

J. Symbolic Computation (1996) 21, 427–439

A Distributed and Cooperative Environment for
Computer Algebra

STEPHANE DALMAS†¶, MARC GAETANO‡‖ AND ALAIN SAUSSE?∗∗

†INRIA, Projet SAFIR, BP 93, 06902 Sophia-Antipolis CEDEX, France
‡I3S, CNRS URA 1376, Université de Nice-Sophia Antipolis

?Département de Mathématiques, Université de Nice-Sophia Antipolis

(Received 30 May 1995)

In this paper, we describe the Central Control , a software component that enables
several symbolic systems to cooperate and exchange data. The Central Control has
been designed to be the kernel of an environment for scientific computations which can
offer a common and concurrent access to several tools needed by the scientist and the
engineer: general purpose and specialized computer algebra systems, visualization tools,
links with numerical libraries and tools to manipulate numerical programs etc. The user
can interact with the Central Control through one or more (graphical) user interfaces.
The Central Control achieves its goals by requiring as little as possible from the tools
and by using a particular programming language to provide a unified view for the objects
and the operations performed by the connected tools. The Central Control will be used
as the basis of the Comprehensive Solver that will provide common access to all the
programs developed within the posso esprit/bra project. We give a simple example of
an actual use of the Central Control for computing primary decompositions of ideals.

c© 1996 Academic Press Limited

1. Introduction

There is currently a great need to make various tools cooperate within a single environ-
ment for scientific computations. Such tools can be sophisticated user interfaces, symbolic
computation systems (general purpose as well as specialized), visualization tools, tools
that generate and transform numerical programs (including interfaces to numerical li-
braries) etc. The Central Control is a software component that has been designed to
be the kernel of such an environment. It can offer a common and concurrent access to
various tools needed by the scientist and the engineer and the possibility to distribute
computing over a network of symbolic computation systems.

Many problems in computer algebra require the features of more than one particular
system. For example, a general purpose system like Maple provides all the common
functionalities of symbolic computation but cannot compete with specialized packages
dedicated to specific topics, like Macaulay for Gröbner Basis computation or Singular

¶ E-mail: stephane.dalmas@sophia.inria.fr
‖ E-mail: marc.gaetano@sophia.inria.fr
∗∗ E-mail: alain.sausse@sophia.inria.fr

0747–7171/96/040427 + 13 $18.00/0 c© 1996 Academic Press Limited

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/81954453?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

428 S. Dalmas et al.

Macaulay

Maple GUI

Alpi

CC

Figure 1. A typical network.

CC

Maple Macaulay

init
Application
Program

launch(CC,init)
...

...

Figure 2. Using the CC from an application program.

for the study of singularities. Moreover, symbolic computation of real size problems is
usually time consuming, and it could be interesting to distribute the computation over
several instances of the same system.

Typically, the Central Control can be used as a communication manager to provide
access to several systems through a common (graphical) user interface. This is the sit-
uation depicted in Figure 1. In this architecture, the interface (gui) keeps the Central
Control hidden from the user. It would also be possible to use an existing general purpose
computer algebra system as the interface (frontend) for the CC. This would allow the
general system to access more dedicated servers through the CC.

Another use can be to provide external services to an application that needs some
computer algebra capabilities. Figure 2 shows a program that uses the Central Control
to access the Maple and Macaulay systems. As the Central Control is programmable,
the configuration of the network is read from the init file so that all the details of the
communication can be hidden from the application program.

Another advantage of using a tool like the Central Control is the possibility to reuse
existing packages with no or little extra programming. Some work is needed to provide
an access through the underlying protocol for exchanging mathematical data which is
currently asap (Dalmas et al., 1994) but could be replaced by the emerging OpenMath
standard (OpenMath, 1996) as soon it will be available.

Lastly, an architecture like the one of the Central Control allows a better organization
of large applications involving several tools (not everything in one program nor on one
machine).

Some systems and software architectures have been proposed in the last few years to
support such an environment, such as polylith (Purtillo, 1994), CaminoReal (Arnon
et al., 1988), cas/π (Kajler, 1992) and sui (Doleh and Wang, 1990), but our approach
is quite different. None of these are really programmable in the way the Central Con-
trol is (through its command language). sui seems to focus on the interface and is not
programmable at the user level. cas/π and polylith have a “software bus” approach
that renders the addition of new facilities (or access to new operations inside servers)

A Distributed and Cooperative Environment for Computer Algebra 429

more difficult and not as dynamic as in the Central Control (in the Central Control
architecture, you can add a new type of server “on the fly” and change any interface
dynamically).

2. Architecture and Design of the Central Control

The main role of the Central Control (abbreviated as CC from here on) with respect
to the tools it can manage is to provide a common and unified view of the various
data they manipulate and the operations they implement. This is achieved thanks to its
programming language that permits the definition of translation rules and procedures
that can hide the specificities of each tool.

The CC provides the user with dynamic access to various tools (“dynamic” means that
the user can run and terminate these tools from the CC as he needs them) so that the data
(results) produced by one tool can be used as inputs to other tools. The “configuration
process” is also transparent for a casual user. This means that all of the complexity of
the CC (running programs, knowing which tool will handle a request) can be hidden
from a user through the definition and use of suitable procedures and mechanisms.

As a distributed computing environment, the emphasis is on a structure where the
interaction between tools is limited in certain ways:

1. the time spent in communications is supposed to be negligible compared to the
time spent in computing (inside the programs);

2. the tools are mainly independent: they can perform their tasks without the help of
other tools.

In other words, we emphasize neither efficient communication nor tight coupling of tools.
This does not mean that the communications will be inefficient or that tight coupling
will be impossible as we shall see later.

Basically, the CC sends a computation request to a particular tool. The tool computes
and then sends back the result. This result is an object in the CC that can be treated
with the full power of its programming language and sent to another tool.

In fact, a tool can ask the CC for a particular computation. Such a request is expressed
as a command in the programming language of the CC. Ultimately, this allows a program
to delegate all of the computations it needs to other servers through the CC. This is
precisely what a user interface will need. An interface is thus treated as any other tool
in our framework.

The data abstraction that we have chosen to be common to all the tools is an attributed
tree (or term). An attributed tree is a tree where each operator (non-leaf node) can carry
a set of pairs made of an attribute name and the associated value that can be another
attributed tree. This is the most natural abstraction in our setting as most general
purpose algebraic systems manipulate terms. Additional semantical information can be
expressed with attributes without compromising the simplicity of the representation.

Attributed terms are the main objects in the CC as well as the objects that are
transmitted between the CC and the tools. The underlying protocol used to encode
these trees for interprocess communication is currently the asap protocol (Dalmas et
al., 1994). For the moment, the CC only understands the asap protocol to transmit
the terms. We plan to use the future OpenMath (OpenMath, 1996) standard as soon as
this new protocol will be ready and accepted by the community. Note that there is no

430 S. Dalmas et al.

restriction in the design of the CC that will prevent the use of several protocols (one tool
can use its own specific protocol).

2.1. lazy computation and lazy communication

As the results of the computations can be huge, it is desirable to avoid systematically
transmitting results to the CC. The CC can therefore associate a “handle” for a result
that can be manipulated as any other object. Only the request of specific operations
on this handle should cause the effective transmission of the result. In some cases, we
can even avoid transmitting the data associated with the handle, for example when a
subsequent computation is addressed to the server that owns the value of the handle.
This notion of lazy communication reduces the time of communication, computation (for
transformation of the mathematical objects to the special form used by the interprocess
communication protocol) and the space used (in the CC). This imposes only a few con-
straints on the server (being able to store its results) that are not mandatory (the CC
can transparently work with servers that do not have the support for handles).

Since the computations performed by a tool can be long and the CC is meant to
be “interactive”, allowing the concurrent use of many services, it is important not to
have to wait for the answer of every computation. We thus propose a mechanism of
lazy computation. A computation request can return a promise immediately after its
transmission. Promises could be manipulated as any other object in the CC. Every time
an operation is requested on an object containing promises, the computation is done
lazily; i.e. if the result associated to a promise is available (the server has finished its
computation) it will be used, otherwise a promise is returned. The CC has a primitive
operation to force the waiting of the result. This notion of promise is quite similar to the
future construct of Multilisp (Halstead, 1985).

One interesting problem to consider (among many others) is how to handle promises
that are related to aborted computations. A computation can be aborted due to a timeout
or an explicit interruption from the user or a shutdown of the server. Such promises are
marked “invalid” when the incident is detected and an error is returned every time their
values are needed to complete a computation (there is a similar problem with handles).
Note that the semantics of the CC language is such that we can easily cope with the
problem of redefining identifiers referring to promises. They just go out of scope (a
garbage collector is free to eventually reclaim it and interrupt the related computation).

This notion of lazy computation seems to be able to gracefully handle several problems
related to concurrency inside such an environment where many services cooperate under
the interactive supervision of a user.

3. Expressing Computation Requests and the Semantics of Operators

As all communications are done with attributed trees, the CC and the tools should
agree on the meaning of these trees (and hence the meaning of the operators that occur).
More precisely, the CC should know how to request a particular computation from a
given server and what its answer means.

It is better for the user to express his or her requests in a way that is as independent
as possible from the tool that will handle them. In fact, it cannot be truly system inde-
pendent (as some possible partners cannot handle the desired requests) but we should

A Distributed and Cooperative Environment for Computer Algebra 431

require as little knowledge as possible from the user. In practice, this means that the
following conditions should be met:

1. we must be able to express exactly what is going to be computed. If the user wants to
differentiate a given expression containing an expression like factor(...) a server
should not try to evaluate (factorize) the argument of factor unless explicitly asked
to;

2. the interpretation of the operators included in a request should be totally under
the control of the user. For example, if he wants to differentiate a term containing
something like W(x) and this W has no special meaning for him, the server should
not impose any meaning by itself for this W operator.

The first condition can be easily met. Exchanging attributed terms makes it easy to
express computation requests by using a particular attribute. And the user is perfectly
aware of where he wants some computation to take place.

The second condition needs some kinds of conventions: assigning mathematical mean-
ings to some operators, for example deciding that sin denotes the mathematical sine
function. This is not always an easy task (think of the differences between the sine func-
tion in the real and complex domain. . .) Anyway, we must also provide a way (through
attributes) to say “this has no meaning for me, so it must have no meaning for you
either” (if we don’t want the user to browse through all the documentation to find which
operators have meanings).

3.1. translating for a service

The problems described above are solved by applying a set of transformations in the
CC. Each computation request expressed in the language of the CC is first transformed
with respect to the head operator of the term and the service of the server (as we can
have several instances of the same program managed by the CC, for example several
Maple at the same time, we use the notion of a service). The result is then transformed
with respect to a particular set of rules describing the semantics of the service before
being actually sent to the server.

As an example, we work out what happens with the following computation request
let p = maple integrate(sin(x),x) whose intent is to return the indefinite integral
of the sine function.

First, a rule matching integrate(sin(x),x) is searched for in the Maple set (the name
of the service associated with the maple server). The term is transformed accordingly:
we obtain int(sin(x),x). Then this term is transformed with respect to the rules in the
translation set associated with Maple (this rule set is also under user control at runtime).
The goal of this phase is to make the translation between the semantics of the operators
within the CC and the one of the service. Here, int will be translated as int, sin as
sin (as both represent the sine function) and x will be marked as a dummy variable
(as it does not represent anything except a placeholder). It is important to rename the
operators with no meaning in the CC because we don’t want to be bothered by cases
such as integrate(sin(E),E) when E has a special meaning for a server (this deals with
the problems of predefined operators and words for a service).

432 S. Dalmas et al.

4. The Command Language

The command language provides access to the functionalities of the Central Control.
Its basic objects are: attributed terms (the basic data structures of the language), servers
(external computing engines), services (an abstraction common to several servers) and
association tables.

The design principles for the language of the Central Control are rather simple. Terms
are the basic objects: we do not want to be bothered by evaluation rules when writing
terms, so we avoid all quotation mechanisms. All evaluations (computations) of terms
or subterms are requested explicitly. Computations in the Central Control are limited
to conditional rule-based transformations of terms using pattern matching. All other
computations are done through servers. Rules are grouped in named sets and applied
explicitly (except the rules related to the “syntactic” aspects of servers). The language
supports both local and global bindings of identifiers to values (including terms and
servers) and a general association table facility (tables indexed by one or more terms). In
addition, the language provides incremental definitions of rules and predicates (to control
the application of rules), launching and termination of servers, sending interruptions to
servers and manipulations of rules and rule sets (dynamically adding or deleting rules).
There are also some facilities to get information about the resource usage of a server
(including timings). A program in this language is a sequence of commands, commands
are made up of expressions and some expressions denote terms.

Our terms are attributed trees whose leaves are (arbitrary precision) integers or byte
arrays (including character strings such as "x") or 0-ary operators (like x or y). A string
can be used as an operator (provided it does not contain forbidden characters like white
spaces) to escape the lexical conventions of the language. Byte arrays can be used to
communicate efficiently (via “sub protocols”) when the CC has only to act as a router
between two servers.

4.1. bindings

There are two ways to establish a binding between an identifier and an object in
the CC. The first one is a local binding construct, introduced by the keyword where:
$x + f($x) where x = z + k*z^2/ binds x to the term z + k*z^2 so that the value
of the expression is in fact: z + k*z^2 + f(z + k*z^2).

This kind of binding is local to a term. An extended form enables the simultane-
ous bindings of several identifiers: $x + $y where x = y^2 and y = z^2. Here, the two
bindings occur “in parallel”.

The let construct is used to establish a global binding between an identifier and
the value of an expression. The command let x = x + 1 and y = f(g(x)) binds two
identifiers x and y to two terms. To refer to the value of x in an expression (a term), one
writes $x. Here is an example of a little session:

CC> let x = 2; let y = $x + 2; let x = 0;
CC> $y;

val it = 2 + 2

The identifier it is bound to the value of the last evaluated expression (when an expres-
sion is given instead of a command to the toplevel of the CC). The bindings produced
by let or where are static (lexical) bindings.

A Distributed and Cooperative Environment for Computer Algebra 433

4.2. arrays and variables

The CC manipulates tables that are associative collections of values (like in the awk
language). A table is created by the table expression: let tab = table. Table elements
are referenced with constructs of the form tab[t] or tab[t1, t2, . . . , tn] where each ti
could be any term. An element is introduced into a table with the := construct, like:
tab[x] := y. When there is no value (term) with the given indices, the symbol null is
returned. This can be used to clear an entry (setting it to null).

To emulate the variables found in imperative languages, the language offers a short-
hand: x := y is interpreted as global[x] := y and deref x as global[x].

4.3. manipulating servers

The servers are denotable values in the language. They are created with the create ex-
pression. The command let maple = createMaple(proto(ASAP), machine(psyche),
command(maple)) creates a server which is an instance of the Maple service. This server
is bound to the identifier maple. The arguments to the Maple operator are interpreted
by create to “physically” create the connection between the server and the CC. The
computations are then requested with the compute expression. The command let two =
compute $maple 2 + 2 returns a term representing 4. Note that the server is represented
by an expression which is evaluated. Servers can thus be computed.

There is a special form for requesting “asynchronous” (lazy) computation: let two =
exec $maple 2 + 2 returns immediately a promise for the result that is bound to two.

4.4. rules

Rules are the basic computation mechanism in the CC. Generally, a rule is of the form

[<rule set>::] <pattern> --> <body> [when <cond>]

A rule is composed of a pattern, an action and an optional condition. Rules are organized
into rule sets that are named. A rule with no rule set specified is assumed to be in the top
rule set. Rule sets can be indicated by prefixing the operator with the name of the set.
Here is an example of a simple rule: integrate(?expr, ?x) --> maple int(?expr,
?x) when symbol(?x).

Applying this rule will invoke a maple server to compute the indefinite integral of the
first argument but only when the second argument satisfies the predicate symbol.

We are not restricted to “first order” rewriting, as the pattern variables (those be-
ginning by the ? character) can also denote operators as in: map(?f, [t1, t2]) -->
[?f(t1), ?f(t2)]. The pattern variables beginning with ?? match sequences of terms.

Conditions for rules are given by predicates. Predicates are boolean-valued terms that
are used to provide conditional transformations. They are combined with the classi-
cal boolean operators (and, or, not). Predicates are defined by the predicate com-
mand. Here we define a predicate symbol that tests the arity of its argument: predicate
symbol(?t) = arity(?t) = 0.

Evaluation of a rule gives a term which is the value of the <body> part. This part
can be an expression or a sequence of commands enclosed between begin and end (the
value is then given by a return command).

Several rules can be entered in one rule set with the rules for ... end construct:

434 S. Dalmas et al.

rules for s
x --> 1 y --> 0
end

defines a rule set named s containing two very simple rules. Rule sets can inherit other
rule sets with the inherit command:

rules for Maple
inherit standard
...
end

Here, all the rules in the standard set will be used in the Maple set (but they will not
take precedence over the explicitly given ones).

4.4.1. applying a rule

Rules are applied with the apply expression. For example the rule x --> 1 can be
applied by the command let one = apply top x. top is the rule set that is used here.
The rule s::x --> 1 is applied with let one = apply s x. In this case, s is the name
of the rule set.

Rules and bindings are somehow similar. An expression like let x = f(y) is equivalent
to the rule x --> f(y). In the top rule set, $x can be viewed as a shorthand for apply
top x.

4.4.2. rules as object

Rules can be “dynamically” added in the CC with the following construct:

assert < rule set >(< pattern >,< body > [, < condition >])

For example let r = top(x, 1, true); assert $r; is another way to add a rule in
the top rule set. Rules can also be deleted with the hide command:

hide < rule set >(< pattern >)

For example, the expression hide Maple(?t) invalidates all rules in the Maple rule set.
The rules are not really lost. The CC keeps track of the deleted ones and is able to restore
them (to be able to “reinitialize”).

4.4.3. examples

Here is a more interesting example demonstrating a way to ease the creation of servers
by using a table that associates a machine name to a service:

let default_machine = table; default_machine[maple] := ganesa;
rules for servers
maple --> create Maple(machine(default_machine[maple]), command(maple))
maple(?machine) --> create Maple(machine(?machine), command(maple))
end;

A Distributed and Cooperative Environment for Computer Algebra 435

The last rule could have been protected by a condition like when symbol(?machine).
Another example shows how to transparently create a server:

rules for tmaple
?t --> begin

let maple = create Maple(machine(ganesa), command(maple));
hide tmaple(current);
assert tmaple(?t, compute $maple ?t);
return apply tmaple ?t;
end

end;

The first time a rule is applied in the tmaple rule set, a Maple server is started and the
maple rule set is used to do the subsequent computations involving tmaple.

Another example shows how to implement a “best server” for the job (i.e choose the
right program depending on the requested operation):

rules for best
factor(??l) --> apply tmaple factor(??l)
integrate(??l)--> apply tmacsyma integrate(??l)
end;

where tmaple and tmacysma are “transparent” servers as above.
Predicate commands can also make use of services (here through tmaple defined

above). Here is a isprime predicate:

predicate isprime(?t) = apply tmaple isprime(?t);

5. Integrating Existing Systems

A major practical problem is the integration of existing systems in our architecture.
Commercial systems are sold without source code and the sole access to their computing
functionalities is through their user interface (this is untrue for some of them, as Maple
and Mathematica both support some means to bypass their ordinary interface).

A general solution is to encapsulate the system within an interface (that we call a
“master box”) that acts as a filter, translating the requests expressed as attributed trees
in the command language of the system and parsing the output to obtain the terms
that will be sent back to the CC. When the user creates a service, the CC launches
this interface that itself executes the system as a subprocess. A typical master box is
composed of four parts devoted to:

1. Launching the program. Basically it uses the popen unix function to communicate.
2. Termination of the program. It just sends the right command (quit in Maple, exit

in Macaulay).
3. Translating a request. This part does the job of “dummization” to insure that no

clash will occur with reserved words and predefined operator (see 3.1). It is also
responsible the assignment of results to handles.

436 S. Dalmas et al.

4. Sending back the answer. A parser translates the output of the system to attributed
trees that are sent back using the functions of the asap library. Its structure is
roughly similar to that of Mathlink (Wolfram, 1993).

As a measure of the amount of work needed to realize such an interface, we can say
that the master box corresponding to Maple is 550 lines of Standard ML, ML-yacc and
ML-lex descriptions. There are approximately 200 lines for parsing the output of Maple
and 350 for handling input.

This approach has been taken to grant access to Maple and Macaulay from the CC.
The last connected system is Alpi (a system performing computation in commutative
algebra, developed at the University of Pisa by Carlo Traverso). In this case, we have
modified the source code to provide a direct access through the asap library.

6. Application

For now, our comprehensive solver is composed of Maple, Alpi and Macaulay. We are
going to show how this distributed architecture can be applied to perform a primary ideals
decomposition. We use Maple for its linear algebra package, Macaulay to compute the
Groebner basis and Alpi to manipulate the ideals. This example is intended to illustrate
a typical CC session and thus the input polynomials have been chosen to produce simple
results.

Let A = k[x, y, z]. Let I ⊂ A an ideal generated by the following four polynomials:

g1 = yx2 − yx− x2 + x

g2 = y2z − y2 + y2x− yz + y − yx
g3 = xz

g4 = z2 − z.

We first create the needed servers:

CC> let map = create(Maple);
val map=Maple
CC> let mac=create(machine(math), command(macaulay));
val mac=Macaulay
CC> let alpi = create(Alpi);
val alpi=Alpi

We define the polynomial ring and the ideal (some of the outputs have been abbreviated):

CC> let ring = ring([x,y,z]);
val ring=ring(...)
CC> let g1 = y*x^2-y*x-x^2+x and g2 = y^2*z-y^2+y^2*x-y*z+y-y*x

and g3 = x*z and g4 = z^2-z;
...
CC> let I = ideal([$g1,$g2,$g3,$g4]);
val I=ideal([...])

We compute the codimension with Alpi, using the following rule:

A Distributed and Cooperative Environment for Computer Algebra 437

CC> rules for Alpi
codimension(?t) -->

begin
let hilb = exec $alpi hilbert(?t); return compute $map op($hilb,3);

end
end;
val it=()
CC> let codim = apply Alpi codimension($I);
val codim=2

Hence I is one-dimensional. We then eliminate the hypersurfaces of the variety gener-
ated by g1, . . . g4 computing the gcd of the generators gi. We use Maple for these gcd

computations.

CC> rules for Maple
gcd(?t) --> return compute $map gcd(?t) when equallength(?t, 2)
gcd(?t) -->
begin

let car = compute $map op(?t, 1) and
and cdr = compute $map op(?t,2..length(?t));
return compute $map gcd([$car,apply Maple gcd($cdr)]);

end
when suplength(?t, 2)

end;
val it=()
CC> let cf = apply Maple gcd([$g1,$g2,$g3,$g4]);
val cf=1

So, there is no hypersurface. We then look at the three different projections:

Pxy = I ∩ k[x, y], Pxz = I ∩ k[x, z], Pyz = I ∩ k[y, z].

CC> rules for Macaulay
proj(?t, ?l) -->

begin
let r = compute $mac ring(?l, 1) and i = compute $mac ideal(?t);
let j = exec $mac std($i);
return exec $mac elim($j);

end
end;
val it=()
CC> let Pxy = apply Macaulay proj($I,[z,x,y]);
val Pxy=promise
CC> let Pxz = apply Macaulay proj($I,[y,x,z]);
val Pxz=promise
CC> let Pyz = apply Macaulay proj($I,[x,y,z]);
val Pyz=promise

The computation of the three projections Pxy, Pxz and Pyz could have been performed in

438 S. Dalmas et al.

parallel if we had launched several Macaulay servers as the Macaulay rule proj ends with
an exec call which returns immediately a promise. Then Maple is needed to factorize
each set of generators:

CC> Maple::lfactor(?l) --> map(factor, ?l);
val it=()
CC> let Pxy = $map lfactor($Pxy) and Pxz = $map lfactor($Pxz)

and Pyz = $map lfactor($Pyz);
...

The result is then Pxy = {x(y − 1)(x− 1)}, Pxz = {xz, z(z − 1)}, Pyz = {z(z − 1)}.
Let us consider the two principal ideals Pxy and Pyz. We compute the quotient of I by

a factor appearing in Pxy, then the quotient of the result by another factor, etc. After
the factors of Pxy, we take the factors of Pyz. If the result is the whole polynomial ring,
we repeat this process with the previous result. This process (in this example) allows us
to get a “step by step” difference of algebraic varieties until a primary ideal is found.

CC> let I1 = $alpi quotient($I, y-1);
val I1=[x*(x-1),x*z,z*(z-1),y*(z-1+x)]
CC> let I2 = $alpi quotient($I1, x-1);
val I2=[x,y*(z-1),z*(z-1)]
CC> let I3 = $alpi quotient($I2, x);
val I3=[1]
CC> let I3 = $alpi quotient($I2, z-1);
val I3=[x,y,z]
CC> let I4 = $alpi quotient($I2, z);
val I4=[x, z-1]

To complete the decomposition, we must compute the quotient of I by each factor ap-
pearing in Pyz. The quotient of this result by y − 1, then by x − 1, gives us the last
irreducible components of I. Finally, we have the following result:

I =
4⋂
i=1

Ii where I1 = (x, y, z), I2 = (x− 1, z), I3 = (y − 1, z), I4 = (x, z − 1).

7. Current Work

The current version of our Central Control has been successfully experimented with
Maple, Alpi, GB† and Macaulay. This version is written in Standard ML and is about
3500 lines of code. It currently runs on sparc processors running SunOS 4.x and dec

mips-based machines. The size of the executable is about 1 megabyte.
Besides the future connections to be established with other major scientific tools (like

Axiom) and specialized packages (produced by the posso project), we plan to provide the
Central Control with a more conventional programming language. We think that it will be
better for the future to build such a tool on a common (standardized) existing language
than use our own original language. More users should be involved and interested (and

† developed by Jean-Charles Faugère (CNRS, France).

A Distributed and Cooperative Environment for Computer Algebra 439

willing to write code). Of course, this new version will use the same main concepts as
the prototype (promises, handles, rewriting. . .). A possible solution is to embed the
functionalities of the Central Control in a Scheme interpreter. Such an experiment is
in progress based on scm (a Scheme interpreter written in c and developed by Aubrey
Jaffer). It should provide a more compact and portable implementation of our concepts.

Acknowledegments

This work is partially supported by the esprit posso project (6846). The central
control will be used as the heart of the so-called comprehensive solver which will provide
a common access to the various tools developed inside the project.

References

Arnon, D., Beach, R., Mc Isaac, K., Waldspurger, C. (1988). CAMINOREAL: an Interactive Math-
ematical Notebook. In EP’88 International Conference on Electronic Publishing, Document
Manipulation and Typography, Nice, France. Cambridge University Press.

Dalmas, S., Gaëtano, M., Sausse, A. (1994). ASAP: A Protocol for Symbolic Computation Systems.
Technical Report 162, Institut National de Recherche en Informatique et en Automatique.

Doleh, Y., Wang, P.S. (1990). SUI : A System Independant User Interface for an Integrated Scientific
Computing Environment. In Proc. ISSAC’90, pp. 88–94.

Halstead, R.H. (1985). Multilisp: A Language for Concurrent Symbolic Computation. ACM Transactions
on Programming Languages and Systems, pp. 501–538.

Kajler, N. (1992). CAS/PI : a Portable and Extensible Interface for Computer Algebra Systems. In
Proc. ISSAC’92, pp. 376–386. ACM Press.

OpenMath (1996). OpenMath www home page.
http://www.can.nl/~abbott/OpenMath/

Purtillo, J.M. (1994). The polylith Software Bus. ACM Transactions on Programming Languages and
Systems, 16:151–174.

Wolfram Research (1993). Mathlink Reference Guide.

