32.0000 2056753 50% N

neos671048 4 2999.0000 2.74 5001.0000 15868 13.59 Y

neos7 291 688625.5509 1.52 721934.0000 694868 54.71 Y

neos8 23 -3725.0000 178.80 -3719.0000 0 3 Y

neos9 35 794.0000 13.53 798.0000 12993 0.5% N

net12 467 78.0000 14.80 - 40820 - N

noswot 14 -43.0000 0.03 -40.0000 9624835 7.5% N

nsrand-ipx 305 50187.0000 0.92 51680.0000 165515 2.85% N

nug08 0 204.0000 0.23 214.0000 151 0.1 Y

nw04 0 16311.0000 1.02 16862.0000 1638 1.13 Y

opt1217 31 -19.3221 0.08 -16.0000 5035540 20.76% N

p0033 22 2942.0000 0.42 3089.0000 85 0.02 Y

p0201 8 7125.0000 0.39 7615.0000 1099 0.02 Y

continued on the next page

207

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

p0282 109 255708.0000 0.25 258411.0000 713 0.01 Y

p0548 170 8691.0000 0.06 8691.0000 0 0.01 Y

p2756 250 3121.0000 0.98 3124.0000 422 0.06 Y

pk1 0 0.0000 0.00 11.0000 529908 1.78 Y

pp08a 227 7207.0073 0.39 7350.0000 910 0.02 Y

pp08aCUTS 151 7219.4614 0.41 7350.0000 1250 0.03 Y

prod1 137 -81.3751 0.83 -56.0000 3982789 11.27% N

prod2 130 -85.2228 2.94 -62.0000 2608981 9.84% N

protfold 0 -41.0000 0.22 - 5 - N

qap10 0 333.0000 0.59 358.0000 43 6.98% N

qiu 0 -931.6389 0.06 -132.8731 15640 1.34 Y

qnet1 76 15438.7245 0.47 16029.6927 298 0.03 Y

qnet1 o 90 15624.5847 0.50 16030.9927 230 0.02 Y

ran10x26 218 4094.8122 1.01 4270.0000 40140 1.15 Y

ran12x21 264 3462.6667 1.75 3664.0000 50435 1.64 Y

ran13x13 211 3065.7297 0.77 3252.0000 34533 0.75 Y

rd-rplusc-21 314 100.0000 603.44 - 21878 - N

rentacar 24 29274325.2003 0.58 30356760.9841 32 0.04 Y

rgn 110 81.8363 0.25 82.2000 354 0.01 Y

rgna 0 48.8000 0.00 82.2000 2504 0 Y

roll3000 377 11512.1280 6.02 13240.0000 478480 11.44% N

rout 39 982.1729 0.58 1077.5600 824442 16.04 Y

set1ch 439 54476.1056 0.31 54537.7500 128 0.02 Y

seymour 8 406.0000 1.53 434.0000 74222 6.22% N

seymour1 16 405.4473 4.31 410.7637 25409 18.05 Y

sp97ar 253 653445845.1576 5.34 672355872.3000 67795 2.72% N

stein27 7 13.0000 0.01 18.0000 4240 0.01 Y

stein45 0 22.0000 0.02 30.0000 62605 0.34 Y

stp3d 6 481.9510 214.42 - 12 - N

swath 66 379.2683 305.02 494.7899 452319 23.33% N

swath2 19 334.4969 1.55 385.1997 421028 38.1 Y

swath3 19 334.4969 1.70 399.8501 657364 12.35% N

t1717 0 134532.0000 7.92 - 2497 - N

timtab1 270 255646.2133 0.55 792722.0000 4033675 65.78% N

timtab2 401 377197.6991 1.42 - 2642857 - N

tr12-15 374 73493.5888 0.70 74634.0000 48741 1.06 Y

tr12-30 874 129037.6381 2.09 130596.0000 1284495 0.55% N

tr24-15 795 135210.2040 2.17 136509.0000 1405248 0.26% N

tr24-30 984 237510.7790 1.03 295262.0000 1224750 19.31% N

tr6-15 224 37185.7433 0.22 37721.0000 5582 0.07 Y

tr6-30 382 60745.2225 0.44 61746.0000 3675519 0.21% N

vpm1 41 20.0000 0.03 20.0000 0 0 Y

vpm2 170 12.9692 0.30 13.7500 20559 0.23 Y

vpm2a 129 13.0633 0.25 13.7500 9948 0.1 Y

vpm5 134 3002.7436 0.81 3003.3000 1165 0.09 Y

Table D.29.: Results for a 1-hour test with the improved SOTA configuration but without
flow path cuts.

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

10teams 4 924.0000 0.27 924.0000 820 0.11 Y

30 05 100 0 9.0000 13.55 14.0000 180834 35.71% N

30 95 100 1 3.0000 16.80 3.0000 42589 41.22 Y

30 95 98 0 12.0000 11.92 13.0000 85610 7.69% N

a1c1s1 756 5986.2630 1.80 11931.4245 730741 47.53% N

acc0 9 0.0000 0.33 0.0000 298 0.06 Y

acc1 6 0.0000 0.45 0.0000 209 0.08 Y

acc2 11 0.0000 0.81 0.0000 1172 0.56 Y

acc3 0 0.0000 0.24 0.0000 4630 7.34 Y

acc4 0 0.0000 0.25 - 22238 - N

acc5 0 0.0000 1.17 0.0000 3664 24.97 Y

aflow30a 213 1061.0000 1.02 1158.0000 58210 3.07 Y

aflow40b 279 1072.0000 10.70 1243.0000 81424 10.38% N

air03 2 338864.2500 0.12 340160.0000 0 0.01 Y

air04 0 55536.0000 2.36 56138.0000 5473 2.45 Y

air05 0 25878.0000 0.84 26374.0000 16466 3.59 Y

arki001 148 7579800.4059 5.26 - 290 - N

continued on the next page

208

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

atlanta-ip 792 81.2902 43.17 - 208 - N

b4-10 140 13262.8578 0.69 14050.8397 7525 0.26 Y

b4-10b 68 13912.3120 1.75 14050.8397 769 0.09 Y

b4-12 211 14594.6857 0.91 16103.8837 1345886 3.92% N

b4-12b 94 15702.9874 2.16 16103.8837 11057 1.50 Y

b4-20b 79 22116.4441 7.78 24357.9852 90490 7.43% N

BASF6-10 179 20958.3110 3.62 21268.0456 410554 0.08% N

BASF6-5 177 11892.3102 2.42 12071.5772 32508 4.67 Y

bc1 34 2.5906 46.56 3.3665 10805 2.83% N

bell3a 12 873351.5153 0.02 878430.3160 40577 0.12 Y

bell5 24 8918901.7504 0.03 8966406.4915 103482 0.26 Y

bienst1 98 14.0719 0.38 46.7500 30310 2.20 Y

bienst2 122 14.9408 0.36 54.6000 203634 9.98 Y

binkar10 1 47 6666.5748 0.03 6742.8000 2787816 0.6% N

blend2 41 7.1597 0.33 7.5990 1985 0.03 Y

cap6000 7 -2451535.0000 0.09 -2451377.0000 37770 4.38 Y

ches1 30 72.9641 0.05 74.3405 18 0.01 Y

ches2 37 -2891.6621 0.08 -2889.6786 5290334 0.07% N

ches3 43 -1303896.9248 0.03 -1303896.9248 9 0.01 Y

ches4 35 -647403.5167 0.03 -647403.5167 9 0.01 Y

ches5 96 -7371.6793 0.09 -7342.8188 2423 0.04 Y

clorox 235 13579.7651 0.38 21217.8144 186 0.02 Y

Con-12 151 3936.7016 0.09 7593.0700 684498 9.10 Y

con-24 228 15864.1531 0.20 25839.0200 2286701 5.25% N

dano3mip 21 576.2906 41.23 801.5556 6553 28.09% N

dano3 3 4 576.2325 3.03 576.3964 9 1.38 Y

dano3 4 6 576.2326 0.78 576.4352 26 1.51 Y

dano3 5 7 576.2327 0.88 576.9249 230 4.22 Y

danoint 91 62.7003 0.41 65.6667 537584 3.96% N

dcmulti 120 186852.1775 0.17 188182.0000 284 0.01 Y

disktom 0 -5000.0000 0.45 - 136183 - N

dlsp 24 373.4638 0.17 613.0000 79257 1.52 Y

ds 0 57.2346 5.61 - 2222 - N

dsbmip 64 -305.1982 0.05 -305.1982 56 0.01 Y

egout 23 567.4596 0.02 568.1007 0 0.01 Y

enigma 2 0.0000 0.00 0.0000 22368 0.04 Y

fast0507 2 173.0000 5.38 177.0000 2889 2.26% N

fiber 107 383707.1861 0.36 405935.1800 260 0.01 Y

fixnet6 158 3661.2995 0.58 3983.0000 82 0.02 Y

flugpl 0 1167185.7256 0.00 1201500.0000 141 0.01 Y

gen 30 112312.5959 0.00 112313.3627 0 0.01 Y

gesa2 149 25670385.9950 0.36 25779856.3717 2616 0.06 Y

gesa2 o 165 25590653.7169 0.36 25779856.3717 456850 8.97 Y

gesa3 176 27960739.3395 0.25 27991042.6484 154 0.02 Y

gesa3 o 150 27938654.5304 0.36 27991042.6484 283 0.01 Y

glass4 430 800003554.9149 0.24 1750015220.0000 5299462 54.29% N

gt2 49 20050.0000 0.02 21166.0000 2002 0.01 Y

harp2 154 -74080227.0000 2.59 -73872399.4600 2081271 47.67 Y

khb05250 89 106786405.2814 0.31 106940226.0000 24 0.02 Y

l152lav 0 4657.0000 0.14 4722.0000 17798 0.38 Y

liu 781 560.0000 0.16 1362.0000 491640 58.88% N

lrn 1032 44420488.5128 8.23 44497156.9440 284047 0.07% N

lseu 27 1035.0000 0.14 1120.0000 856 0.01 Y

m20-75-1 395 -51188.3495 0.26 -49113.0000 310110 3.01% N

m20-75-2 494 -52096.9781 0.47 -50322.0000 144516 29.25 Y

m20-75-3 731 -53218.3058 4.62 -51158.0000 265760 2.76% N

m20-75-4 463 -54681.0879 2.12 -52752.0000 306050 1.36% N

m20-75-5 574 -53019.2220 1.14 -51349.0000 49692 10.90 Y

manna81 0 -13297.0000 0.25 -13163.0000 882747 1.02% N

markshare1 2 0.0000 0.36 5.0000 9999999 100% N

markshare1 1 9 0.0000 0.01 0.0000 819831 1.72 Y

markshare2 2 0.0000 0.00 21.0000 9999999 100% N

markshare2 1 11 0.0000 0.02 0.0019 9999999 100% N

mas74 23 10576.3415 0.23 11801.1857 6700750 1.24% N

mas76 24 39014.1735 0.24 40005.0541 737878 5.28 Y

misc03 0 1910.0000 0.00 3360.0000 603 0.01 Y

misc06 8 12844.1977 0.03 12850.8607 89 0.01 Y

misc07 0 1415.0000 0.05 2810.0000 37474 0.56 Y

mitre 943 115091.0000 4.73 115155.0000 7164 0.82 Y

continued on the next page

209

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

mkc 98 -611.8247 1.25 -542.6260 844386 12.55% N

mod008 23 298.0000 0.01 307.0000 5356 0.05 Y

mod010 3 6535.0000 0.48 6548.0000 18 0.01 Y

mod011 738 -57302072.4948 2.95 -54558535.0142 3174 0.97 Y

modglob 182 20707301.9002 0.14 20740508.0863 2748 0.03 Y

momentum1 480 93691.5982 32.16 - 478 - N

momentum2 678 10696.9097 66.69 - 196 - N

momentum3 2303 91961.4444 348.80 - 93 - N

msc98-ip 486 19699455.1058 17.48 - 3493 - N

multiA 29 3512.7778 0.02 3774.7600 338016 6.02 Y

multiB 53 3625.8934 0.08 4003.1800 2161513 9.05% N

multiC 43 1487.5455 0.06 2083.2867 2403226 25.63% N

multiD 96 3844.7799 0.33 6178.0000 1658401 37.18% N

multiE 175 2283.5447 0.16 2720.0150 3010863 14.02% N

multiF 171 2057.0161 0.17 2428.9300 3289482 12.68% N

mzzv11 115 -22685.0000 63.86 - 48854 - N

mzzv42z 53 -21450.0000 51.30 -19478.0000 3943 8.17% N

neos1 499 11.0000 1.38 19.0000 1212893 31.58% N

neos10 168 -1177.0000 259.86 -1135.0000 24 4.42 Y

neos11 3 6.0000 2.41 9.0000 31680 19.08 Y

neos12 2 9.4116 0.51 13.0000 10467 12.89% N

neos13 7 -126.1784 19.17 -89.0612 133548 41.68% N

neos2 73 -3922.4872 11.05 454.8697 123787 9.67 Y

neos20 146 -475.0000 0.27 -434.0000 293336 10.57 Y

neos21 0 3.0000 0.03 7.0000 30130 2.40 Y

neos22 472 777191.4286 0.17 779715.0000 27270 1.66 Y

neos23 62 58.7023 0.24 137.0000 3788197 44.53% N

neos3 83 -5721.9596 14.22 368.8428 616757 174.53% N

neos4 15 -49456451695.1585 5.62 -48603440750.5898 842 0.36 Y

neos5 0 13.0000 0.02 15.0000 7940849 3.33% N

neos6 4 83.0000 3.34 83.0000 4721 7.34 Y

neos648910 394 16.0000 0.30 32.0000 215300 4.99 Y

neos671048 0 2001.0000 1.76 5001.0000 36178 32.37 Y

neos7 181 631874.7339 0.73 721934.0000 1093507 4.75% N

neos8 22 -3725.0000 177.08 -3719.0000 0 2.97 Y

neos9 42 794.0000 12.19 798.0000 18535 0.5% N

net12 419 78.0000 10.81 - 20903 - N

noswot 13 -43.0000 0.03 -41.0000 9187538 4.88% N

nsrand-ipx 279 50230.0000 0.86 52640.0000 132061 4.58% N

nug08 0 204.0000 0.19 214.0000 151 0.10 Y

nw04 0 16311.0000 0.95 16862.0000 1638 1.13 Y

opt1217 13 -19.3076 0.01 -16.0000 5678297 20.67% N

p0033 16 2917.0000 0.08 3089.0000 61 0.02 Y

p0201 8 7125.0000 0.39 7615.0000 999 0.02 Y

p0282 96 255872.0000 0.12 258411.0000 51 0.01 Y

p0548 156 8670.0000 0.28 8691.0000 163 0.01 Y

p2756 281 3119.0000 2.25 3124.0000 381 0.08 Y

pk1 0 0.0000 0.02 11.0000 529908 1.78 Y

pp08a 217 7157.7096 0.17 7350.0000 2612 0.04 Y

pp08aCUTS 160 7195.3451 0.20 7350.0000 1576 0.03 Y

prod1 27 -81.5018 0.27 -56.0000 1760454 15.77 Y

prod2 45 -85.2768 1.06 -62.0000 3603022 5.31% N

protfold 0 -41.0000 0.16 - 5 - N

qap10 0 333.0000 0.53 358.0000 43 6.98% N

qiu 0 -931.6389 0.08 -132.8731 16190 1.21 Y

qnet1 87 15716.7009 0.52 16030.9927 114 0.03 Y

qnet1 o 83 15544.8601 0.28 16029.6927 257 0.02 Y

ran10x26 202 4063.4891 0.59 4270.0000 66827 2.12 Y

ran12x21 233 3442.4730 0.95 3664.0000 133578 4.09 Y

ran13x13 193 3047.1686 0.61 3252.0000 52535 1.35 Y

rd-rplusc-21 234 100.0000 33.03 - 24207 - N

rentacar 51 29203605.8781 0.11 30356760.9841 20 0.03 Y

rgn 194 78.0074 0.25 82.2000 1484 0.02 Y

rgna 0 48.8000 0.00 82.2000 2504 0.01 Y

roll3000 389 12018.4998 4.27 13241.0000 418915 8.88% N

rout 23 982.1729 0.17 1077.5600 624964 9.58 Y

set1ch 376 54521.6938 0.25 54537.7500 26 0.01 Y

seymour 10 406.0000 1.03 434.0000 65011 6.22% N

seymour1 3 404.5658 0.36 410.7637 64017 42.05 Y

continued on the next page

210

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?

sp97ar 265 653464964.5058 7.05 680733250.5000 53673 4.01% N

stein27 7 13.0000 0.00 18.0000 4240 0.01 Y

stein45 0 22.0000 0.00 30.0000 62605 0.34 Y

stp3d 6 481.9510 217.02 - 12 - N

swath 42 342.3662 60.06 522.6150 449859 33.4% N

swath2 21 334.6370 3.03 385.1997 429314 38.10 Y

swath3 13 334.4969 1.70 400.2202 617880 11.43% N

t1717 0 134532.0000 7.56 - 2513 - N

timtab1 275 278086.5075 0.22 788365.0000 3753418 58.04% N

timtab2 407 325584.7630 0.66 - 2828682 - N

tr12-15 409 73406.2583 0.42 74634.0000 220955 5.81 Y

tr12-30 891 129108.0395 1.19 130600.0000 980827 0.81% N

tr24-15 839 135199.3995 1.25 136538.0000 1148823 0.41% N

tr24-30 984 239198.4771 0.70 296045.0000 1156157 18.98% N

tr6-15 198 37018.4489 0.17 37721.0000 10044 0.11 Y

tr6-30 365 60675.8455 0.08 61746.0000 3246973 0.39% N

vpm1 60 20.0000 0.00 20.0000 0 0.01 Y

vpm2 128 12.9493 0.42 13.7500 30910 0.34 Y

vpm2a 87 12.9431 0.05 13.7500 32617 0.27 Y

vpm5 99 3002.6108 0.55 3003.2000 28 0.01 Y

Table D.30.: Results for a 1-hour test with the OLD configuration.

211

D. Test Results

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?
mopsMIB001 27 101861.4029 4.23 114594.0000 264 10.85% N
mopsMIB002 779 1417130.2195 169.33 - 3038 - N
mopsMIB003 324 1841585.2575 14.67 2526650.5000 299238 26.66% N
mopsMIB004 476 3596694.4652 70.75 - 24605 - N
mopsMIB005 223 -18602919.6633 510.27 36464706.4948 10 149.99% N
mopsMIB006 1643 4677977035.0694 124.11 4798143828.2267 340 2.21% N
mopsMIB007 1809 71712307.6923 55.05 71716621.1059 39102 0.01% N
mopsMIB008 26904 -58325.7050 2469.55 -58325.6924 4 59.61 Y
mopsMIB009 2609 74278213.1923 28.31 - 57310 - N
mopsMIB010 4597 56000492.2175 66.20 - 18222 - N
mopsMIB011 1665 40983605.1066 15.61 - 92459 - N
mopsMIB012 3721 -60715398.4461 416.78 - 10351 - N
mopsMIB013 78 -961717.3608 2.34 -959180.7489 607193 0.21% N
mopsMIB014 91 -962356.0230 1.14 -961513.0374 566245 0.02% N
mopsMIB015 1348 5306.4191 0.09 6361.5801 1195860 8.75% N
mopsMIB016 977 380.6941 141.83 - 8256 - N
mopsMIP001 18 11601.7517 0.06 20675.0000 327091 0.90 Y
mopsMIP002 608 5494.6720 0.55 6521.2513 2004481 15.5% N
mopsMIP003 48 2694.5429 0.73 2726.9766 208471 1.28 Y
mopsMIP004 131 1665.0000 1.39 1854.0000 1690031 9.76% N
mopsMIP005 1603 1864.5158 6.03 2536.8133 228664 37.99 Y
mopsMIP006 1463 80.7753 11.11 208.6757 1530 0.52 Y
mopsMIP007 160 278.7540 0.45 694.0186 6682950 10.75% N
mopsMIP008 483 1533.0094 2.19 4649.3997 1208131 67.02% N
mopsMIP009 1009 7198.3547 9.08 47846.3633 23089 84.9% N

Table D.31.: Results for a 1-hour test with the improved SOTA configuration (MOPSLIB
test set).

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?
mopsMIB001 27 101861.4029 2.83 114594.0000 261 10.85% N
mopsMIB002 829 1416118.3396 168.80 - 4211 - N
mopsMIB003 343 1842193.6192 15.58 2528110.5000 305962 26.84% N
mopsMIB004 476 3596694.4652 68.56 - 24090 - N
mopsMIB005 223 -18601587.6662 442.66 36464706.4948 12 149.98% N
mopsMIB006 1643 4677977035.0694 114.67 4798143828.2267 340 2.21% N
mopsMIB007 1785 71712308.8534 60.91 71716249.4508 31508 0.01% N
mopsMIB008 26431 -58325.6140 2337.95 -58325.6014 4 57.57 Y
mopsMIB009 2455 74278367.7008 26.91 - 66554 - N
mopsMIB010 4363 56001366.3554 64.23 - 7499 - N
mopsMIB011 1689 40981283.8792 15.25 - 112484 - N
mopsMIB012 3721 -60715398.4461 410.47 - 10251 - N
mopsMIB013 78 -961717.3608 2.08 -959180.7489 605407 0.21% N
mopsMIB014 91 -962356.0230 1.08 -961513.0374 564190 0.02% N
mopsMIB015 1348 5306.4191 0.11 6365.6621 1231221 8.48% N
mopsMIB016 963 383.2553 137.44 563.7795 11868 31.77% N
mopsMIP001 18 11601.7517 0.05 20675.0000 326346 0.90 Y
mopsMIP002 608 5494.6720 0.53 6521.2513 1966976 15.5% N
mopsMIP003 48 2694.5429 0.97 2726.9766 208471 1.30 Y
mopsMIP004 125 1666.0000 1.23 1842.0000 1200205 9.34% N
mopsMIP005 1603 1864.5158 5.89 2536.8133 185810 31.17 Y
mopsMIP006 1435 80.7627 11.00 208.6757 1314 0.48 Y
mopsMIP007 160 278.7540 0.45 694.0186 6669866 10.75% N
mopsMIP008 483 1533.0094 2.09 4649.3997 1248293 67.02% N
mopsMIP009 943 7118.0502 7.02 29764.7672 164350 76.09% N

Table D.32.: Results for a 1-hour test with the improved SOTA configuration but without
flow cover cuts (MOPSLIB test set).

212

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?
mopsMIB001 19 101861.6784 4.25 109562.0000 308 6.54% N
mopsMIB002 1139 1438465.4557 109.14 - 4918 - N
mopsMIB003 247 1840184.8567 10.08 2524630.5000 283571 26.74% N
mopsMIB004 495 3604085.1196 56.86 - 38399 - N
mopsMIB005 226 -19242051.8639 335.47 36464706.4948 12 151.84% N
mopsMIB006 171 4677563372.5603 11.09 4798378828.2267 574 2.12% N
mopsMIB007 1619 71713827.8174 43.45 71713837.8803 27445 0% N
mopsMIB008 23953 -58325.7050 2077.74 -58325.6924 4 53.24 Y
mopsMIB009 1229 74267667.9657 24.05 - 78896 - N
mopsMIB010 1902 56014795.5920 65.70 - 26432 - N
mopsMIB011 1034 40984764.1660 17.64 - 133874 - N
mopsMIB012 3434 -60715466.8691 408.83 - 9694 - N
mopsMIB013 75 -961718.8721 2.09 -959090.5222 584542 0.22% N
mopsMIB014 76 -962412.7350 1.33 -961513.0374 578769 0.02% N
mopsMIB015 1348 5313.3296 0.08 6383.4203 1242773 8.27% N
mopsMIB016 977 380.6941 143.08 - 8293 - N
mopsMIP001 22 11601.7017 0.05 20675.0000 229367 0.63 Y
mopsMIP002 520 5442.2829 0.44 6473.7947 2110443 15.56% N
mopsMIP003 33 2693.9557 1.03 2726.8040 78907 0.49 Y
mopsMIP004 131 1665.0000 1.42 1854.0000 1688617 9.76% N
mopsMIP005 1601 1864.5158 6.14 2536.8133 250205 41.52 Y
mopsMIP006 1437 80.7596 10.83 208.6757 1766 0.61 Y
mopsMIP007 123 257.8680 0.05 694.6643 7931509 34.38% N
mopsMIP008 425 1575.8944 1.86 4662.9110 1281830 66.04% N
mopsMIP009 891 10981.5584 11.12 31234.9882 901527 64.84% N

Table D.33.: Results for a 1-hour test with the SOTA configuration (MOPSLIB test set).

name cuts xLP time in SNP (s) best IP nodes time (m) / gap solved?
mopsMIB001 23 101866.0693 2.83 109940.0000 298 6.86% N
mopsMIB002 988 1446884.2603 203.47 - 7370 - N
mopsMIB003 275 1841393.7353 6.97 2511837.5000 255280 21.76% N
mopsMIB004 491 3617189.3797 48.33 4955218.0000 41262 26.87% N
mopsMIB005 187 -20437405.8900 245.73 36464706.4948 15 155.09% N
mopsMIB006 609 4677707915.5063 42.42 4720566885.8610 532 0.49% N
mopsMIB007 1431 71713827.8174 22.80 n.a. 5174 n.a. N
mopsMIB008 24037 -57949.5261 16286.94 - 1 - N
mopsMIB009 1350 74264296.2064 14.02 - 90896 - N
mopsMIB010 2501 56013290.6471 32.08 - 29246 - N
mopsMIB011 1088 40984715.4149 8.62 - 97540 - N
mopsMIB012 3389 -60714456.0496 417.95 - 8122 - N
mopsMIB013 75 -961717.3750 1.38 -959175.5865 572480 0.23% N
mopsMIB014 77 -962418.2383 1.00 -961513.0374 585923 0.01% N
mopsMIB015 1348 5323.0827 0.11 6383.3125 1267579 9.21% N
mopsMIB016 881 381.5353 124.19 666.5375 9615 42.7% N
mopsMIP001 19 11601.7017 0.02 20675.0000 341065 0.94 Y
mopsMIP002 211 5119.5965 0.30 6464.0864 2185619 18.41% N
mopsMIP003 18 2692.8930 0.19 2726.8040 139113 0.79 Y
mopsMIP004 83 1665.0000 1.05 1842.0000 1236490 9.01% N
mopsMIP005 1598 1864.5120 5.51 2536.8133 213216 35.75 Y
mopsMIP006 1433 80.7515 10.20 208.6757 1385 1.62 Y
mopsMIP007 104 245.0265 0.02 693.8405 7897978 9.99% N
mopsMIP008 371 1467.4566 0.77 4693.4696 1346379 68.73% N
mopsMIP009 905 7734.0693 9.00 32352.7360 578447 76.09% N

Table D.34.: Results for a 1-hour test with the OLD configuration (MOPSLIB test set).
For the instance mopsMIB007, MOPS returned an invalid result.

213

D. Test Results

214

Bibliography

[1] COIN-OR – COmputational INfrastructure for Operations Research. See

http://www.coin-or.org.

[2] GLPK – GNU Linear Programming Kit. Free Software Foundation. See

http://www.gnu.org/software/glpk/.

[3] MINTO – Mixed INTeger Optimizer. See http://coral.ie.lehigh.edu/minto/.

[4] SCIP – Solving Constraint Integer Programs. See http://scip.zib.de/.

[5] Tobias Achterberg, Thorsten Koch, and Alexander Martin. Branching rules revisited.

Operations Research Letters, 33:42 – 54, 2005.

[6] Tobias Achterberg, Thorsten Koch, and Alexander Martin. MIPLIB 2003. Opera-

tions Research Letters, 34(4):1–12, 2006. See http://miplib.zib.de.

[7] AMPL Optimization LLC. AMPL – A modeling language for mathematical pro-

gramming. See http://www.ampl.com.

[8] Giuseppe Andreello, Alberto Caprara, and Matteo Fischetti. Embedding {0, 1
2} -

cuts in a branch-and-cut framework: A computational study. INFORMS Journal on

Computing, 19(2):229–238, 2007.

[9] David L. Applegate, William Cook, Sanjeeb Dash, and Daniel G. Espinoza. Exact

solutions to linear programming problems. Operations Research Letters, 35:693 –

699, 2007.

[10] Robert Ashford. Mixed integer programming: A historical perspective with Xpress-

MP. Annals of Operations Research, 149(1):5–17, 2007.

[11] Alper Atamtürk. Flow pack facets of the single node fixed-charge flow polytope.

Operations Research Letters, 29(3):107 – 114, October 2001.

[12] Alper Atamtürk and Oktay Günlük. Mingling: Mixed-integer rounding with bounds.

Technical Report BCOL.07.03, IEOR, University of California-Berkeley, September

2007.

215

http://www.coin-or.org
http://www.gnu.org/software/glpk/
http://coral.ie.lehigh.edu/minto/
http://scip.zib.de/
http://miplib.zib.de
http://www.ampl.com

Bibliography

[13] Alper Atamtürk, George L. Nemhauser, and Martin W. P. Savelsbergh. Valid in-

equalities for problems with additive variable upper bounds. Mathematical Program-

ming Series A, 91:145 – 162, 2001.

[14] Alper Atamtürk and Martin W. P. Savelsbergh. Integer-programming software sys-

tems. Annals of Operations Research, 140(1):67–124, 2005.

[15] Egon Balas, Sebastian Ceria, Gérard Cornuéjols, and N. Natraj. Gomory cuts revis-

ited. Operations Research Letters, 19:1–9, 1996.

[16] Egon Balas and Michael Perregaard. Lift-and-project for mixed 0-1 programming:

recent progress. Discrete Applied Mathematics, 123(1):129–154, 2002.

[17] Egon Balas and Michael Perregaard. A precise correspondence between lift-and-

project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for 0-1 pro-

gramming. Mathematical Programming Series B, 94(2–3):221–245, 2003.

[18] Egon Balas and Anureet Saxena. Optimizing over the split closure. Mathematical

Programming Series A, 113(2):219–240, 2008.

[19] I. Barany, Tony J. van Roy, and Laurence A. Wolsey. Uncapacitated lot-sizing: the

convex hull of solutions. Mathematical Programming Study, 22:32–43, 1984.

[20] Gaetan Belveaux and Laurence A. Wolsey. Lotsizelib: A library of mod-

els and matrices for lot-sizing problems. Technical report, Center for Opera-

tions Research and Econometrics, Universite Catholique de Louvain, 1999. See

http://www.core.ucl.ac.be/wolsey/lotsizel.htm.

[21] Timo Berthold. Primal heuristics for mixed integer programs. Master’s the-

sis, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Technischen Universität

Berlin, 2006.

[22] Dimitris Bertsimas, Christopher Darnell, and Robert Soucy. Portfolio construction

through mixed-integer programming at grantham, mayo, van otterloo and company.

Interfaces, 29:49–66, 1999.

[23] Robert E. Bixby, Sebastián Ceria, Cassandra M. McZeal, and Martin W. P. Savels-

bergh. An updated mixed integer programming library: MIPLIB 3.0. Optima,

58:12–15, 1998.

[24] Robert E. Bixby, Mary Fenelon, Zonghao Gu, Edward Rothberg, and Roland Wun-

derling. MIP: Theory and practice - closing the gap. In M. J. D. Powell and

216

http://www.core.ucl.ac.be/wolsey/lotsizel.htm

Bibliography

S. Scholtes, editors, System Modelling and Optimization: Methods, Theory and Ap-

plications, pages 19–49. Kluwer, 2000.

[25] Robert E. Bixby and Edward Rothberg. Progress in computational mixed integer

programming - a look back from the other side of the tipping point. Annals of

Operations Research, 149(1):37–41, 2007.

[26] Alberto Caprara and Matteo Fischetti. {0, 1
2}-Chvátal-Gomory cuts. Mathematical

Programming, 74(3):221–235, 1996.

[27] Alberto Caprara and Adam N. Letchford. On the separation of split cuts and related

inequalities. Mathematical Programming Series B, 94(2-3):279–294, 2003.

[28] Sebastian Ceria. A brief history of lift-and-project. Annals of Operations Research,

149(1):57–61, 2007.

[29] Vašek Chvátal. Linear Programming. W. H. Freeman and Company, New York,

1983.

[30] Cécile Cordier, Hugues Marchand, Richard Laundy, and Laurence A. Wolsey. bc –

opt : a branch-and-cut code for mixed integer programs. Mathematical Programming,

86(2):335 – 353, November 1999.

[31] Gérard Cornuéjols. Revival of the Gomory cuts in the 1990’s. Annals of Operations

Research, 149(1):63–66, 2007.

[32] Gérard Cornuéjols. Valid inequalities for mixed integer linear programs. Mathemat-

ical Programming Series B, 112(1):3–44, 2008.

[33] Gérard Cornuéjols and Milind Dawande. A class of hard small 0-1 programs. In

Integer Programming and Combinatorial Optimization, volume 1412/1998 of Lecture

Notes in Computer Science, pages 284 – 293. Springer Berlin / Heidelberg, 1998.

[34] Harlan Crowder, Ron S. Dembo, and John M. Mulvey. Reporting computational

experiments in mathematical programming. Mathematical Programming, 15(1):316

– 329, 1978.

[35] Sanjeeb Dash, Marcos Goycoolea, and Oktay Günlük. Two step MIR inequalities

for mixed-integer programs. Technical report, IBM T. J. Watson Research Center,

Yorktown Heights, NY 10598, 2006.

[36] Sanjeeb Dash and Oktay Günlük. Valid inequalities based on simple mixed-integer

sets. Mathematical Programming Series A, 105(1):29 – 53, January 2006.

217

Bibliography

[37] Sanjeeb Dash and Oktay Günlük. On mixing inequalities: rank, closure and cutting

plane proofs. Technical report, IBM Research, 2008.

[38] Sanjeeb Dash, Oktay Günlük, and Andrea Lodi. MIR closures of polyhedral sets. to

appear in Mathematical Programming Series A, 2008.

[39] Dash Optimization Inc. Xpress-MP. See http://www.dashoptimization.com.

[40] Brian T. Denton, John Forrest, and R. John Milne. IBM solves mixed-integer

program to optimize its semiconductor supply chain. Interfaces, 36(5):386 – 399,

September – October 2006.

[41] Santanu S. Dey. A note on split rank of intersection cuts. Technical report, CORE,

UCL, Belgium, September 2008.

[42] Elizabeth D. Dolan and Jorge J. Moré. Benchmarking optimization software with

performance profiles. Mathematical Programming Series A, 91::201–213, 2002.

[43] Matteo Fischetti, Andrea Lodi, and Domenico Salvagnin. Just MIP it! In

V. Maniezzo, T. Stautzle, and S. Voss, editors, Hybridizing metaheuristics and

mathematical programming, Operations Research/Computer Science Interfaces Se-

ries. Springer, 2008. (to appear).

[44] Bernhard Fleischmann, Sonja Ferber, and Peter Heinrich. Strategic planning of

BMW’s global production network. Interfaces, 36(3):194–208, May–June 2006.

[45] Swantje Friedrich. Algorithmische Verbesserungen für die Lösung diskreter Opti-

mierungsmodelle. PhD thesis, Freie Universität Berlin, 2007.

[46] Ricardo Fukasawa and Marcos Goycoolea. On the exact separation of mixed integer

knapsack cuts. In Integer Programming and Combinatorial Optimization, Lecture

Notes in Computer Science, pages 225 – 239. Springer, June 2007.

[47] David Goldberg. What every computer scientist should know about floating-point

arithmetic. ACM Computing Surveys (CSUR), 23(1):5 – 48, March 1991.

[48] João Gonçalves and Laszlo Ladanyi. An implementation of a separation procedure for

mixed integer rounding inequalities. IBM Research Report RC23686, IBM Research

Division, Thomas J. Watson Research Center, Yorktown Heights, N.Y., August 2005.

[49] Stephen C. Graves. Using lagrangean techniques to solve hierarchical production

planning problems. Management Science, 28(3):260 – 275, March 1982.

218

http://www.dashoptimization.com

Bibliography

[50] Zonghao Gu, George L. Nemhauser, and Martin W. P. Savelsbergh. Lifted cover

inequalities for 0-1 integer programs: Computation. INFORMS Journal on Com-

puting, 10(4):427–437, 1998.

[51] Zonghao Gu, George L. Nemhauser, and Martin W. P. Savelsbergh. Lifted flow cover

inequalities for mixed 0-1 integer programs. Mathematical Programming, 85(3):439–

467, 1999.

[52] Oktay Günlük and Yves Pochet. Mixing mixed-integer inequalities. Mathematical

Programming Series A, 90(3):429–457, 2001.

[53] J. N. Hooker. Needed: An empirical science of algorithms. Operations Research,

42(2):201 – 212, 1994.

[54] ILOG Inc., An IBM Company. ILOG CPLEX. See http://www.cplex.com.

[55] David S. Johnson. A theoretician’s guide to the experimental analysis of algorithms,

2001.

[56] Ellis L. Johnson, George L. Nemhauser, and Martin W. P. Savelsbergh. Progress

in Linear Programming-Based Algorithms for Integer Programming: An Exposition.

INFORMS Journal on Computing, 12(1):2–23, 2000.

[57] Kiavash Kianfar and Yahya Fathi. Generalized mixed integer rounding inequalities:

facets for infinite group polyhedra. to appear in: Mathematical Programming, 2008.

[58] Diego Klabjan and George L. Nemhauser. A polyhedral study of integer variable

upper bounds. Mathematics of Operations Research, 27(4):711 – 739, 2002.

[59] Achim Koberstein. The Dual Simplex Method, Techniques for a fast and stable

implementation. PhD thesis, Universität Paderborn, 2005.

[60] Achim Koberstein. Progress in the dual simplex method for solving large scale LP

problems: techniques for a fast and stable implementation. Computational Opti-

mization and Applications, 41(2):185–204, November 2008.

[61] A. H. Land and A.G. Doig. An automatic method of solving discrete programming

problems. Econometrica, 28(3):497–520, July 1960.

[62] Adam N. Letchford and Andrea Lodi. Strengthening Chvátal-Gomory cuts and

Gomory fractional cuts. Operations Research Letters, 30(2):74–82, 2002.

219

http://www.cplex.com

Bibliography

[63] Benjamin W. Lin and Ronald L. Rardin. Controlled experimental design for

statistical comparison of integer programming algorithms. Management Science,

25(12):1258 – 1271, December 1979.

[64] Jeff T. Linderoth. A simplicial branch-and-bound algorithm for solving quadratically

constrained quadratic programs. Mathematical Programming Series B, 103(2):251 –

282, June 2005.

[65] Jeff T. Linderoth and Martin W. P. Savelsbergh. A computational study of search

strategies for mixed integer programming. INFORMS Journal on Computing,

11(2):173 – 187, February 1999.

[66] Quentin Louveaux and Laurence A. Wolsey. Lifting, superadditivity, mixed integer

rounding and single node flow sets revisited. 4OR: A Quarterly Journal of Operations

Research, 1(3):173–207, 2003.

[67] Thomas L. Magnanti, Prakash Mirchandani, and Rita Vachani. The convex hull of

two core capacitated network design problems. Mathematical Programming, 60(1 –

3):233 – 250, June 1993.

[68] Hugues Marchand. A Polyhedral Study of the Mixed Knapsack Set and its Use to

Solve Mixed Integer Programs. PhD thesis, Faculté des Sciences Appliquées, Univer-

sité catholique de Louvain, 1998.

[69] Hugues Marchand and Laurence A. Wolsey. The 0–1 knapsack problem with a single

continuous variable. Mathematical Programming, 85(1):15 – 33, May 1999.

[70] Hugues Marchand and Laurence A. Wolsey. Aggregation and mixed integer rounding

to solve MIPs. Operations Research, 49(3):363–371, 2001.

[71] François Margot. Testing cut generators for mixed-integer linear programming. Tech-

nical report, Tepper School of Business, Carnegie Mellon University, 2007.

[72] Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer im-

plementations. Wiley-Interscience Series In Discrete Mathematics And Optimization.

John Wiley & Sons Inc., 1990.

[73] Maximal Software Inc. MPL – Mathematical Programming Language. See

http://www.maximal-usa.com/.

[74] Catherine C. McGeoch. Experimental analysis of algorithms. In Handbook of Global

Optimization, volume 2, pages 489 – 513. Kluwer, 2002.

220

http://www.maximal-usa.com/

Bibliography

[75] Hans Mittelmann. Decision tree for optimization software: Benchmarks for opti-

mization software, 2008. See http://plato.asu.edu/bench.html.

[76] MOPS Optimierungssysteme GmbH & Co. KG. MOPS – Mathematical Optimiza-

tion System. See http://www.mops-optimizer.com.

[77] MOPS Optimierungssysteme GmbH & Co. KG. mops - Mathematical Optimization

System - White Paper, September 2008. See http://www.mops-optimizer.com.

[78] MOPS Optimierungssysteme GmbH & Co. KG. The mops User Manual, Januar

2008. MOPS Version 9.x, 27.01.2008, See http://www.mops-optimizer.com.

[79] George L. Nemhauser and Laurence A. Wolsey. A recursive procedure to generate all

cuts for 0–1 mixed integer programs. Mathematical Programming, 46(1–3):379–390,

1990.

[80] George L. Nemhauser and Laurence A. Wolsey. Integer and Combinatorial Op-

timization. Wiley-Interscience Series In Discrete Mathematics And Optimization.

John Wiley & Sons Inc., 2nd edition, 1999.

[81] Arnold Neumaier and Oleg Shcherbina. Safe bounds in linear and mixed-integer

linear programming. Mathematical Programming Series A, 99:283–296, 2004.

[82] Manfred W. Padberg, Tony J. van Roy, and Laurence A. Wolsey. Valid linear in-

equalities for fixed charge problems. Operations Research, 33(4):842 – 861, July

1985.

[83] Yves Pochet and Laurence A. Wolsey. Lot-sizing with constant batches: Formulation

and valid inequalities. Mathematics of Operations Research, 18(4):767 – 785, 1993.

[84] Yves Pochet and Laurence A. Wolsey. Polyhedra for lot-sizing with wagner – whitin

costs. Mathematical Programming, 67(1 – 3):297 – 323, October 1994.

[85] Yves Pochet and Laurence A. Wolsey. Production planning by mixed integer pro-

gramming. Springer, 2006.

[86] Martin W. P. Savelsbergh. Preprocessing and probing techniques for mixed integer

programming problems. ORSA Journal on Computing, 6(4):445–454, 1994.

[87] Jan I. A. Stallaert. The complementary class of generalized flow cover inequalities.

Discrete Applied Mathematics, 77:73 – 80, 1997.

[88] Uwe H. Suhl. MOPS - Mathematical OPtimization System. European Journal of

Operational Research, 72:312–322, 1994.

221

http://plato.asu.edu/bench.html
http://www.mops-optimizer.com
http://www.mops-optimizer.com
http://www.mops-optimizer.com

Bibliography

[89] Uwe H. Suhl and Ralf Szymanski. Supernode processing of mixed-integer models.

Computational Optimization and Applications, 3(4):317–331, 1994.

[90] Edward R. Tufte. The Visual Display of Quantitative Information. Graphics Press,

2nd edition, 2001.

[91] Tony J. van Roy and Laurence A. Wolsey. Valid inequalities and separation for

uncapacitated fixed charge networks. Operations Research Letters, 4:105 – 213, 1985.

[92] Tony J. van Roy and Laurence A. Wolsey. Valid inequalities for mixed 0-1 programs.

Discrete Applied Mathematics, 14:199–213, 1986.

[93] Tony J. van Roy and Laurence A. Wolsey. Solving mixed integer programming

problems using automatic reformulation. Operations Research, 35(1):45–57, 1987.

[94] Veronika Waue. Entwicklung von Software zur Lösung von gemischt-ganzzahligen

Optimierungsmodellen mit einem Branch-and-Cut-Ansatz. PhD thesis, Freie Uni-

versität Berlin, 2007.

[95] Franz Wesselmann. Implementation of a separation heuristic for mixed integer round-

ing inequalities. Master’s thesis, DS&OR Lab, University of Paderborn, February

2006.

[96] Franz Wesselmann and Uwe H. Suhl. Implementation techniques for cutting plane

management and selection. submitted to Optimization Methods and Software, 2008.

[97] Laurence A. Wolsey. Valid inequalities for 0-1 knapsacks and MIPs with generalized

upper bound constraints. Discrete Applied Mathematics, 29(2 – 3):251 – 162, June

1990.

[98] Laurence A. Wolsey. Integer Programming. Wiley-Interscience Series In Discrete

Mathematics And Optimization. John Wiley & Sons Inc., 1998.

[99] Kati Wolter. Implementation of cutting plane separators for mixed integer programs.

Master’s thesis, Technische Universität Berlin, 2006.

222

	Introduction
	MIP Theory
	Mixed Integer Programming Problems
	Formulations
	Relaxations and Bounds
	Valid Inequalities and Separation
	Mixed Integer Rounding Inequalities
	Mixing Inequalities
	Lifting Valid Inequalities
	The Branch-and-cut Algorithm

	MIP Solver Software
	The Use of MIP Solvers
	MIP Solver Components
	The MOPS MIP Solver

	Separation Algorithms
	The Flow Cover Cut Separation Algorithm
	Flow Cover Inequalities
	The Separation Algorithm

	The Aggregated cMIR Cut Separation Algorithm
	Mixed Integer Rounding Inequalities
	The Separation Algorithm

	The Flow Path Cut Separation Algorithm
	Flow Path Inequalities
	The Separation Algorithm

	Implementations, Algorithmic Improvements, and New Algorithms
	Objectives
	Objectives of the Implementation
	Characteristics of Good Cut Generators

	Framework
	Overview
	Data Structures
	Accuracy
	Variable Bounds and Row Types
	Aggregation and Path-finding
	Bound Substitution

	The Flow Cover Cut Generator
	The cMIR Cut Generator
	The Flow Path Cut Generator
	The Path Mixing Cut Generators
	Path Mixing Inequalities
	Two Separation Algorithms
	Implementation of the Path Mixing Cut Generators

	Evaluation
	Evaluation Methods
	Empirical Analysis of Algorithms
	Problem Instances
	Computational Experiments and Performance Measures
	Presentation
	The Test Environment

	Accuracy Evaluation
	Evaluation of the Flow Cover Cut Generator
	Implementation Details
	Comparison to the Previous Flow Cover Cut Generator
	Comparison to Published Results

	Evaluation of the cMIR Cut Generator
	Implementation Details and Algorithmic Improvements
	Comparison to the Previous cMIR Cut Generator
	Comparison to Published Results
	Comparison between the Flow Cover and the cMIR Cut Generator

	Evaluation of the Path-based Cut Generators
	Implementation Details of the Flow Path Cut Generator
	Comparison of Path-based Cut Generators
	Evaluation of the Need for a Path-based Cut Generator

	Comparison of Cut Configurations

	Conclusions and Outlook
	Conclusions
	Outlook

	Notation
	Example Configuration Files
	Test Sets
	Test Results

