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The two Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, on-board NASA's Terra and
Aqua satellites, have provided more than a decade of global fire data. Here we describe improvements made to
the fire detection algorithm and swath-level product that were implemented as part of the Collection 6 land-
product reprocessing, which commenced inMay 2015. The updated algorithm is intended to address limitations
observedwith the previous Collection 5fire product, notably the occurrence of false alarms causedby small forest
clearings, and the omission of large fires obscured by thick smoke. Processing was also expanded to oceans and
other large water bodies to facilitatemonitoring of offshore gas flaring. Additionally, fire radiative power (FRP) is
now retrievedusing a radiance-based approach, generally decreasing FRP for all but the comparatively small frac-
tion of high intensity fire pixels. We performed a Stage-3 validation of the Collection 5 and Collection 6 Terra
MODIS fire products using reference fire maps derived from more than 2500 high-resolution Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. Our results indicated targeted im-
provements in the performance of the Collection 6 active fire detection algorithm compared to Collection 5,
with reduced omission errors over large fires, and reduced false alarm rates in tropical ecosystems. Overall, the
MOD14 Collection 6 daytime global commission error was 1.2%, compared to 2.4% in Collection 5. Regionally,
the probability of detection for Collection 6 exhibited a ~3% absolute increase in Boreal North America and Boreal
Asia compared to Collection 5, a ~1% absolute increase in Equatorial Asia and Central Asia, a ~1% absolute
decrease in South America above the Equator, and little or no change in the remaining regions considered. Not
unexpectedly, the observed variability in the probability of detection was strongly driven by regional differences
in fire size. Overall, there was a net improvement in Collection 6 algorithm performance globally.

© 2016 Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

NASA's Moderate Resolution Imaging Spectroradiometer (MODIS)
active fire products (Justice et al., 2002) were the first in a family of re-
motely sensed fire data sets produced from a new generation of moder-
ate resolution (~1 km), “fire-capable” sensors on-board terrestrial
satellites. Since their inception in 2000, the MODIS fire products have
been used to help answer a broad range of scientific questions
concerning the role of biomass burning within the Earth system (e.g.
Chen, Velicogna, Famiglietti, & Randerson, 2013; Chuvieco, Giglio, &
Justice, 2008; Ichoku & Kaufman, 2005; McCarty, Justice, & Korontzi,
2007; Mollicone, Eva, & Achard, 2006; Peterson, Hyer, & Wang, 2014;
Vadrevu et al., 2012; Wooster & Zhang, 2004), and in numerous opera-
tional applications (e.g. Kaiser et al., 2012; Longo et al., 2010; Reid et al.,
2009; Ressl et al., 2009; Sofiev et al., 2009;Wiedinmyer et al., 2011). The
products have been found to have utility in the context of social and
phical Sciences, University of
.
chroeder@noaa.gov

icle under the CC BY-NC-ND license (
cultural analyses as well (e.g. Bromley, 2010; Koren, Remer, & Longo,
2007; Schroeder, Giglio, & Aravéquia, 2009).

A key element of NASA's Earth Observing System (EOS) mission is
the capability to periodically reprocess the raw instrument data archive,
using updated calibration and geolocation information, as well as the
derived products (Justice et al., 2002). Reprocessing is an essential re-
quirement for producing consistent, science quality data sets suitable
for long-term monitoring of both regional and global change. As part
of the EOS, most of the MODIS land products have been reprocessed
periodically to implement algorithm changes and refinements. Here
we describe improvements made to the active fire detection algorithm,
and the associatedMOD14 (Terra) andMYD14 (Aqua) fire products, for
Collection 6, which represents the fourth major reprocessing of the
MODIS time series. The Collection 6 algorithm is intended to address
limitations observedwith the previous Collection 5 fire product, notably
the occurrence of false alarms arising from small forest clearings, and
the omission of large fires obscured by thick smoke (Schroeder et al.,
2008). Processing was also expanded to oceans and other large water
bodies to facilitatemonitoring of offshore gas flaring.We begin by brief-
ly summarizing the status of the Collection 5 active fire products in
Section 2. In Section 3, we describe the Collection 6 algorithm,
http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1
Summary of MODIS channels used in the detection algorithm and ingested from the
Collection 6MODIS Level-1B radiance product (MOD021KM/MYD021KM). Details regard-
ing the blending of bands 21 and 22 may be found in Giglio, Descloitres, Justice, and
Kaufman (2003).

Channel
number

Central
wavelength
(μm)

Purpose

1 0.65 Sun glint and coastal false alarm rejection; cloud masking.
2 0.86 Bright surface, sun glint, and coastal false alarm rejection;

cloud masking.
7 2.1 Sun glint and coastal false alarm rejection.
21 4.0 High-range channel for active fire detection.
22 4.0 Low-range channel for active fire detection.
31 11.0 Active fire detection, cloud masking, forest clearing rejection.
32 12.0 Cloud masking.

M?D021KM
Swath Radiance

M?D03 Swath
Geolocation

Check Input Data

Land/Water Masking (3.1)

Cloud Masking (3.2)

Identify Potential Fire Pixels (3.3)

Background Characterization (3.4)

Threshold Tests (3.5)

PASS = tentative fire pixel

Sun-Glint Rejection (3.6.1)

Land Water

Coast Rejection (3.6.5)Desert-Boundary
Rejection (3.6.2)

Coast Rejection (3.6.3)

Forest-Clearing
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missing data

cloud

non-fire
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Fig. 1. Flow chart of Collection 6 detection algorithm,with possible output classes signified
by italicized text. Grey boxes indicate algorithm steps performed for both daytime and
nighttime pixels, while yellow boxes show steps restricted to daytime pixels. The
individual rejection tests described in Section 3.6 are shown inside the dashed box;
those tentative fire pixels failing any rejection test are summarily classified as non-fire.
Failure of the threshold tests (center box) applied to potential fire pixels will produce an
output class of non-fire, or in those very rare cases when background characterization
was not possible, unknown.
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emphasizing those aspects that have changed since Collection 5. In
Section 4, we present a rigorous validation of both the Collection 5
and Collection 6 Terra MODIS fire product using a large sample of coin-
cident, high resolution imagery from theAdvanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER).

2. Collection 5 product and algorithm status

Production of the Collection 5 MODIS fire products commenced in
mid-2006. Since then, the products have been evaluated in a number
of independent studies (e.g., Csiszar, Morisette, & Giglio, 2006; de
Klerk, 2008; Freeborn, Wooster, & Roberts, 2010; Hantson, Padilla,
Corti, & Chuvieco, 2013; Hawbaker, Radeloff, Syphard, Zhu, & Stewart,
2008; He & Li, 2011; Maier, Russell-Smith, Edwards, & Yates, 2013;
Schroeder et al., 2008; Tanpipat, Honda, & Nuchaiya, 2009), and in the
context of optimizing the global MODIS algorithm for use within a spe-
cific region (e.g. Cheng, Rogan, Schneider, & Cochrane, 2013; Ressl et al.,
2009; Wang, Qu, Hao, Liu, & Sommers, 2007). A finding common to
many of these studies is that the global thresholds used to narrow the
search for fire pixels (the “potential fire thresholds”) are too high for
some regions, rendering the algorithm unable to detect the (generally)
smaller and/or cooler fires characteristic of these regions. In an analysis
of small fires in the southeastern United States, for example, Wang et al.
(2007),Wang, Qu, Hao, and Liu (2009) found that a large fraction of fire
pixels had 4-μm brightness temperatures below the 310 K daytime po-
tential fire threshold used in the Collection 5 algorithm. The authors
were able to substantially increase the likelihood of detecting these
small fires by reducing the threshold to 293 K, with the stipulation
that only those pixels within≈7 km of smoke (identified automatically
using a series of spectral tests)would be considered so as tomaintain an
acceptable false alarm rate. As part of an evaluation of the MODIS
product in the Yucatán Peninsula, Cheng et al. (2013) reported that
the “... largest single contributor to the detection omission was the
310 K MODIS 4-μm threshold”, and recommended a reduction in the
daytime threshold to 305 K for the densely forested areas ubiquitous
throughout that region.

While themajority of the above studies emphasized omission errors,
it is important to consider commission errors, or false alarms, aswell. On
this front, themost exhaustive effort to date was that of Schroeder et al.
(2008), who validated the Collection 5 Terra MODIS fire product within
the Brazilian Amazon using a combination of high resolution Advanced
Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and
Landsat-7 imagery, airborne data, and ground observations. Among
other findings, the authors reported a very high commission error rate
(~35%) for the MODIS product associated with small forest clearings
within the Brazilian Amazon.

Based on the above findings, and in conjunction with our ongoing
quality assessment of and experience with the Collection 5 fire prod-
ucts, we implemented targeted refinements to the MODIS detection al-
gorithm for the Collection 6 reprocessing that commenced inMay 2015.
Those refinements are described in the next section.

3. Collection 6 algorithm description

The detection algorithmuses native (i.e., unprojected swath) 4-, 11-,
and 12-μm brightness temperatures derived from the corresponding
1-km MODIS channels, denoted by T4, T11, and T12, respectively, and,
for daytime observations, 0.65-, 0.86-, and 2.1-μm reflectance (denoted
by ρ0.65, ρ0.86, and ρ2.1, respectively), aggregated to 1-km spatial resolu-
tion. Table 1 provides a summary of all MODIS bands used in the
algorithm.

The goal of the detection algorithm is to identify “fire pixels” that
contain one or more actively burning fires at the time of the satellite
overpass. To this end, the algorithm ultimately classifies each pixel of
the MODIS swath as missing data, cloud, non-fire, fire, or unknown. For
the sake of backwards compatibility, the Collection 6 fire products
actually use a slightly larger set of classes that can be uniquely mapped
into thefive classes defined here. Framing the algorithmoutput in terms
of these five classes, however, greatly simplifies the subsequent



33L. Giglio et al. / Remote Sensing of Environment 178 (2016) 31–41
description of the Collection 6 algorithm. Full details may be found in
the product User's Guide (Giglio, 2015).

A flow chart of the detection algorithm is shown in Fig. 1. Pixels lack-
ing valid data (e.g., during a calibration maneuver) are summarily
assigned to a class of missing data and excluded from further
consideration.

3.1. Land and water masking

Water, land, and coastal pixels are identifiedusing the updated 1-km
land/sea mask contained in the MODIS Collection 6 MOD03/MYD03
geolocation product. Coastal pixels are not processed further by the de-
tection algorithm (aside from being counted) since any residual frag-
ments of unmasked land will usually appear brighter and warmer
than the surrounding water, and may easily be mistaken for a small
fire. Fig. 2 shows a global sample of fire pixels detected over water dur-
ing January 2007.

3.2. Cloud masking

While generally adequate, the cloud mask employed in the Collec-
tion 5 algorithm occasionally misclassified thick smoke as cloud, thus
preventing identification of an otherwise detectable fire. To help allevi-
ate this problem, the fixed thresholds used to mask clouds have been
adjusted slightly for Collection 6. Daytime pixels – defined as those hav-
ing a solar zenith angle less than 85° – are flagged as cloud-obscured
(and assigned to the class of cloud) if the following combination of con-
ditions is satisfied:

ρ0:65 þ ρ0:86 N 1:2ð Þ or T12 b 265 Kð Þ or
ρ0:65 þ ρ0:86 N 0:7 and T12 b 285 Kð Þ or
water pixel and ρ0:86 N 0:25 and T12 b 300 Kð Þ:

The relaxed thresholds of the new fourth condition, which is applied
only to water pixels, exploit the considerable infrared absorption by
water. Nighttime pixels are flagged as cloud if the single condition
T12b265 K is satisfied. As with earlier versions of the algorithm, these
criteria are adequate for identifying larger, cooler clouds, but consistent-
ly miss small clouds and cloud edges.

3.3. Identification of potential fire pixels

As with previous versions of the algorithm, a preliminary classifica-
tion is used to eliminate obvious non-fire pixels. Those pixels not
Fig. 2. Locations of all Collection 6 Terra and Aqua MODIS
eliminated during this stage are considered to be potential fire pixels,
and undergo further processing.

A daytime pixel is identified as a potentialfire pixel if T4NT4⁎,ΔTNΔT⁎
(where ΔT≡T4−T11), and ρ0.86b0.35 (for nighttime pixels this last con-
dition is dropped). For Collection 5 and earlier, the thresholds T4⁎ and
ΔT⁎ were fixed at 310 K (305 K at night) and 10 K, respectively, but
for Collection 6 these thresholds are set dynamically for each of the
1354 sample positions of the currentMODIS scan (aMODIS scan is com-
posed of 10 lines, each containing 1354 1-km samples, acquired in par-
allel). This along-scan adjustment helps compensate for local variations
in the land surface as well as the systematic increase in atmospheric
path length (and hence atmospheric absorption) with scan angle. Dy-
namically adjusting the potential fire thresholds in this manner was
first proposed by Zhukov, Lorenz, Oertel, Wooster, and Roberts (2006)
in the course of developing an active fire detection algorithm for the ex-
perimental Bi-spectral Infrared Detection (BIRD) sensor, and subse-
quently adopted by Wooster, Xu, and Nightingale (2012) in
developing a Sentinel-3 Sea and Land Surface Temperature Radiometer
(SLSTR) pre-launch active fire product.

Calculation of the thresholds T4⁎ and ΔT⁎ for each MODIS scan pro-
ceeds by averaging the values of T4 and ΔT for all cloud- and glint-free
(Section 3.6.1) land pixelswithin a large, 301-sample by 30-linemoving
window centered upon sample position j (0≤ j≤1353). As the window
moves across the scan, a separate T4 and ΔT average is computed for
each sample position; we denote these large-window averages as
mean(T4)j and mean(ΔT)j. The fixed dimensions of the large window
within “scan space” means that, for nadir pixels, this averaging occurs
over an area approximately 306 km × 30 km in size at the Earth's
surface, growing up to approximately 740 km × 33 km at the edges of
the scan.

As a crude means of preventing intense fires from nontrivially bias-
ing the broad-scale averages, pixels having T4N360 K (320 K at night)
are ignored during averaging. While simplistic, this filtering scheme
renders any residual bias negligible, since each average is calculated
from a large sample of pixels. In practice, it is rare for more than a few
percent of pixels within a window of this size to be true fire pixels.

A potential fire threshold is then independently calculated for each
sample position by applying a 5 K offset to the large-window averages.
Specifically, T4⁎=mean(T4)j+5 K, with the result constrained so
that 300 K≤T4⁎≤330 K, and ΔT⁎=mean(ΔT)j+5 K, with the result sim-
ilarly constrained so that 10 K≤ΔT⁎≤35 K. Under this scheme, the two
averages required for each sample position will be computed from up
to 9030 pixels. Averages based on fewer than 2000 pixels are deemed
unreliable, and for such cases the Collection 5 fixed potential fire
fire pixels detected over water during January 2007.
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thresholds are used as a conservative fallback since no reliable
information about the large-scale local background is available to the
algorithm.

The dynamic thresholds calculated in this step are applied only to
land pixels. For water pixels, the more conservative Collection 5 fixed
thresholds are used. In addition to recognizing the much smaller vari-
ability in surface temperature and emissivity for water, this strategy
helps prevent false alarms from occurring in the presence of small,
unmasked islands. We will discuss this issue further in Section 3.6.5.

An example of themagnitude of the differences between the Collec-
tion 5 and 6 potential fire thresholds for a single 5-min MODIS granule
over South America is shown in Fig. 3. In this daytime case, 77% of land
pixels had a 4- μm potential-fire brightness temperature threshold
below the 310 K fixed value used in the Collection 5 algorithm. In addi-
tion, almost every land pixel had a brightness temperature difference
threshold (ΔT⁎) that exceeded the Collection 5 fixed value of 10 K. The
net result for this granule was to reduce the number of potential fire
pixels from 49,620 (Collection 5) to 4057 (Collection 6).

We illustrate the impact of the change in potentialfire thresholds for
Collection 6 using a second example from central Siberia, in which nu-
merous large fires are engulfed in thick smoke (Fig. 4). The combination
of dynamic thermal potential fire thresholds and increased 0.86-μm re-
flectance threshold produced 95 additional fire pixels associated with
large fires, representing an increase of nearly 44% from Collection 5.
3.4. Background characterization

During the subsequent background characterization phase of the
algorithm, the radiometric signal of each potential fire pixel in the ab-
sence of fire is estimated by computing statistical summaries of neigh-
boring pixels within a small spatial window surrounding the potential
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Fig. 3.Distribution of Collection 6 dynamic potential fire thresholds T4⁎ (top panel) andΔT⁎

(bottom panel) used for the TerraMODIS granule acquired on 5March 2003 at 14:15 UTC
over South America. For this daytime granule, 77% of land pixels had a 4-μmpotential-fire
brightness temperature threshold (T4⁎) below the 310 K fixed threshold (red dashed line in
top panel) used in the Collection 5 algorithm, and nearly all land pixels had a brightness-
temperature difference threshold (ΔT⁎) above the 10-K fixed threshold (red dashed line in
bottom panel) used in Collection 5.
fire pixel. The selection of valid background pixels within this moving
window (up to 21 × 21 pixels in size) is described in detail in Giglio
et al. (2003), and remains identical for Collection 6, with the important
exception that valid background pixels are now restricted to either land
or water pixels (but never both) to match the land/water state of the
potential fire pixel.

In lieu of a detailed description of the local statistics computed for
the background window, we provided a summary in Table 2 and refer
the reader to Giglio et al. (2003) for additional information. New
quantities introduced in Collection 6 include L4, the mean 4-μm radi-
ance, ρ0:86 , the mean 0.86-μm reflectance (daytime pixels only), Nc,
the number of coast pixels within the background, and NL, the number
of land pixels excluded from the background when the potential fire
pixel lies over water.

3.5. Tentative fire detection

In this next phase, the algorithm tentatively identifies pixels
containing active fires. For nighttime land pixels, this will in fact be a
final identification. For water and daytime land pixels, a subsequent
series of rejection tests will be performed, as described in Section 3.6.

As in Collection 5, the algorithm identifies fire pixels (again,
tentatively in the case of water and daytime land pixels) by applying a
series of absolute and contextual (relative) threshold tests to each
potential fire pixel. The absolute threshold criterion of Kaufman et al.
(1998) remains unchanged for Collection 6:

T4N360 K 320 K at nightð Þ: ð1Þ

Being deliberately conservative, test (1) provides a direct route by
which large and/or particularly intense active fires can be identified. A
suite of contextual tests, which offer much greater sensitivity to the
much larger proportion of smaller and/or cooler fires, are consequently
used to supplement the fixed threshold test. In addition to radiometric
information about the potential fire pixel itself, the contextual tests
make use of information extracted from the immediate neighborhood,
or “background”, as described in Section 3.4. These tests, of which
there are five, remain unchanged for Collection 6 and are restated
here for convenience:

ΔT NΔT þ 3:5 δΔT ð2Þ

ΔT NΔT þ 6 K ð3Þ

T4 N T4 þ 3 δ4 ð4Þ

T11 N T11 þ δ11−4 K ð5Þ

δ04 N 5 K ð6Þ

A detailed description of each test may be found in Giglio et al.
(2003).

A daytime potential fire pixel is tentatively classified as a fire pixel if
either i) test (1) is satisfied, or ii) tests (2) through (4) are satisfied and
either test (5) or test (6) is satisfied, otherwise it is classified as a non-
fire pixel. A nighttime potential fire pixel is definitively classified as a
fire pixel if either i) test (1) is satisfied, or ii) tests (2) through (4) are
satisfied, otherwise it is classified as a non-fire pixel.

For potential fire pixels in which background characterization was
not possible (because too few valid background pixels were available),
only test (1) is applied. If satisfied, the potential fire pixel is tentatively
classified as a fire pixel, otherwise it is assigned a final class of unknown.
In practice, this designation is quite rare. During the five-year period
from 2005 through 2009, for example, only 0.001% of all MODIS land
pixels (Terra and Aqua combined) were assigned a class of unknown
in the Collection 5 swath-level fire product.
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3.6. Rejection tests

In the final phase of the detection algorithm, pixels tentatively
flagged as containing active fires undergo a series of false-alarm rejec-
tion tests. These include a sun-glint rejection test, applied to both land
Table 2
Statistical quantities computed for contextual window. The acronym MAD denotes the
mean absolute deviation. More detailed descriptions can be found in Giglio et al. (2003).

Variable Description

L4 Mean 4-μm radiance.

T4 Mean 4-μm brightness temperature.

T11 Mean 11-μm brightness temperature.

ΔT Mean brightness temperature difference (≡T4−T11).
δ4 4-μm brightness temperature MAD.
δ11 11-μm brightness temperature MAD.
δΔT Brightness temperature difference MAD.
Nv Number of valid pixels within contextual window.
ρ0:86 Mean 0.86-μm reflectance (daytime pixels only).

T
0
4

Mean 4-μm brightness temperature of pixels rejected as background fires.

δ4′ 4-μm brightness temperature MAD of pixels rejected as background fires.
Nf Number of pixels within contextual window rejected as background fires.
Nc Number of coast pixels (always excluded) within the contextual window.
Nw Number of excluded water pixels within the contextual window.
NL Number of excluded land pixels within the contextual window.
and water pixels, followed by three tests applied only to tentative land
fire pixels: a desert boundary rejection test, a land-pixel coastal rejection
test (formerly referred to unqualifiedly as “coastal rejection”), and a
new forest clearing rejection test, supplemented with a new water-pixel
coastal rejection test reserved for tentative fire pixels detected over
water. Once all applicable rejection tests have been performed, those
tentative fire pixels that remain are definitively classified as fire, while
those that were at any point rejected are classified as non-fire.

3.6.1. Sun glint rejection
The sun glint rejection test remains basically the same for Collection

6, though two angular thresholds were increased to make the test
slightly more aggressive in rejecting false alarms, reflecting the fact
that the algorithmnow seeks to identify somewhat smaller and/or cool-
er fires than possible for Collection 5. The tentative fire pixel is rejected
if one or more of the following conditions are satisfied:

θg b 2∘ ð7Þ

θg b 10∘ and ρ0:65 N 0:1 and ρ0:86 N 0:2 and ρ2:1 N 0:12 ð8Þ

θg b 15∘ and Naw þ Nwð Þ N 0 ð9Þ



Fig. 5. False color ASTER image of forest clearings in Pará, Brazil, acquired on 19 August
2005 at 13:59 UTC illustrating false alarms in the Collection 5 product, with ASTER
bands 8 (2.33 μm) shown as red, 3 N (0.82 μm) shown as green, and 1 (0.56 μm) shown
as blue. The approximate edges of the 1-km Terra MODIS pixels are outlined in black,
with the two pixels incorrectly flagged as encompassing fires outlined in white. Neither
false fire pixel appears in the Collection 6 product. The center of this scene is located at
6.489°S, 52.716°W.
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Here, Naw is the number of water pixels within the eight pixels sur-
rounding the tentative fire pixel, and θg is the angle between vectors
pointing in the surface-to-satellite and specular reflection directions
(Giglio et al., 2003). Note that test (9) effectively renders the detection
of offshore gas flares impossible in the presence of sun glint.

3.6.2. Desert boundary rejection
As discussed by Giglio et al. (2003), the somewhat arbitrary

background-fire rejection thresholds employed in the background char-
acterization phase of the algorithm can sometimes produce false alarms
in the proximity of surface features that produce a sharp radiometric
transition. The specific thresholds used in the MODIS algorithm largely
restrict this type of false alarm to the perimeter of hot, arid, and sparsely
vegetated or barren regions most commonly associated with deserts.
The desert boundary rejection test, which was introduced in Collection
4 to help eliminate such false alarms, remains unchanged for Collection
6. A detailed description of the test can be found in Section 2.2.7 of Giglio
et al. (2003).

3.6.3. Land-pixel coastal rejection
When processing a potential fire pixel over land, unmasked water

pixels within the background window can depress both T4 and ΔT , po-
tentially generating a false alarm (Giglio et al., 2003). The land-pixel
coastal rejection test, which employs the 0.86- and 2.1-μm reflectance
and Normalized Difference Vegetation Index (NDVI) of valid back-
ground pixels, is designed to prevent such false alarms. Although
originally introduced to help compensate for significant errors that
were present in the Collection 4 water mask, we have retained the
test in Collection 6 since the distinction between land versus water
pixels is inherently ambiguous along coastline. A complete description
of the test can be found in Section 2.2.8 of Giglio et al. (2003).

3.6.4. Forest clearing rejection
As noted previously, Schroeder et al. (2008) demonstrated that the

MODIS Collection 5 algorithmoftenmisclassifies small (~1-km) tropical
forest clearings as fires (Fig. 5). For Collection 6 we have therefore
introduced a new rejection test to reduce the frequency of this type of
commission error. A daytime fire pixel (land only) is rejected as a false
alarm if T11NT11 þ 3:7δ11, ρ0:86N0:28, and T4b325 K. The first of these
three conditions exploits the fact that forest clearings tend to be signif-
icantly warmer than the surrounding intact forest, while the second
helps restrict the test to larger patches of tropical forest (which are
bright in the near infrared) where a ~1-km clearing might be encoun-
tered. The third condition limits the test to fire pixels having a compar-
atively weak fire signature, which is a consistent property of this type of
false alarm. Specific values for the thresholds used in each test were
established using reference fire masks derived from 65 ASTER scenes
acquired over the Brazilian Amazon that were set aside for training.

3.6.5. Water-pixel coastal rejection
Whereas contamination of the background windowwith unmasked

water pixels can produce a false alarm over land (Section 3.6.3), a sim-
ilar class of coastal false alarm can occur over water when the potential
fire pixel itself is an unmasked land pixel. As a misidentified land pixel,
both T4 and ΔT will be elevated relative to the (generally) cooler water
background, to the point that the unmasked land pixel may resemble a
small and/or low intensityfire. This scenario ismost likely to arise in the
vicinity of coastline, where the distinction between land and water
pixels is inherently ambiguous. The presence of land or coast pixels in
the background window is an obvious indicator for precisely this situa-
tion, thus we reject any tentative fire pixel detected over water for
which NL+NcN0 and test (1) is not satisfied. The additional stipulation
with respect to test (1) disables the rejection test in the event the 4-μm
signal blatantly exceeds a level that could reasonably be expected for a
fire-free land pixel in close proximity to water.
3.7. Fire detection confidence

Aswith the Collection 4 and Collection 5 algorithms, a heuristicmea-
sure of the confidence (C) of each detected fire pixel is calculated as the
geometric mean of up to five sub-confidence parameters, designated C1
through C5. These parameters are defined in terms of T4, the number of
adjacent water pixels (Naw), the number of adjacent cloud pixels (Nac),
the standardized variables z4 ¼ ðT4−T4Þ=δ4 and zΔT ¼ ðΔT−ΔTÞ=δΔT ,
and the ramp function S(x;α,β), defined as

S x;α;βð Þ ¼
0; x ≤ α
x−αð Þ= β−αð Þ; α b x b β
1; x ≥ β:

8<
: ð10Þ

Note that our definition differs slightly from (Giglio et al., 2003) in
that we have included a minor typographical correction in the bottom
inequality. The sub-confidence parameters, which have been adjusted
for Collection 6, are defined as follows for daytime fire pixels detected
over land:

C1 ¼ S T4; T
�
4;360 K

� � ð11Þ

C2 ¼ S z4;3:0;6ð Þ ð12Þ

C3 ¼ S zΔT ;3:5;6ð Þ ð13Þ

C4 ¼ 1−S Nac;0;4ð Þ ð14Þ

C5 ¼ 1−S Naw;0;4ð Þ ð15Þ

For nighttime fire pixels, the threshold of 360 K used in the defini-
tion of C1 is reduced to 320 K, and the sub-confidence parameters C4
and C5 are not included in the calculation of C. For daytime fire pixels
detected over water, C5 is similarly excluded from the calculation
since the presence of adjacent water pixels provides no more informa-
tion about the quality of the fire detection than the fact that the fire
pixel itself lies over water.
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3.8. Retrieval of fire radiative power

For Collection 6, the original Kaufman et al. (1998)) empirical fire
radiative power (FRP) retrieval has been replaced with the Wooster,
Zhukov, and Oertel (2003), Wooster et al. (2012) approach, in which
FRP is approximated as

FRP≈
Apixσ
a τ4

L4−L4
� �

; ð16Þ

where L4 is the 4-μmradiance of thefire pixel,L4 is the 4-μmbackground
radiance (Section 3.4), Apix is the area of the MODIS pixel (which varies
as a function of scan angle), σ is the Stefan-Boltzmann constant
(5.6704 × 10–8 W m–2 K–4), τ4 is the atmospheric transmittance of the
4-μm channel, and a is a sensor-specific empirical constant. For
MODIS, a = 3.0 × 10–9 W m–2 sr–1 μm–1 K–4 (Wooster et al., 2003)
when radiance is expressed in units of W m–2 sr–1 μm–1. For the Level
2 (swath) fire product, τ4 is simply assigned a value of 1, but inclusion
of a proper atmospheric correction into some of the higher-level
MODIS fire products is under consideration.

The effect of this change in formulation for the Collection 6 product
was to consistently decrease FRP for the vast majority of fire pixels
(Fig. 6). For the much smaller fraction of comparatively high intensity
fire pixels with FRP values that exceed ~500 MW, however, FRP occa-
sionally increased by up to a few percent. The mean FRP of those fire
pixels detected in common was 56.9 MW for Collection 5 compared to
47.7 MW for Collection 6, corresponding to an average decrease of
about 16%.

4. Validation

ASTER offers a unique perspective to validate theMOD14 product as
it shares the EOS Terra platformwithMODIS, providing coincident glob-
al imaging over individual 60 × 60 km scenes acquired along a narrow
near-nadir portion (± 8.55° in the ASTER short-wave infrared [SWIR]
channels) of the 2300 km-wide MODIS swath. ASTER's spatial data
characteristics allow sub-pixel validation of MODIS binary fire/no-fire
detection data, though are largely inadequate for FRP validation due
to frequent pixel saturation (Giglio et al., 2008). Cost considerations
compelled by the limited availability of quality reference data have
constrained the validation of FRP retrievals to relatively small samples
over select areas (e.g. Peterson & Wang, 2013; Schroeder, Oliva, Giglio,
& Csiszar, 2014). Other studies built on satellite data inter-comparison
analyses to provide additional insight on the consistency of FRP re-
trievals (e.g. Freeborn, Wooster, Roy, & Cochrane, 2014; Roberts,
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Fig. 6. Collection 6 (C6) versus Collection 5 (C5) fire radiative power (FRP) for
approximately 240,000 Terra and Aqua MODIS fire pixels detected globally from 1 to 10
August 2005. The color scale indicates the number of points within each element of a
200 × 200 grid that partitions the two-dimensional space bounded by the axes.
Wooster, Perry, & Drake, 2005). Because of the outstanding limitations
described above, and given the relationship established between FRP
retrievals using Collections 5 and 6 data in Section 3.8, we focused on
the validation of the fire detection data using the available ASTER refer-
ence data.

In order to ensure an unbiased and comprehensive global validation
dataset to properly describe the fire detection performance of MOD14,
we constructed an equidistant grid composed of approximately 640
cells, each 900 km in diameter (Fig. 7). The data search criteria sought
to promote the largest possible range of observation conditions
represented in our sample, while achieving reasonable data volume,
computer requirements and human resources to effectively complete
the analyses. The resulting scene selection process consisted of: [(i)]

(i) Three temporal subsets, namely: 2001–2002, 2003–2004, and
2005–2006;

(ii) Up to three scenes per temporal subset and grid cell showing
highest fire activity based on the number of MOD14 fire pixels
found within the individual ASTER scene coverage areas. These
active fire scenes also included an abundance of fires omitted
by the MOD14 product;

(iii) At least one randomly-selected ASTER scene per each temporal
subset and grid cell which could include other detected and un-
detected fires, water bodies, translucent as well as opaque
clouds, snow/ice covered surfaces, a fire-free gradient of land
surfaces, as well as nighttime data.
The sampling periods in (i) were constrained by data gaps affect-
ing Terra MODIS prior to 2001, and by a sensor malfunction
which marked the end of ASTER SWIR channel data acquisitions
after May 2007. During our scene selection process, fire-free
areas such as open ocean waters, deserts, and polar regions
were automatically excluded. A subset of 2466 ASTER scenes
(Fig. 7) matching the criteria above was obtained from NASA's
Land Processes Distributed Active Archive Center (LPDAAC).
Among those scenes selected, 140 were acquired at night.

The 30-mASTER active fire reference datawere derived based on the
methodology of Giglio et al. (2008), and consisted of a binary fire/no-
fire mask that was co-located with coincident Terra MODIS 1-km data
(Csiszar & Schroeder, 2008; Csiszar et al., 2006; Morisette, Giglio,
Csiszar, & Justice, 2005; Schroeder et al., 2008). The ASTER fire detection
envelope calculated by Giglio et al. (2008) suggests a minimum detect-
able fire area of approximately 4 m2 for a typical 900-K flaming fire.
Summary fire statistics were derived using the number of 30-m ASTER
fire pixels overlapping the effective MODIS pixel footprint, after consid-
eration of the sensor's triangular point spread function in the along-scan
direction (Morisette et al., 2005; Schroeder, Csiszar, Giglio, & Schmidt,
2010; Wolfe et al., 2002).

Complementing the data described above, we obtained the corre-
sponding Terra MODIS MOD03 geolocation product from the Land and
Atmosphere Archive and Distribution System (LAADS), and the
Hansen et al. (2003) MOD44B annual Vegetation Continuous Fields
(VCF) gridded product from the LPDAAC. The MOD03 data were used
to co-locate all MODIS pixels to the coincident ASTER reference data.
The VCF data were used to generate average percentage tree cover
estimates in and around each MODIS pixel location using a 20 × 20 km
sampling window, providing broad land cover reference categories to
support the global analysis of the MOD14 product performance.

5. Results and discussion

5.1. Global performance

Omission errors were estimated for the entire population using
error matrix analysis. In order to estimate the omission error rate as a



Fig. 7. Global equidistant 900 km resolution sampling grid and the distribution of individual 60 × 60 km ASTER reference scenes (red shade) used to validate the near-nadir 1-km Terra
MODIS fire product.
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function of fire size, false negatives were derived as the sum of Terra
MODIS pixels showing a number of coincident ASTER fire pixels ≥ N
without corresponding MOD14 detection, with N varying between 1
and 500. The results were then stratified as a function of percentage
tree cover as depicted in Fig. 8. Lower tree cover values (0–20%) were
typically associated with grasslands and open savanna, whereas the
highest values (N60%) were normally attributed to fires in densely veg-
etated forest areas. Fires in high tree cover areas were predominantly
associated with forest wildfires (e.g., boreal regions) and slash and
burn fires (e.g., tropical deforestation) without canopy obstruction.
Understory fires in forest areas could not be properly quantified due
to low detection rates in both reference and MOD14 data sets.

The overall omission error using fires of all sizes detected by ASTER,
which can potentially be as small as 4 m2 in extent (Giglio et al., 2008),
was 86.2%, and less than 10% for reference fires composed of 140 or
more ASTER fire pixels. On average, areas of low (b20%) and high
(N60%) percentage tree cover showed a 9% absolute difference in
omission errors over fire clusters containing less than 100 ASTER pixels.
This difference was attributed to lower fire intensity and warmer back-
ground conditions increasing the likelihood of MOD14 omission errors
in low tree cover areas. Conversely, higher fire intensity and cooler
background conditions reduce the likelihood of a MOD14 omission
error in areas of high tree cover.

From Fig. 8 it is apparent that the omission error stabilizes at ~5% for
MODIS pixels containingmore than ~250ASTERfire pixels, and remains
essentially fixed at this level as fire size continues to increase. We attri-
bute this stabilization to common factors associated with large fires
in general. The presence of large burn scars adjacent to the active
fire line, for example, can affect the background characterization, poten-
tially reducing the spatial and/or radiometric contrast with the fire
pixel and thus the efficacy of the contextual tests. Variable plume and
atmospheric properties can also lead to partial or complete obscuration
of the fire signal, thereby affecting the ability of the algorithm to detect
some parts of a large fire.

For comparative purposes, Fig. 8 also shows the corresponding omis-
sion error curves derived for the MOD14 Collection 5 product. Relative
to the previous product version,MOD14 Collection 6 showed noticeable
improvement in detection performance of large fire clusters (N300
ASTER pixels) occurring in areas with percentage tree cover greater
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than 60%. The difference was mainly associated with MODIS pixels in
boreal forest regions where thick smoke from large wildfires either
exceeded the lower 0.86-μmpotential fire threshold used for Collection
5, or triggered the more liberal Collection 5 cloud screening, leading to
higher omission errors.

Commission errors (false alarms) were defined as MOD14 pixels
without coincident ASTER reference fire activity. All potential false
alarms were visually inspected, and MOD14 pixels showing ASTER fire
activity in the immediate vicinity (neighboring pixels) were classified
as true positives in order to account for any unresolved pixel spatial re-
sponse and/or co-location errors. Additionally, MOD14pixels associated
with industrial heat sources (e.g., steel mills) were not counted as
commission errors given that those recurring pixels can be readily
isolated from the rest using simple detection persistence analysis
(e.g., Schroeder et al., 2008). Finally, all confirmed false alarms were
inspected for the presence of radiometrically distinct burn scars in
order to separate false alarms in areas completely free of biomass burn-
ing from those associated with recent activity.

Fig. 9 shows the global commission-error rates for MOD14 Collec-
tions 5 and 6. False alarm rateswere divided into two subsets describing
pixels with and without coincident burn scars. Both data sets showed a
strong dependency on the percentage tree cover, with higher false
alarm rates in areas dominated by densewoody vegetation. This feature
is corroborated by previous results and is explained by the occurrence of
land clearings that induce high thermal contrast with the cooler forest
background, thereby mimicking the spectral signature of an actual
vegetation fire (Schroeder et al., 2008). Most importantly, the MOD14
Collection 6 product showed a significant reduction in false alarm
rates compared to Collection 5 over high tree cover regions. This im-
provement in performance is a result of the forest clearing rejection
test described in Section 3.6.4. Overall, theMOD14 Collection 6 daytime
global commission error was 1.2%, compared to 2.4% in Collection 5.We
found no evidence of commission errors in the nighttime data analyzed,
which included 838 MOD14 fire pixels among ~500,000 MODIS night
pixels sampled. We therefore conclude that false alarms in the MOD14
data are constrained to daytime data when differential solar reflection
and heating can sometimes lead to ambiguous classification of land
surface pixels.
5.2. Regional performance

To assess algorithm performance regionally, we partitioned our
validation results into the 14 Global Fire Emissions Database (GFED) re-
gions used in numerous earlier studies (Fig. 10). As before, we consider
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both omission and commission errors, now expressing the former in
terms of the complementary probability of detectionwidely used in ear-
lier fire-product validation studies (e.g. Morisette et al., 2005, Schroeder
et al., 2008).

Collection 6 detection probabilities showed significant regional var-
iability, ranging from a minimum of 7% in the Middle East (MIDE) to a
maximum of 26% in Australia and New Zealand (AUST). Compared to
Collection 5, the probability of detection for the Collection 6 product
exhibited a ~3% absolute increase in Boreal North America and Boreal
Asia, a ~1% absolute increase in Equatorial Asia and Central Asia, a ~1%
absolute decrease in NH South America, and little or no change in the
remaining nine regions.

Not unexpectedly, the observed variability in the probability of
detection was strongly driven by regional differences in fire size
(Fig. 11). For all regions, fire size (in terms of 30-m ASTER fire pixels)
was extremely skewed toward small fires, more or less following an ex-
ponential distribution (Fig. 12). The presence of a comparatively small
number of very large fires in the tail of each distribution generally ren-
ders the arithmetic mean highly biased toward large fires, to a great ex-
tent ignoring the contribution of the much larger population of small
fires, hence we summarize the “typical” fire size within each region in
terms of the median.

Regional commission error rates are shown in Fig. 13. For the
Collection 6 product, significant absolute decreases of ~5% occurred in
both Equatorial Asia and SH South America. More modest reductions
(~1% absolute) were observed for Central Asia, NH South America, and
Temperate North America, and in the remaining cases the Collection 6
commission error rate remained effectively the same or increased only
negligibly.

6. Conclusions

Wehave described improvements in theMODIS activefire detection
algorithm, and the associated MOD14 and MYD14 fire products, as part
of the MODIS Collection 6 land-product reprocessing activity. The
Collection 6 algorithm is intended to address limitations observed
with the previous Collection 5 fire product, notably the occurrence of
false alarms arising from small forest clearings, and the omission of
large fires obscured by thick smoke. Processing was expanded to oceans
and other largewater bodies to facilitatemonitoring of offshore gasflar-
ing. Additionally, fire radiative power is now retrieved using the
Wooster et al. (2003, 2012) radiance approach. This change resulted
in a consistent decrease in FRP for the vast majority of fire pixels, but
with occasional slight increases (by up to a few percent) for the much
smaller fraction of comparatively high intensity fire pixels.

We performed a Stage-3 validation of the Collection 5 and Collection
6 Terra MODIS fire products using reference fire maps derived from
more than 2500 high-resolution ASTER images. Our results indicated
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targeted improvements in the performance of the Collection 6 active
fire detection algorithm compared to Collection 5, with reduced omis-
sion errors (i.e., an increased probability of detection) over large fires,
and reduced false alarm rates in tropical ecosystems. Overall, the
MOD14 Collection 6 daytime global commission error was 1.2%, com-
pared to 2.4% in Collection 5. Broken down regionally, the probability
of detection for the Collection 6 product exhibited a ~3% absolute in-
crease in Boreal North America and Boreal Asia, a ~1% absolute increase
in Equatorial Asia and Central Asia, a ~1% absolute decrease in NH South
America, and little or no change in the remainingnineGFED regions. Not
unexpectedly, the observed variability in the probability of detection
was strongly driven by regional differences in fire size. Overall, there
was a net positive change in Collection 6 algorithm performance
globally.

The Collection 6 algorithm is now run as part of the MODIS land-
product forward processing stream, as well as the operational Land
Atmosphere Near Real-time Capability for EOS (LANCE) system. The en-
tire MODIS archive has been reprocessed and is now freely available
from the USGS/NASA Land Processes Distributed Active Archive Center
Fire Size (Number of ASTER Fire Pixels)

P
ro

ba
bi

lit
y 

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10
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(https://lpdaac.usgs.gov/). As we have noted previously, operation of
the Terra MODIS sensor from launch through October 2000 was prob-
lematic, rendering theMODIS fire product for this time period of limited
utility. Consequently, time series analyses of MODIS fire data should be
restricted to observations acquired from November 2000 onward.

The MODIS Collection 6 algorithm and product has also been used
as the baseline for the forthcoming science-quality Suomi National
Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer
Suite (VIIRS) 750-m active fire product to be produced byNASA (Csiszar
et al., 2014).
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